高考数学二轮复习专题1.5立体几何(讲)理

合集下载

高三数学二轮复习专题《立体几何》

高三数学二轮复习专题《立体几何》

高三数学二轮复习专题《立体几何》专题热点透析高考中立体几何主要考查学生的空间想象能力,在推理中兼顾考查逻辑思维能力,解决立体几何的基本方法是将空间问题转化为平面问题。

近几年高考立体几何试题以基础题和中档题为主,热点问题主要有证明点线面的关系,如点共线、线共点、线共面问题;证明空间线面平行、垂直关系;求空间的角和距离;利用空间向量,将空间中的性质及位置关系的判定与向量运算相结合,使几何问题代数化等等。

考查的重点是点线面的位置关系及空间距离和空间角,突出空间想象能力,侧重于空间线面位置关系的定性与定量考查,算中有证。

其中选择、填空题注重几何符号语言、文字语言、图形语言三种语言的相互转化,考查学生对图形的识别、理解和加工能力;解答题则一般将线面集中于一个几何体中,即以一个多面体为依托,设置几个小问,设问形式以证明或计算为主。

热点题型范例 一、平行与垂直的证明例1.如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F . (1)证明P A //平面EDB ;(2)证明PB ⊥平面EFD 解:(1)连结AC ,AC 交BD 于O ,连结EO . ∵底面ABCD 是正方形,∴点O 是AC 的中点 在PAC ∆中,EO 是中位线,∴P A // EO而⊂EO 平面EDB 且⊄PA 平面EDB ,所以,P A // 平面EDB (2)∵PD ⊥底面ABCD 且⊂DC 底面ABCD ,∴DC PD ⊥∵PD =DC ,可知PDC ∆是等腰直角三角形,而DE 是斜边PC 的中线,∴PC DE ⊥. ①同样由PD ⊥底面ABCD ,得PD ⊥BC .∵底面ABCD 是正方形,有DC ⊥BC ,∴BC ⊥平面PDC .而⊂DE 平面PDC ,∴DE BC ⊥. ②由①和②推得⊥DE 平面PBC .而⊂PB 平面PBC ,∴PB DE ⊥ 又PB EF ⊥且E EF DE = ,所以PB ⊥平面EFD .例2.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD ,已知45ABC ∠=︒,2AB =,BC =,SA SB ==(Ⅰ)证明:SA BC ⊥;(Ⅱ)求直线SD 与平面SBC 所成角的大小.解:(1)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为A CDBCASOESA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥,故SA AD ⊥,由AD BC ==,SA =SD sin 452AO AB ==DE BC ⊥,垂足为E ,则DE ⊥平面SBC ,连结SE .ESD ∠为直线SD 与平面SBC 所成的角.sin 11ED AO ESD SD SD ====∠,所以直线SD 与平面SBC所成的角为. 1.1已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90底面ABCD ,且P A =AD =DC =21AB =1,M 是PB 的中点. (Ⅰ)证明:面P AD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小. 解:(Ⅰ)∵P A ⊥面ABCD ,CD ⊥AD ,∴由三垂线定理得:CD ⊥PD .因而,CD 与面P AD 内两条相交直线AD ,PD 都垂直,∴CD ⊥面P AD .又CD ⊂面PCD ,∴面P AD ⊥面PCD .(Ⅱ)过点B 作BE //CA ,且BE =CA ,则∠PBE 是AC 与PB 所成的角.连结AE ,可知AC =CB =BE =AE =2,又AB =2,所以四边形ACBE 为正方形. 由P A ⊥面ABCD 得∠PEB =90° 在Rt △PEB 中BE =2,PB =5, .510cos ==∠∴PB BE PBE .510arccos 所成的角为与PB AC ∴ (Ⅲ)作AN ⊥CM ,垂足为N ,连结BN .在Rt △P AB 中,AM =MB ,又AC =CB ,∴△AMC ≌△BMC ,∴BN ⊥CM ,故∠ANB 为所求二面角的平面角.∵CB ⊥AC ,由三垂线定理,得CB ⊥PC ,在Rt △PCB 中,CM =MB ,所以CM =AM .在等腰三角形AMC 中,AN ·MC =AC AC CM ⋅-22)2(,5625223=⨯=∴AN . ∴AB =2,322cos 222-=⨯⨯-+=∠∴BN AN AB BN AN ANB 故所求的二面角为).32arccos(-ADCBNM EP二、空间角与距离例3.如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的 菱形,4ABC π∠=, OA ABCD ⊥底面, 2OA =,M 为OA 的中点。

湖南省2020年高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 文

湖南省2020年高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 文

专题五立体几何第1讲空间几何体的三视图、表面积及体积真题试做1.(2020·湖南高考,文4)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( ).图12.(2020·天津高考,文10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为__________ m3.3.(2020·湖北高考,文15)已知某几何体的三视图如图所示,则该几何体的体积为______.4.(2020·湖北高考,文19)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1­ABCD,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD­A2B2C2D2.(1)证明:直线B1D1⊥平面ACC2A2;(2)现需要对该零部件表面进行防腐处理.已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?考向分析通过对近几年高考试题的分析可看出,空间几何体的命题形式比较稳定,多为选择题或填空题,有时也出现在解答题的某一问中,题目常为中、低档题.考查的重点是直观图、三视图、面积与体积等知识,此类问题多为考查三视图的还原问题,且常与空间几何体的表面积、体积等问题交会,是每年的必考内容.预计在2020年高考中:对空间几何体的三视图的考查有难度加大的趋势,通过此类题考查考生的空间想象能力;对表面积和体积的考查,常见形式为蕴涵在两几何体的“切”或“接”形态中,或以三视图为载体进行交会考查,此块内容还要注意强化几何体的核心——截面以及补形、切割等数学思想方法的训练.热点例析热点一空间几何体的三视图与直观图【例1】(1)将长方体截去一个四棱锥,得到的几何体如下图所示,则该几何体的侧(左)视图为( ).(2)若某几何体的三视图如下图所示,则这个几何体的直观图可以是( ).规律方法 (1)三视图的正(主)视图、侧(左)视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,反映了一个几何体各个侧面的特点.正(主)视图反映物体的主要形状特征,是三视图中最重要的视图;俯视图要和正(主)视图对正,画在正(主)视图的正下方;侧(左)视图要画在正(主)视图的正右方,高度要与正(主)视图平齐;(2)要注意到在画三视图时,能看到的轮廓线画成实线,看不到的轮廓线画成虚线; (3)A .32B .16+16 2C .48 D.16+32 2(2)一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是( ).A.12+22 B .1+22 C .1+ 2 D .2+ 2 热点二 空间几何体的表面积与体积【例2】(2020·福建高考,文20)如图,在四棱锥P ­ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB .(1)求证:CE ⊥平面PAD ;(2)若PA =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P ­ABCD 的体积.规律方法 (1)求几何体的体积问题,可以多角度、多方位地考虑.对于规则的几何体的体积,如求三棱锥的体积,采用等体积转化是常用的方法,转化的原则是其高与底面积易求;对于不规则几何体的体积常用割补法求解,即将不规则几何体转化为规则几何体,以易于求解.(2)求解几何体的表面积时要注意S 表=S 侧+S 底.(3)对于给出几何体的三视图,求其体积或表面积的题目关键在于要还原出空间几何体,并能根据三视图的有关数据和形状推断出空间几何体的线面关系及相关数据,至于体积或表面积的求解套用对应公式即可.变式训练2 已知某几何体的三视图如下图所示,其中正(主)视图中半圆的半径为1,则该几何体的体积为( ).A .24-32πB .24-13πC .24-πD .24-12π热点三 多面体与球【例3】已知正四棱锥的底面边长为a ,侧棱长为2a . (1)求它的外接球的体积; (2)求它的内切球的表面积.规律方法 (1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.(2)若球面四点P ,A ,B ,C 构成的线段PA ,PB ,PC 两两垂直,且PA =a ,PB =b ,PC =c ,则4R 2=a 2+b 2+c 2,把有关元素“补形”成为一个球内接正方体(或其他图形),从而显示出球的数量特征,这种方法是一种常用的好方法.变式训练3 如图所示,在四棱锥P ­ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a .若在这个四棱锥内放一球,则此球的最大半径是__________.思想渗透立体几何中的转化与化归思想求空间几何体的体积时,常常需要对图形进行适当的构造和处理,使复杂图形简单化,非标准图形标准化,此时转化与化归思想就起到了至关重要的作用.利用转化与化归思想求空间几何体的体积主要包括割补法和等体积法,具体运用如下:(1)补法是指把不规则的(不熟悉或复杂的)几何体延伸或补成规则(熟悉的或简单的)的几何体,把不完整的图形补成完整的图形;(2)割法是指把复杂的(不规则的)几何体切割成简单的(规则的)几何体;(3)等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件转化为易求的面积(体积)问题.【典型例题】如图,在直三棱柱ABC ­A 1B 1C 1中,AB =AC =5,BB 1=BC =6,D ,E 分别是AA 1和B 1C 的中点.(1)求证:DE ∥平面ABC ; (2)求三棱锥E ­BCD 的体积.(1)证明:取BC 中点G ,连接AG ,EG .因为E 是B 1C 的中点,所以EG ∥BB 1,且EG =12BB 1.由直棱柱知,AA 1BB 1.而D 是AA 1的中点,所以EG AD ,所以四边形EGAD 是平行四边形,所以ED ∥AG . 又DE 平面ABC ,AG ⊂平面ABC , 所以DE ∥平面ABC .(2)解:因为AD ∥BB 1,所以AD ∥平面BCE , 所以V E ­BCD =V D ­BCE =V A ­BCE =V E ­ABC .由(1)知,DE ∥平面ABC ,所以V E ­ABC =V D ­ABC =13AD ·12BC ·AG =16×3×6×4=12.1.(2020·山东济南三月模拟,4)如图,正三棱柱ABC ­A 1B 1C 1的各棱长均为2,其正(主)视图如图所示,则此三棱柱侧(左)视图的面积为( ).A .2 2B .4 C. 3 D .2 32.(2020·安徽安庆二模,7)一空间几何体的三视图如图所示(正(主)、侧(左)视图是两全等图形,俯视图是圆及圆的内接正方形),则该几何体的表面积是( ).A .7π cm 2B .(5π+43)cm 2C .(5π+23)cm 2D .(6π+27-2)cm 23.(2020·北京丰台区三月月考,4)若某空间几何体的三视图如图所示,则该几何体的体积是( ).A .20-2πB .20-23πC .40-23πD .40-43π4.(2020·湖南株洲下学期质检,14)一个三棱锥的正(主)视图、侧(左)视图、俯视图如下,则这个三棱锥的体积为__________,其外接球的表面积为__________.5.已知正四面体的外接球半径为1,则此正四面体的体积为__________.6.正六棱锥P ­ABCDEF 中,G 为PB 的中点,则三棱锥D ­GAC 与三棱锥P ­GAC 体积之比为__________.7.如图,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED ,EC 向上折起,使A ,B 重合,求形成三棱锥的外接球的体积.参考答案命题调研·明晰考向真题试做1.C 解析:若为C 选项,则主视图为:故不可能是C 选项.2.30 解析:由几何体的三视图可知:该几何体的上部为平放的直四棱柱,底部为长、宽、高分别为4 m,3 m,2 m 的长方体.∴几何体的体积V =V 直四棱柱+V 长方体=(1+2)×12×4+4×3×2=6+24=30(m 3).3.12π 解析:该几何体是由3个圆柱构成的几何体,故体积V =2×π×22×1+π×12×4=12π.4.解:(1)因为四棱柱ABCD ­A 2B 2C 2D 2的侧面是全等的矩形,所以AA 2⊥AB ,AA 2⊥AD .又因为AB ∩AD =A ,所以AA 2⊥平面ABCD . 连接BD ,因为BD ⊂平面ABCD ,所以AA 2⊥BD . 因为底面ABCD 是正方形,所以AC ⊥BD .又已知平面ABCD ∥平面A 1B 1C 1D 1,且平面BB 1D 1D ∩平面ABCD =BD , 平面BB 1D 1D ∩平面A 1B 1C 1D 1=B 1D 1,所以B 1D 1∥BD .于是由AA 2⊥BD ,AC ⊥BD ,B 1D 1∥BD ,可得AA 2⊥B 1D 1,AC ⊥B 1D 1. 又因为AA 2∩AC =A ,所以B 1D 1⊥平面ACC 2A 2.(2)因为四棱柱ABCD ­A 2B 2C 2D 2的底面是正方形,侧面是全等的矩形,所以S 1=S 四棱柱上底面+S四棱柱侧面=(A 2B 2)2+4AB ·AA 2=102+4×10×30=1 300(cm 2).又因为四棱台A 1B 1C 1D 1­ABCD 的上、下底面均是正方形,侧面是全等的等腰梯形(其高为h ),所以S 2=S 四棱台下底面+S 四棱台侧面=(A 1B 1)2+4×12(AB +A 1B 1)h=202+4×12×(10+20)132-⎣⎢⎡⎦⎥⎤12×(20-10)2=1 120(cm 2).于是该实心零部件的表面积为S =S 1+S 2=1 300+1 120=2 420(cm 2), 故所需加工处理费为0.2S =0.2×2 420=484(元). 精要例析·聚焦热点热点例析【例1】 (1)D (2)B 解析:(1)被截去的四棱锥的三条可见侧棱中有两条为正方体的面对角线,它们在右侧面上的投影与右侧面(正方形)的两条边重合,另一条为正方体的对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图及对角线方向,只有选项D 符合.(2)由正(主)视图可排除A ,C ;由侧(左)视图可判断该几何体的直观图是B.【变式训练1】 (1)B (2)D 解析:(1)由三视图知原几何体是一个底面边长为4,高是2的正四棱锥.如图:∵AO =2,OB =2,∴AB =2 2.又∵S 侧=4×12×4×22=162,S 底=4×4=16,∴S 表=S 侧+S 底=16+16 2.(2)如图,设直观图为O ′A ′B ′C ′,建立如图所示的坐标系,按照斜二测画法的规则,在原来的平面图形中,OC ⊥OA ,且OC =2,BC =1,OA =1+2×22=1+2,故其面积为12×(1+1+2)×2=2+ 2.【例2】 (1)证明:因为PA ⊥平面ABCD ,CE ⊂平面ABCD ,所以PA ⊥CE .因为AB ⊥AD ,CE ∥AB ,所以CE ⊥AD . 又PA ∩AD =A ,所以CE ⊥平面PAD . (2)解:由(1)可知CE ⊥AD .在Rt△ECD 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 又因为AB =CE =1,AB ∥CE , 所以四边形ABCE 为矩形.所以S 四边形ABCD =S 矩形ABCE +S △ECD =AB ·AE +12CE ·DE =1×2+12×1×1=52.又PA ⊥平面ABCD ,PA =1,所以V 四棱锥P ­ABCD =13S 四边形ABCD ·PA =13×52×1=56.【变式训练2】 A 解析:由三视图可知该几何体为一个长、宽、高分别为4,3,2的长方体,剖去一个半圆柱而得到的几何体,其体积为2×3×4-12π×1×3,即24-32π.【例3】 解:如图所示,△SAC 的外接圆是外接球的一个大圆,∴只要求出这个外接圆的半径即可,而内切球的球心到棱锥的各个面的距离相等,∴可由正四棱锥的体积求出其半径.(1)设外接球的半径为R ,球心为O ,则OA =OC =OS ,∴O 为△SAC 的外心,即△SAC 的外接圆半径就是球的半径. ∵AB =BC =a ,∴AC =2a .∵SA =SC =AC =2a ,∴△SAC 为正三角形.由正弦定理得2R =AC sin∠ASC =2a sin 60°=263a ,因此R =63a ,V 外接球=43πR 3=8627πa 3. (2)如图,设内切球的半径为r ,作SE ⊥底面于E ,作SF ⊥BC 于F ,连接EF , 则有SF =SB 2-BF 2=(2a )2-⎝ ⎛⎭⎪⎫a 22=72a ,S △SBC =12BC ·SF =12a ×72a =74a 2, S 棱锥全=4S △SBC +S 底=(7+1)a 2.又SE =SF 2-EF 2=⎝ ⎛⎭⎪⎫72a 2-⎝ ⎛⎭⎪⎫a 22=62a ,∴V 棱锥=13S 底·SE =13a 2×62a =66a 3,∴r =3V 棱锥S 棱锥全=3×66a 3(7+1)a 2=42-612a ,S 内切球=4πr 2=4-73πa 2. 【变式训练3】 12(2-2)a 解析:当且仅当球与四棱锥的各个面都相切时,球的半径最大.设放入的球的半径为r ,球心为O ,连接OP ,OA ,OB ,OC ,OD ,则把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高都是r ,底面分别为原四棱锥的侧面和底面,则V P ­ABCD =13r (S △PAB +S △PBC +S △PCD +S △PAD +S 正方形ABCD )=13r (2+2)a 2.由题意知PD ⊥底面ABCD ,∴V P ­ABCD =13S 正方形ABCD ·PD =13a 3.由体积相等,得13r (2+2)a 2=13a 3,解得r =12(2-2)a .创新模拟·预测演练1.D2.D 解析:据三视图可判断该几何体是由一个圆柱和一个正四棱锥组合而成的,直观图如图所示:易求得表面积为(6π+27-2)cm 2.3.B 解析:由三视图可知该几何体的直观图为一个正四棱柱,从上表面扣除半个内切球.易求出正四棱柱的底面边长为2,内切球的半径为1,故体积为2×2×5-23π=20-2π3.4.4 29π 5.827 3 解析:首先将正四面体补形为一个正方体,设正四面体棱长为a ,则其对应正方体的棱长为22a ,且由球与正方体的组合关系易知3⎝ ⎛⎭⎪⎫22a 2=(1×2)2,解得a 2=83, ∴正四面体的体积为V =⎝ ⎛⎭⎪⎫22a 3-4×13×12×⎝ ⎛⎭⎪⎫22a 3=13⎝ ⎛⎭⎪⎫22a 3=827 3.6.2∶1 解析:由正六棱锥的性质知,点P 在底面内的射影是底面的中心,也是线段AD的中点.又G 为PB 的中点,设P 点在底面内的射影为O ,则G 点在底面内的射影为OB 的中点M ,且GM ∥PO .又M 为AC 的中点,则GM ⊂平面GAC ,所以点P 到平面GAC 的距离等于点O 到平面GAC 的距离.又因为OM ⊥平面GAC ,DC ⊥平面GAC ,且DC =2OM ,则V D ­GAC V P ­GAC =13S △GAC ×DC13S △GAC ×OM =2.7.解:由已知条件知,平面图形中AE =EB =BC =CD =DA =DE =EC =1,∴折叠后得到一个棱长为1的正三棱锥(如图). 方法一:作AF ⊥平面DEC ,垂足为F , F 即为△DEC 的中心,取EC 中点G ,连接DG ,AG , 过球心O 作OH ⊥平面AEC , 则垂足H 为△AEC 的中心,∴外接球半径可利用△OHA ∽△AFG 求得. ∵AG =32,AF =1-⎝⎛⎭⎪⎫332=63,AH =33, ∴OA =AG ·AHAF =32×3363=64,∴外接球体积为43π×OA 3=43·π·6643=68π.方法二:如图,把棱长为1的正三棱锥放在正方体中,显然,棱长为1的正三棱锥的外接球就是正方体的外接球.∵正方体棱长为22, ∴外接球直径2R =3·22, ∴R =64,∴体积为43π·⎝ ⎛⎭⎪⎫643=68π.。

高考数学二轮复习知识点立体几何

高考数学二轮复习知识点立体几何

高考数学二轮复习知识点立体几何立体几何是 3 维欧氏空间的几何的传统名称。

下边是高考数学二轮复习知识点:立体几何,希望对考生复习有帮助。

(1)棱柱:定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各极点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特点:两底面是对应边平行的全等多边形 ;侧面、对角面都是平行四边形 ;侧棱平行且相等 ;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共极点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各极点字母,如五棱锥几何特点:侧面、对角面都是三角形;平行于底面的截面与底面相像,其相像比等于极点到截面距离与高的比的平方。

第1页/共5页(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各极点字母,如五棱台几何特点:①上下底面是相像的平行多边形②侧面是梯形③侧棱交于原棱锥的极点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特点:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直 ;④侧面睁开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特点:①底面是一个圆;②母线交于圆锥的极点;③侧面睁开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特点:①上下底面是两个圆;②侧面母线交于原圆锥的顶第2页/共5页点;③侧面睁开图是一个弓形。

(7)球体:语文课本中的文章都是优选的比较优异的文章,还有许多名家名篇。

高考理科数学大二轮复习课件专题五立体几何

高考理科数学大二轮复习课件专题五立体几何
通过与已知问题类比,发现新问题的解决方 法。
D
典型例题分析与解答
01
02
03
04
05
例题1:在正方体 $ABCDA_1B_1C_1D_1$中,E 、F分别为棱$AA_1$、 $CC_1$的中点,则在空 间中与三条直线 $A_1D_1$、$EF$、 $CD$都相交的直线( )
A. 不存在 B. 有且只有两 条 C. 有且只有三条 D. 有无数多条
限时训练02ຫໍສະໝຸດ 03错题反思设定合理的答题时间,进行限时 训练,提高解题速度和应试能力 。
对错题进行反思和总结,找出错 误原因和解决方法,避免重复犯 错。
关注新题型,拓宽视野
关注高考动态
及时了解高考立体几何 的命题趋势和变化,把 握复习方向。
拓展新题型
适当拓展一些新题型和 新颖解法,拓宽解题思 路和方法。
台体体积计算: 1/3×(上底面积+下 底面积+√(上底面积 ×下底面积))×高。
锥体体积计算: 1/3×底面积×高。
球体性质及计算
球体性质
所有点到球心的距离都等于半径的几何体。
球体表面积计算
4πr^2,其中r为球体半径。
球体体积计算
4/3πr^3,其中r为球体半径。
03 空间向量在立体几何中应用
空间向量基本概念及运算
1 2
空间向量定义
空间向量是既有大小又有方向的量,可以用有向 线段表示。
空间向量运算
包括向量的加法、减法、数乘和数量积等运算, 满足相应的运算律。
3
空间向量基本定理
如果三个向量a、b、c不共面,那么对于空间中 的任意一个向量p,存在唯一的一组实数x、y、z ,使得p=xa+yb+zc。

高考数学二轮复习 专题五 立体几何课件 文

高考数学二轮复习 专题五 立体几何课件 文

向 A1B1C1D1-ABCD分成的两部分的体积比.


图5-11-8
返回目录
第11讲 空间几何体
规范解答 5.空间几何体的表面积和体积
专题五 立体几何
第11讲 简单空间几何体 第12讲 点、线、面之间的位置关系
核 心 知 识 聚 焦
命 题
第11讲 空间几何体




命 题 立 意 追 溯
返回目录
第11讲 空间几何体
核 心
—— 体验高考 ——
——主干知识 ——
知 识 聚
1 . [2013·北 京 卷 ] 某 四 棱 锥 的 三视图① 如图 5-11-1 所示,该四棱锥
522+62=123.
返回目录
第11讲 空间几何体
—— 基础知识必备 ——
返回目录
第11讲 空间几何体
► 考向一 空间几何体的三视图
考向:三视图的识别与简单运算.
命 题
考例:2009年T11、2010年T15、2011年T8、2012年
考 T7、2013年卷ⅠT11、2013年卷ⅡT9,近五年新课标全国
—— 体验高考 ——
——主干知识 ——
知 识 聚
2.[2013·辽宁卷改编] 某几何体的 三视图② 如图5-11-2所示,则该几何体
⇒ 有关简单 几何体的运算
焦 的表面积是________.
关键词:表面
积、体积,如
②③.
图5-11-2
[答案] 24π +24
[解析] 直观图是圆柱中除去一个正
四棱柱.S=2(π ·22-22)+4×2×4+π
A.9π
B.10π
C.11π

2019届高考数学二轮复习 专题五 立 体 几 何 (讲义训练):第3讲 立体几何中的计算 课时讲义(含答案)

2019届高考数学二轮复习  专题五 立 体 几 何 (讲义训练):第3讲 立体几何中的计算 课时讲义(含答案)

第3讲 立体几何中的计算 课时讲义1. 高考对立体几何的计算,主要是能利用公式求常见几何体(柱体、锥体、台体和球)的表面积与体积.有时还需能解决距离、翻折、存在性等比较综合性的问题.2. 高考中常见的题型为:(1) 常见几何体的表面积与体积的计算;(2) 利用等积变换求距离问题;(3) 通过计算证明平行与垂直等问题;(4) 几何体的内切和外接.1. 棱长都是2的三棱锥的表面积为________. 答案:43解析: 因为四个面是全等的正三角形,则S 表面积=4×34×4=43.2. 如图,正方体ABCDA 1B 1C 1D 1的棱长为1,点P 是棱BB 1的中点,则四棱锥PAA 1C 1C的体积为________.答案:13解析:四棱锥PAA 1C 1C 的体积为13×22×2×1=13.3. (2018·南京学情调研)将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为27π cm 3,则该圆柱的侧面积为________cm 2.答案:18π解析:设正方形的边长为a cm ,则πa 2·a =27π,解得a =3,所以侧面积2π×3×3=18π.4. (2018·海安质量测试)已知正三棱锥的体积为36 3 cm 3,高为4 cm ,则底面边长为________cm.答案:63解析: 设正三棱锥的底面边长为a ,则其面积为S =34a 2.由题意13·34a 2×4=363,解得a =63., 一) 表面积与体积, 1) 如图,在以A ,B ,C ,D ,E 为顶点的六面体中,△ABC 和△ABD 均为等边三角形,且平面ABC ⊥平面ABD ,EC ⊥平面ABC ,EC =3,AB =2.(1) 求证:DE ∥平面ABC ; (2) 求此六面体的体积.(1) 证明:作DF ⊥AB ,交AB 于点F ,连结CF. 因为平面ABC ⊥平面ABD , 且平面ABC ∩平面ABD =AB , 所以DF ⊥平面ABC.因为EC ⊥平面ABC ,所以DF ∥EC. 因为△ABD 是边长为2的等边三角形, 所以DF =3,因此DF =EC ,所以四边形DECF 为平行四边形,所以DE ∥CF.因为DE ⊄平面ABC ,CF ⊂平面ABC , 所以DE ∥平面ABC.(2) 解:因为△ABD 是等边三角形,所以点F 是AB 的中点. 又△ABC 是等边三角形,所以CF ⊥AB. 由DF ⊥平面ABC 知,DF ⊥CF , 所以CF ⊥平面ABD.因为DE ∥CF ,所以DE ⊥平面ABD , 因此四面体ABDE 的体积为13S △ABD ·DE =1;四面体ABCE 的体积为13S △ABC ·CE =1,而六面体ABCED 的体积=四面体ABDE 的体积+四面体ABCE 的体积, 故所求六面体的体积为2.(2018·苏州暑假测试)如图,正四棱锥P ABCD 的底面一边AB 的长为2 3 cm ,侧面积为83 cm 2,则它的体积为________cm 3.答案:4解析:记正四棱锥P ABCD 的底面中心为点O ,棱AB 的中点为H, 连结PO ,HO ,PH ,则PO ⊥平面ABCD .因为正四棱锥的侧面积为83 cm 2,所以83=4×12×23×PH ,解得PH =2.在直角△PHO 中,PH =2,HO =3,所以PO =1,所以V PABCD =13×S 四边形ABCD ×PO =13×23×23×1=4(cm 3)., 二) 翻折与切割问题, 2) 如图,在菱形ABCD 中,AB =2,∠ABC =60°,BD ∩AC =O ,现将其沿菱形对角线BD 折起得到空间四边形EBCD ,使EC =2.(1) 求证:EO ⊥CD ;(2) 求点O 到平面EDC 的距离.(1) 证明:∵ 四边形ABCD 为菱形,∴ AC ⊥BD . ∵ BD ∩AC =O ,∴ AO ⊥BD ,即EO ⊥BD .∵ 在菱形ABCD 中,AB =2,∠ABC =60°,∴ AD =CD =BC =2,AO =OC =1. ∵ EC =2,CO =EO =1,∴ EO 2+OC 2=EC 2,∴ EO ⊥OC . 又BD ∩OC =O ,∴ EO ⊥平面BCD ,∴ EO ⊥CD .(2) 解:设点O 到平面ECD 的距离为h ,由(1)知EO ⊥平面OCD .V 三棱锥O CDE =V 三棱锥E OCD ,即13S △OCD ·EO =13S △ECD ·h . 在Rt △OCD 中,OC =1,OD =3,∠DOC =90°,∴ S △OCD =12OC ·OD =32.在△CDE 中,ED =DC =2,EC =2,∴ S △CDE =12×2×22-(22)2=72, ∴ h =S △OCD ·EO S △ECD =217,即点O 到平面EDC 的距离为217.如图①,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,点E 是AD的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到如图②中△A 1BE 的位置,得到四棱锥A 1BCDE .(1) 求证:CD ⊥平面A 1OC ;(2) 当平面A 1BE ⊥平面BCDE 时,四棱锥A 1BCDE 的体积为362,求a 的值.,①) ,②)(1) 证明:在图①中,因为AB =BC =12AD =a ,点E 是AD 的中点,∠BAD =π2,所以BE ⊥AC ,即在图②中,BE ⊥A 1O ,BE ⊥OC . 又A 1O ∩OC =O ,所以BE ⊥平面A 1OC . 在图①中,BC ∥ED ,且BC =ED ,所以四边形BCDE 是平行四边形,所以BE ∥CD , 所以CD ⊥平面A 1OC .(2) 解:因为平面A 1BE ⊥平面BCDE ,所以A 1O 是四棱锥A 1BCDE 的高. 根据图①可得A 1O =22AB =22a ,平行四边形BCDE 的面积S =BC ·AB =a 2, 所以VA 1BCDE =13×S ×A 1O =13×a 2×22a =26a 3.由26a 3=362,解得a =6., 三) 立体几何中的以算代证问题, 3) (2018·泰州中学学情调研)在直三棱柱ABCA 1B 1C 1中,AB =AC =AA 1=3a ,BC =2a ,D 是BC 的中点,E ,F 分别是AA 1,CC 1上一点,且AE =CF =2a.(1) 求证:B 1F ⊥平面ADF ; (2) 求三棱锥B 1ADF 的体积.(1) 证明:∵ AB =AC ,D 为BC 中点,∴ AD ⊥BC.在直三棱柱ABC -A 1B 1C 1中,B 1B ⊥底面ABC ,AD ⊂底面ABC ,∴ AD ⊥B 1B.∵ BC ∩B 1B =B ,∴ AD ⊥平面B 1BCC 1. ∵ B 1F ⊂平面B 1BCC 1,∴ AD ⊥B 1F.在矩形B 1BCC 1中,C 1F =CD =a ,B 1C 1=CF =2a , ∴ Rt △DCF ≌Rt △FC 1B 1,∴ ∠CFD =∠C 1B 1F , ∴ ∠B 1FD =90°,∴ B 1F ⊥FD . ∵ AD ∩FD =D ,∴ B 1F ⊥平面AFD . (2) 解: ∵ B 1F ⊥平面AFD ,∴ VB 1-ADF =13·S △ADF ·B 1F =13×12×AD ×DF ×B 1F =52a 33.如图①,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2.将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体DABC ,如图②.(1) 求证:BC ⊥平面ACD ; (2) 求几何体DABC 的体积.(1) 证明:(证法1)在图①中,由题意知,AC =BC =22,∴ AC 2+BC 2=AB 2,∴ AC ⊥BC .取AC 的中点O ,连结DO ,由AD =CD ,得DO ⊥AC .又平面ADC ⊥平面ABC ,且平面ADC ∩平面ABC =AC ,DO ⊂平面ACD , ∴ OD ⊥平面ABC ,∴ OD ⊥BC . 又AC ⊥BC ,AC ∩OD =O , ∴ BC ⊥平面ACD .(证法2)在图①中,由题意得AC =BC =22,∴ AC 2+BC 2=AB 2, ∴ AC ⊥BC .∵ 平面ADC ⊥平面ABC ,平面ADC ∩平面ABC =AC ,BC ⊂平面ABC , ∴ BC ⊥平面ACD .(2) 解:由(1)知,BC 为三棱锥BACD 的高, 且BC =22,S △ACD =12×2×2=2,∴ 三棱锥BACD 的体积V BACD =13S △ACD ·BC =13×2×22=423,即几何体DABC 的体积为423.1. (2018·天津卷)如图,已知正方体ABCDA 1B 1C 1D 1的棱长为1,则四棱锥A 1BB 1D 1D 的体积为________.答案:13解析:如图,连结A 1C 1,交B 1D 1于点O ,很明显A 1C 1⊥平面BDD 1B 1,则A 1O 是四棱锥的高,且A 1O =12A 1C 1=12×12+12=22,S 四边形BDD 1B 1=BD ×DD 1=2×1=2,结合四棱锥体积公式可得其体积为V =13Sh =13×2×22=13.2. (2018·江苏卷)如图,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.答案:43解析:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于2,所以该多面体的体积为2×13×1×(2)2=43.3. (2017·北京卷)如图,在三棱锥PABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,点D 为线段AC 的中点,E 为线段PC 上一点.(1) 求证:PA ⊥BD ;(2) 求证:平面BDE ⊥平面PAC ;(3) 当PA ∥平面BDE 时,求三棱锥EBCD 的体积.(1) 证明:因为PA ⊥AB ,PA ⊥BC ,AB ∩BC =B ,所以PA ⊥平面ABC. 因为BD ⊂平面ABC ,所以PA ⊥BD.(2) 证明:因为AB =BC ,点D 为AC 的中点,所以BD ⊥AC. 由(1)知,PA ⊥BD ,PA ∩AC =A ,所以BD ⊥平面PAC. 又BD ⊂平面BDE , 所以平面BDE ⊥平面PAC.(3) 解:因为PA ∥平面BDE ,平面PAC ∩平面BDE =DE ,所以PA ∥DE. 因为点D 为AC 的中点,所以DE =12PA =1,BD =DC =2.由(1)知,PA ⊥平面ABC ,所以DE ⊥平面ABC , 所以三棱锥EBCD 的体积为V =13×12×BD ×DC ×DE =13.4. (2017·全国卷Ⅰ)如图,在四棱锥PABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°. (1) 求证:平面PAB ⊥平面PAD ;(2) 若PA =PD =AB =DC ,∠APD =90°,且四棱锥PABCD 的体积为83,求该四棱锥的侧面积.(1) 证明:由已知∠BAP =∠CDP =90°,得AB ⊥AP ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD .又PA ∩PD =P ,所以AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(2) 解:如图,在平面PAD 内作PE ⊥AD ,垂足为点E .由(1)知,AB ⊥平面PAD ,故AB ⊥PE ,由AB ∩AD =A ,可得PE ⊥平面ABCD .设AB =x ,则由已知可得AD =2x ,PE =22x ,故四棱锥PABCD 的体积V PABCD =13AB ·AD ·PE =13x 3.由题设得13x 3=83,解得x =2. 从而PA =PD =2,AD =BC =22,PB =PC =22,所以△PBC 为等边三角形,可得四棱锥PABCD 的侧面积为 12PA ·PD +12PA ·AB +12PD ·DC +12BC 2sin 60°=6+2 3.5. (2017·全国卷Ⅲ)如图,在四面体ABCD 中,△ABC 是正三角形,AD =CD .(1) 求证:AC ⊥BD ;(2) 已知△ACD 是直角三角形,AB =BD ,若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.(1) 证明:如图,取AC 的中点O ,连结DO ,BO .因为AD =CD ,所以AC ⊥DO .又由于△ABC 是正三角形,所以AC ⊥BO . 又DO ∩BO =O ,所以AC ⊥平面DOB . 因为BD ⊂平面DOB ,所以AC ⊥BD . (2) 解:连结EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt △AOB 中,BO 2+AO 2=AB 2. 又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2, 故∠DOB =90°.由题设知△AEC 为直角三角形,所以EO =12AC .又△ABC 是正三角形,且AB =BD ,所以EO =12BD ,故点E 为BD 的中点.所以点E 到平面ABC 的距离为点D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1∶1.(本题模拟高考评分标准,满分14分) (2018·长春模拟)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1) 求证:平面AEC ⊥平面BED ;(2) 若∠ABC =120°,AE ⊥EC ,三棱锥EACD 的体积为63,求该三棱锥的侧面积.(1) 证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,AC ⊂平面ABCD ,所以AC ⊥BE .(2分) 因为BD ∩BE =B ,故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(6分)(2) 解:设AB =x ,在菱形ABCD 中,由∠ABC =120°,得AG =GC =32x ,GB =GD=x2. 因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x .(8分)由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x .由已知得三棱锥EACD 的体积为63,即13×12·AC ·GD ·BE =624x 3=63,解得x =2.(9分)从而可得AE =EC =ED =6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5.故三棱锥EACD 的侧面积为3+25.(14分)1. 若一个圆柱的侧面展开图是边长为2的正方形,则此圆柱的体积为________. 答案:2π解析: 设圆柱的底面半径为r ,高为h ,则有2πr =2,即r =1π,故圆柱的体积为V =πr 2h =π⎝ ⎛⎭⎪⎫1π2×2=2π.2. 如图,已知AF ⊥平面ABCD ,四边形ABEF 为矩形,四边形ABCD 为直角梯形,∠DAB =90°,AB ∥CD ,AD =AF =CD =2,AB =4.(1) 求证:AF ∥平面BCE ; (2) 求证:AC ⊥平面BCE ; (3) 求三棱锥EBCF 的体积.(1) 证明:∵ 四边形ABEF 为矩形,∴ AF ∥BE .又BE ⊂平面BCE ,AF ⊄平面BCE , ∴ AF ∥平面BCE .(2) 证明:如图,过点C 作CM ⊥AB ,垂足为点M . ∵ AD ⊥DC ,∴ 四边形ADCM 为矩形, ∴ AM =DC =MB =AD =2.∴ AC =22,CM =2,BC =22,∴ AC 2+BC 2=AB 2,∴ AC ⊥BC . ∵ AF ⊥平面ABCD ,AF ∥BE , ∴ BE ⊥平面ABCD ,∴ BE ⊥AC .∵ BE ⊂平面BCE ,BC ⊂平面BCE ,BC ∩BE =B , ∴ AC ⊥平面BCE .(3) 解:∵ AF ⊥平面ABCD ,∴ AF ⊥CM .∵ CM ⊥AB ,AF ⊂平面ABEF ,AB ⊂平面ABEF ,AF ∩AB =A ,∴ CM ⊥平面ABEF ,∴ V 三棱锥EBCF =V 三棱锥CBEF =13×12×BE ×EF ×CM =16×2×4×2=83.3. (2016·江苏卷)现需要设计一个仓库,它由上、下两部分组成,上部分的形状是正四棱锥P A 1B 1C 1D 1,下部分的形状是正四棱柱ABCD A 1B 1C 1D 1(如图),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1) 若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2) 若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大?解:(1) ∵ PO 1=2 m ,正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,∴ O 1O =8 m ,∴ 仓库的容积V =13×62×2+62×8=312(m 3). (2) 若正四棱锥的侧棱长为6 m ,设PO 1=x m ,则O 1O =4x m ,A 1O 1=36-x 2 m ,A 1B 1=2·36-x 2 m , 则仓库的容积V (x )=13×(2·36-x 2)2·x +(2·36-x 2)2·4x =-263x 3+312x (0<x<6), V ′(x )=-26x 2+312(0<x <6).当0<x <23时,V ′(x )>0,V (x )单调递增; 当23<x <6时,V ′(x )<0,V (x )单调递减. 故当x =23时,V (x )取最大值. 即当PO 1=23 m 时,仓库的容积最大.请使用“课后训练·第19讲”活页练习,及时查漏补缺!。

高考数学二轮复习 专题1.5 立体几何(讲)理

高考数学二轮复习 专题1.5 立体几何(讲)理

专题1.5 立体几何考向一 三视图与几何体的面积、体积【高考改编☆回顾基础】1图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为________.【答案】12【解析】该几何体为一个三棱柱和一个三棱锥的组合体,其直观图如图所示,各个面中有两个全等的梯形,其面积之和为2×2+42×2=12.1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为________.【答案】63π 【解析】3. 【空间几何体的体积】【2017课标3,改编】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 . 【答案】3π4【解析】【命题预测☆看准方向】1.空间几何体的三视图成为近几年高考的必考点,单独考查三视图的逐渐减少,主要考查由三视图求原几何体的面积、体积,主要以选择题、填空题的形式考查.2.对柱体、锥体、台体表面积、体积及球与多面体的切接问题中的有关几何体的表面积、体积的考查又是高考的一个热点,难度不大,主要以选择题、填空题的形式考查.3.2018年应注意抓住考查的主要题目类型进行训练,重点有三个:一是三视图中的几何体的形状及面积、体积;二是求柱体、锥体、台体及球的表面积、体积;三是求球与多面体的相切、接问题中的有关几何体的表面积、体积.【典例分析☆提升能力】【例1】17世纪日本数学家们对于数学关于体积方法的问题还不了解,他们将体积公式“V=kD 3”中的常数k 称为“立圆术”或“玉积率”,创用了求“玉积率”的独特方法“会玉术”,其中,D 为直径,类似地,对于等边圆柱(轴截面是正方形的圆柱叫做等边圆柱)、正方体也有类似的体积公式V =kD 3,其中,在等边圆柱中,D 表示底面圆的直径;在正方体中,D 表示棱长.假设运用此“会玉术”,求得的球、等边圆柱、正方体的“玉积率”分别为k 1,k 2,k 3,那么,k 1∶k 2∶k 3=( ) A.4π∶6π∶1 B. 6π∶4π∶2 C. 1∶3∶12π D. 1∶32∶6π【答案】D【解析】球中, 33331144,33266D V R D k D k ππππ⎛⎫====∴= ⎪⎝⎭;等边圆柱中, 23322,244D V D D k D k πππ⎛⎫=⋅==∴= ⎪⎝⎭;正方体中, 3333,1V D k D k ==∴=;所以12336::::11::642k k k πππ==.故选D. 【趁热打铁】将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱的最大体积为( )A. π27B.8π27C.π3D.2π9【答案】B【解析】【例2】【2018届河南省郑州市第一次模拟】刍薨(chuhong),中国古代算术中的一种几何形体,《九章算术》中记载“刍薨者,下有褒有广,而上有褒无广.刍,草也.薨,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱,刍薨字面意思为茅草屋顶”,如图,为一刍薨的三视图,其中正视图为等腰梯形,侧视图为等腰三角形,则搭建它(无底面,不考虑厚度)需要的茅草面积至少为()A. 24B.C. 64D.【答案】B【趁热打铁】【2018届湖北省稳派教育高三上第二次联考】已知一个几何体的三视图如图所示,则该几何体的体积为( )A.8163π+ B. 1683π+ C. 126π+ D. 443π+ 【答案】A【解析】由三视图可得,该几何体为右侧的一个半圆锥和左侧的一个三棱锥拼接而成。

高三数学(理)二轮复习专题通关攻略:课时巩固过关练 十二 1.5.1空间几何体的三视图、表面积及体积

高三数学(理)二轮复习专题通关攻略:课时巩固过关练 十二 1.5.1空间几何体的三视图、表面积及体积

课时巩固过关练十二空间几何体的三视图、表面积及体积(25分钟50分)一、选择题(每小题5分,共20分)1.(2016·天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为( )【解析】选B.由题意得截去的是长方体前右上方顶点.【方法技巧】三视图往往与几何体的体积、表面积以及空间线面关系、角与距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征.2.(2016·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A. B. C. D.1【解析】选A.通过三视图可还原几何体为如图所示的三棱锥,则通过侧视图得高h=1,底面积S=×1×1=,所以体积V=Sh=.3.(2016·广州一模)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( )A.20πB.C.5πD.【解析】选D.由题意知六棱柱的底面正六边形的外接圆半径r=1,其高h=1,所以球半径为R===,所以该球的体积V=πR3=×·π=.【加固训练】已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上.若AB=3, AC=4,AB⊥AC,AA1=12,则球O的半径为( )A. B.2 C. D.3【解析】选C.因为直三棱柱中AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC为过底面ABC的截面圆的直径.取BC中点D,则OD⊥底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R==13,即R=.二、填空题(每小题5分,共10分)4.(2016·天津高考)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为________m3.【解析】底面为平行四边形,面积为2×1=2,高为3,所以V=×2×1×3=2. 答案:25.(2016·大连一模)如图,在小正方形边长为1的网格中画出了某多面体的三视图,则该多面体的外接球表面积为________.【解题导引】由三视图知,该几何体是一个侧面与底面垂直的三棱锥,画出直观图,再建立空间直角坐标系,求出三棱锥外接球的球心与半径,从而求出外接球的表面积.【解析】由三视图知,该几何体是三棱锥S-ABC,且三棱锥的一个侧面SAC与底面ABC垂直,其直观图如图所示:由三视图的数据可得OA=OC=2,OB=OS=4.建立空间直角坐标系O-xyz,如图所示:则A(0,-2,0),B(4,0,0),C(0,2,0),S(0,0,4),则三棱锥外接球的球心I在平面xOz上,设I(x,0,z);由得,解得x=z=;所以外接球的半径R=|BI|==.所以该三棱锥外接球的表面积S=4πR2=4π×=34π.答案:34π三、解答题(6题12分,7题13分,共25分)6.(2016·南阳一模)如图,AA1,BB1为圆柱OO1的母线,BC是底面圆O的直径,D,E分别是AA1,CB1的中点,DE⊥平面CBB1.(1)证明:DE∥平面ABC.(2)求四棱锥C-ABB1A1与圆柱OO1的体积比.【解析】(1)连接EO,OA,因为E,O分别为B1C,BC的中点,所以EO∥BB1.又DA∥BB1,且DA=BB1=EO,所以四边形AOED是平行四边形,即DE∥OA.又DE⊄平面ABC,AO⊂平面ABC,所以DE∥平面ABC.(2)由题意知DE⊥平面CBB1,且由(1)知DE∥AO,因为AO⊥平面CBB1,所以AO⊥BC,所以AC=AB. 因为BC是底面圆O的直径,所以CA⊥AB,且AA1⊥CA,又AB∩AA1=A,所以CA⊥平面AA1B1B,即CA为四棱锥C-ABB1A1的高.设圆柱的高为h,底面圆半径为r,则=πr2h,=h(r)·(r)=hr2.所以∶=.7.(2016·南宁一模)如图,三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC.(1)求证:AC⊥A1B.(2)求三棱锥C1-ABA1的体积.【解题导引】(1)转化为证明直线AC垂直于直线A1B所在的平面即可.(2)由=,转化为求,关键求点B到平面AA1C1的距离.【解析】(1)取AC的中点O,连接A1O,BO.因为AA1=A1C,所以A1O⊥AC,又AB=BC,所以BO⊥AC,因为A1O∩BO=O,所以AC⊥平面A1OB,又因为A1B⊂平面A1OB,所以AC⊥A1B.(2)三棱柱ABC-A1B1C1中,所以侧面AA1C1C⊥底面ABC,侧面AA1C1C∩底面ABC=AC,OB⊥AC,所以OB⊥平面AA1C1C,易求得OB=1,=,所以==··OB=.(20分钟50分)一、选择题(每小题5分,共20分)1.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体最短和最长的棱长分别等于( )A.4,B.4,C.3,5D.3,2【解析】选C.由三视图可判断该几何体为三棱锥,形状如图,其中SC⊥平面ABC,AC⊥AB,所以最短的棱长为AC=3,最长的棱长为SB=5.2.如图是某几何体的三视图,正(主)视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧(左)视图是直角梯形,则该几何体的体积等于( )A.12πB.16πC.20πD.24π【解析】选A.由三视图知:r=1,R=4,S1=π×12=π,S2=π×42=16π,所以V=×-π×12×4=×21π-2π=12π.【加固训练】某几何体的三视图如图所示,若该几何体的体积为3,则侧(左)视图中线段的长度x的值是( )A. B.2 C.4 D.5【解析】选C.分析题意可知,该几何体为如图所示的四棱锥P-ABCD,故其体积V=××4×CP=3,所以CP=,所以x==4.3.如图1,已知正方体ABCD-A1B1C1D1的棱长为a,动点M,N,Q分别在线段AD1,B1C,C1D1上.当三棱锥Q -BMN的俯视图如图2所示时,三棱锥Q-BMN的正(主)视图面积等于( )A.a2B.a2C.a2D.a2【解析】选B.由俯视图知,点M为AD1的中点、N与C重合、Q与D1重合,所以三棱锥Q -BMN的正(主)视图为△CD1P,其中点P为DD1的中点,所以三棱锥Q -BMN 的正(主)视图面积为×a×=a2.【加固训练】如图,三棱锥V-ABC,VA⊥VC,AB⊥BC,∠VAC=∠ACB=30°,若侧面VAC⊥底面ABC,则其正(主)视图与侧(左)视图面积之比为( )A.4∶B.4∶C.∶D.∶【解题导引】正(主)视图为Rt△VAC,侧(左)视图为以△VAC中AC边的高为一条直角边,△ABC中AC边的高为另一条直角边的直角三角形.【解析】选A.过V作VD⊥AC于点D,过B作BE⊥AC于点E,则正(主)视图为Rt△VAC,侧(左)视图为以△VAC中AC边的高VD为一条直角边,△ABC中AC边的高BE为另一条直角边的直角三角形.设AC=x,则VA=x,VC=x,VD=x,BE=x,则S正(主)视图:S侧(左)视图=∶(·x·x)=4∶.【误区警示】解答本题易出现如下两种错误:一是对正(主)视图、侧(左)视图的形状判断不准确,造成结论错误;二是运算错误,造成结论错误.二、填空题(每小题5分,共10分)4.如图,半径为4的球O中有一内接圆柱,则圆柱的侧面积最大值是________.【解题导引】设出圆柱的上底面半径为r,球的半径与上底面夹角为α,求出圆柱的侧面积表达式,求出最大值.【解析】设圆柱的上底面半径为r,球的半径与上底面夹角为α,则r=4cosα,圆柱的高为8sinα.所以圆柱的侧面积为:32πsin2α.当且仅当α=时,sin2α=1,圆柱的侧面积最大,所以圆柱的侧面积的最大值为:32π.答案:32π5.在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,侧棱PA⊥底面ABCD,PA=2,E为AB的中点,则点E到平面PBC的距离为________.【解题导引】利用V P-BCE=V E-PBC求.【解析】由于四边形ABCD是菱形,所以以EB为底边的△CBE的高h=AD·sin 60°=2×=,从而四面体P-BCE的体积V P-BCE=V E-PBC=××1××2=,AC==2.在Rt△PAB中PB==2,在Rt△PAC中PC===4,cos∠PBC==-,所以sin∠PBC==.S△PBC=PB·BC·sin∠PBC=×2×2×=.设点E到平面PBC的距离为d,则有S△PBC·d=,所以d===.答案:三、解答题(6题12分,7题13分,共25分)6.如果一个几何体的正(主)视图与侧(左)视图都是全等的长方形,边长分别是4cm与2cm如图所示,俯视图是一个边长为4cm的正方形.(1)求该几何体的全面积.(2)求该几何体的外接球的体积.【解析】(1)由题意可知,该几何体是长方体,底面是正方形,边长是4,高是2,因此该几何体的全面积是:2×4×4+4×4×2=64(cm2).(2)由长方体与球的性质可得,长方体的体对角线是球的直径,记长方体的体对角线为d,球的半径为r,d===6(cm),所以球的半径r=3cm,因此球的体积V=πr3=×27π=36π(cm3).所以外接球的体积是36πcm3.7.如图,边长为的正方形ADEF与梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,DC=BC=AB=1,点M在线段EC上.(1)证明:平面BDM⊥平面ADEF.(2)判断点M的位置,使得三棱锥B-CDM的体积为.【解题导引】证明BD⊥平面ADEF,即可证明平面BDM⊥平面ADEF.(2)在平面DMC内,过M作MN⊥DC,垂足为N,则MN∥ED,利用三棱锥的体积计算公式求出MN,可得结论.【解析】(1)因为DC=BC=1,DC⊥BC,所以BD=.因为AD=,AB=2,所以AD2+BD2=AB2,所以∠ADB=90°,所以AD⊥BD,因为平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD.BD⊂平面ABCD,所以BD⊥平面ADEF,因为BD⊂平面BDM,所以平面BDM⊥平面ADEF.(2)如图,在平面DMC内,过M作MN⊥DC,垂足为N,又因为ED⊥AD,平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD,所以ED⊥平面ABCD,所以ED⊥CD,所以MN∥ED,因为ED⊥平面ABCD,所以MN⊥平面ABCD.因为V B-CDM=V M-CDB=MN·S△BDC=,所以××1×1×MN=,所以MN=.所以===,所以CM=CE,所以点M在线段CE的三等分点且靠近C处.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题1.5 立体几何考向一 三视图与几何体的面积、体积【高考改编☆回顾基础】1.【空间几何体的直观图和面积计算】【2017·全国卷Ⅰ改编】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为________.【答案】12【解析】该几何体为一个三棱柱和一个三棱锥的组合体,其直观图如图所示,各个面中有两个全等的梯形,其面积之和为2×2+42×2=12.2. 【三视图与空间几何体的体积】【2017·全国卷Ⅱ改编】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为________.【答案】63π【解析】3. 【空间几何体的体积】【2017课标3,改编】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 .【答案】3π4【解析】【命题预测☆看准方向】1.空间几何体的三视图成为近几年高考的必考点,单独考查三视图的逐渐减少,主要考查由三视图求原几何体的面积、体积,主要以选择题、填空题的形式考查.2.对柱体、锥体、台体表面积、体积及球与多面体的切接问题中的有关几何体的表面积、体积的考查又是高考的一个热点,难度不大,主要以选择题、填空题的形式考查.3.2018年应注意抓住考查的主要题目类型进行训练,重点有三个:一是三视图中的几何体的形状及面积、体积;二是求柱体、锥体、台体及球的表面积、体积;三是求球与多面体的相切、接问题中的有关几何体的表面积、体积.【典例分析☆提升能力】【例1】17世纪日本数学家们对于数学关于体积方法的问题还不了解,他们将体积公式“V=kD 3”中的常数k 称为“立圆术”或“玉积率”,创用了求“玉积率”的独特方法“会玉术”,其中,D 为直径,类似地,对于等边圆柱(轴截面是正方形的圆柱叫做等边圆柱)、正方体也有类似的体积公式V =kD 3,其中,在等边圆柱中,D 表示底面圆的直径;在正方体中,D 表示棱长.假设运用此“会玉术”,求得的球、等边圆柱、正方体的“玉积率”分别为k 1,k 2,k 3,那么,k 1∶k 2∶k 3=( ) A.4π∶6π∶1 B. 6π∶4π∶2 C. 1∶3∶12π D. 1∶32∶6π【答案】D【解析】球中, 33331144,33266D V R D k D k ππππ⎛⎫====∴= ⎪⎝⎭;等边圆柱中, 23322,244D V D D k D k πππ⎛⎫=⋅==∴= ⎪⎝⎭;正方体中, 3333,1V D k D k ==∴=;所以12336::::11::642k k k πππ==.故选D. 【趁热打铁】将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱的最大体积为( )A. π27B.8π27C.π3D.2π9【答案】B【解析】【例2】【2018届河南省郑州市第一次模拟】刍薨(chuhong),中国古代算术中的一种几何形体,《九章算术》中记载“刍薨者,下有褒有广,而上有褒无广.刍,草也.薨,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱,刍薨字面意思为茅草屋顶”,如图,为一刍薨的三视图,其中正视图为等腰梯形,侧视图为等腰三角形,则搭建它(无底面,不考虑厚度)需要的茅草面积至少为()A. 24B. 325C. 64D. 326【答案】B【趁热打铁】【2018届湖北省稳派教育高三上第二次联考】已知一个几何体的三视图如图所示,则该几何体的体积为( )A.8163π+ B. 1683π+ C. 126π+ D. 443π+ 【答案】A【解析】由三视图可得,该几何体为右侧的一个半圆锥和左侧的一个三棱锥拼接而成。

由三视图中的数据可得其体积为211118162442432233V ππ+⎛⎫⎛⎫=⨯⨯⨯⨯+⨯⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭.选A. 【方法总结☆全面提升】1.三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高.2.空间几何体的面积有侧面积和表面积之分,表面积就是全面积,是一个空间几何体中“暴露”在外的所有面的面积,在计算时要注意区分“是求侧面积还是求表面积”.多面体的表面积就是其所有面的面积之和,旋转体的表面积除了球之外,都是其侧面积和底面面积之和.3. 等体积法也称等积转化法或等积变形法,它是通过选择合适的底面来求几何体体积的一种方法,多用来解决与锥体有关的问题,特别是三棱锥的体积.【规范示例☆避免陷阱】【典例】【2016·全国卷Ⅰ改编】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是________.【规范解答】该几何体为一个球去掉八分之一,设球的半径为r ,则78×43πr 3=28π3,解得r =2,故该几何体的表面积为78×4π×22+34×π×22=17π.【反思提高】在由空间几何体的三视图确定几何体的形状时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,特别注意由各视图中观察者与几何体的相对位置与图中的虚实线来确定几何体的形状,最后根据三视图“长对正、高平齐、宽相等”的关系,确定轮廓线的各个方向的尺寸. 【误区警示】1.求几何体体积问题,可以多角度、多方位地考虑问题.在求三棱锥体积的过程中,等体积转化法是常用的方法,转换底面的原则是使其高易求,常把底面放在已知几何体的某一面上.2.求不规则几何体的体积,常用分割或补形的思想,将不规则几何体变为规则几何体,易于求解.考向二 球与多面体的切接问题 【高考改编☆回顾基础】1.【球与多面体的切接、面积与体积】【2017天津,文11】已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 【答案】922.【球与多面体的切接、面积与体积】【2017课标1,文16】已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________.【答案】36π【解析】取SC 的中点O ,连接,OA OB 因为,SA AC SB BC == 所以,OA SC OB SC ⊥⊥ 因为平面SAC ⊥平面SBC 所以OA ⊥平面SBC 设OA r =3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=所以31933r r =⇒=,所以球的表面积为2436r ππ=3. 【球与旋转体的切接、面积与体积】【2017江苏,6】 如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 .【答案】32【命题预测☆看准方向】球与多面体的切、接问题中的有关几何体的表面积、体积计算,往往与三视图结合考查,一般为选择题或填空题,难度以低、中档为主.【典例分析☆提升能力】【例1】已知,,,S A B C 是球O 上的点SA ABC ⊥平面, AB BC ⊥, 1SA AB ==, 2BC =,则球O 的表O O 1 O 2⋅⋅ ⋅面积等于________________.【答案】4【解析】【趁热打铁】如图,一张纸的长、宽分别为22a,2a,A,B,C,D分别是其四条边的中点,现将其沿图中虚线折起,使得P1,P2,P3,P4四点重合为一点P,从而得到一个多面体,关于该多面体的下列命题,正确的是________(写出所有正确命题的序号).①该多面体是三棱锥;②平面BAD⊥平面BCD;③平面BAC⊥平面ACD;④该多面体外接球的表面积为5πa2.【答案】①②③④【解析】将平面图形沿图中虚线折起.使得P1,P2,P3,P4四点重合为一点P,从而得到一个多面体,则①由于(2a)2+(2a)2=4a2,∴该多面体是以A,B,C,D为顶点的三棱锥,①正确.②∵AP⊥BP,AP⊥CP,BP∩CP=P,BP,CP⊂平面BCD,∴AP⊥平面BCD,∵AP⊂平面BAD,∴平面BAD⊥平面BCD,正确.③与②同理,可得平面BAC⊥平面ACD,正确.④该多面体外接球的半径为52a ,表面积为5πa 2,正确. 【例2】【2018届江西省莲塘一中、临川二中高三上学期第一次联考】已知三棱锥S ABC -的各顶点在一个表面积为4π的球面上,球心O 在AB 上, SO ⊥平面ABC , 2AC =,则三棱锥S ABC -的体积为__________.【答案】13【解析】如图所示,设球的半径为r,则244r ππ=,解得r=1. ∵OC 2+OA 2=2=AC 2,∴OC⊥OA. ∵球心O 在AB 上,SO ⊥平面ABC ,则三棱锥的底面积: 12112ABC S =⨯⨯=V , 三棱锥的体积: 11111333ABC V S SO =⨯=⨯⨯=V .故答案为: 13.【趁热打铁】【2018届贵州省遵义航天高级中学高三第五次模拟】如图1,在平面ABCD 中,AB=AD =CD=1,BD=2,BD CD ⊥,将其对角线BD 折成四面体A BCD '-,如图2,使平面A BD '⊥平面BCD,若四面体A BCD '-的顶点在同一球面上,则该球的体积为____________【解析】因为BD中点O到A'距离为,O到C距离为,【例3】有人由“追求”联想到“锥、球”并构造了一道名为《追求2017》的题目,请你解答此题:球O的球心为点O,球O3的圆锥,三棱锥V﹣ABC内接于球O,已知OA⊥OB,AC⊥BC,则三棱锥V﹣ABC的体积的最大值为_____.O的半径为r,解得r=1.∵OA⊥OB,OA=OB=1,∴∵AC⊥BC,∴C在以AB为直径的圆上,∴平面OAB⊥平面ABC,∴O到平面ABC故V到平面ABC又C到AB∴三棱锥V﹣ABC故答案为:【趁热打铁】在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )A.4πB.C.6πD.【答案】B【方法总结☆全面提升】1.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球的内接长方体、正四棱柱等问题的关键是把握球的直径即棱柱的体对角线长.2.涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.3.球心与截面圆心的连线垂直圆面,其距离为d,常利用直角三角形建立量的关系,R2=d2+r2.【规范示例☆避免陷阱】【典例】如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为( )A .2B .1 C. 2 D.22【规范解答】基本法 根据题中给定条件寻求所求侧面边长与其他量之间关系.由题意知,球心在侧面BCC 1B 1的中心O 上,BC 为截面圆的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 位于BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中点.设正方形BCC 1B 1边长为x ,Rt△OMC 1中,OM =x 2,MC 1=x2,OC 1=R =1(R 为球的半径), ∴⎝ ⎛⎭⎪⎫x 22+⎝ ⎛⎭⎪⎫x 22=1,即x =2,则AB =AC =1, ∴S 矩形ABB 1A 1=2×1= 2.速解法 根据大圆的内接正方形寻求球半径与正方形边长的关系. 正方形BCC 1B 1所在的是大圆面, ∴B 1C =2,B 1C 2=2BC 2,∴BC =2, 在Rt△ABC 中,AB =AC =1, ∴SABB 1A 1=2×1= 2.【反思提升】球心与截面圆心的连线垂直圆面,其距离为d ,常利用直角三角形建立量的关系,222R d r =+. 【误区警示】(1)涉及球与棱柱、棱锥的相切、接问题时,一般先过球心及多面体中的特殊点(如接、切点或线)作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程组求解.(2)若球面上四点P,A,B,C 构成的三条线段PA,PB,PC 两两互相垂直,且,,,PA a PB b PC c ===一般把有关元素“补形”成为一个球内接长方体,根据22224R a b c =++求解.考向三 空间中的平行与垂直 【高考改编☆回顾基础】1.【两线垂直的判断】【2017·全国卷Ⅲ改编】如图,四面体ABCD 中,△ABC 是正三角形,AD =CD ,则AC 与BD 的位置关系是________.【答案】垂直【解析】取AC的中点O,连接DO,BO.因为AD=CD,所以AC⊥DO.又由于△ABC是正三角形,所以AC⊥BO.从而AC⊥平面DOB,故AC⊥BD.2. 【两线平行的判断】【2017·全国卷Ⅰ改编】如图,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则直线AB与平面MNQ的位置关系是________.【答案】平行【解析】因为M,Q分别为对应棱的中点,所以有AB∥MQ,又AB不在平面MNQ内,所以AB∥平面MNQ.3.【两平面垂直位置关系】【2017·北京卷改编】如图,在三棱锥P­ABC中,PA⊥AB,PA⊥BC,AB=BC,D为线段AC的中点,E为线段PC上一点,则平面BDE与平面PAC的位置关系是________.测试要点:两平面垂直位置关系【答案】垂直4.【面面位置关系、充要条件】【2016·山东卷改编] 已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的__________________条件.【答案】充分不必要【解析】当两个平面内的直线相交时,这两个平面有公共点,即两个平面相交;但当两个平面相交时,两个平面内的直线不一定有交点.【命题预测☆看准方向】高考对空间点、线、面位置关系的考查主要有两种形式:一是对命题真假的判断,通常以选择题、填空题的形式考查,难度不大,也不是高考的热点;二是在解答题中考查平行、垂直关系的证明,常以柱体、锥体为载体,难度中档偏难,是高考的热点.预计随着高考对能力要求的不断加强,今后对空间中平行、垂直关系及体积中的探索性问题的考查会逐渐升温.【典例分析☆提升能力】【例1】【2017江苏,15】如图,在三棱锥A-BCD中,AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, 点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【答案】(1)见解析(2)见解析【趁热打铁】已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点.(Ⅰ)求证:PC∥平面EBD;(Ⅱ)求证:平面P BC⊥平面PCD.【答案】(Ⅰ)见解析(Ⅱ)见解析【解析】试题分析:(1)连BD,与AC交于O,利用三角形的中位线,可得线线平行,从而可得线面平行;⊥平面,即可证得平面PBC⊥平面PCD.(2)证明BC PCD试题解析:(Ⅰ)连接AC交BD与O,连接EO,∵E、O分别为PA、AC的中点,∴EO∥PC,∵PC⊄平面EBD,EO⊂平面EBD∴PC∥平面EBD(Ⅱ)∵PD⊥平面ABCD, BC⊂平面ABCD,∴PD⊥BC,∵ABCD为正方形,∴BC⊥CD,∵PD∩CD=D, PD、CD⊂平面PCD∴BC⊥平面PCD,又∵BC⊂平面PBC,∴平面PBC⊥平面PCD.【例2】在如图所示的几何体中,四边形CDEF为正方形,四边形ABCD为等腰梯形,AB∥CD,AC=3,AB=2BC=2,AC⊥FB.(1)求证:AC⊥平面FBC;(2)求四面体F-BCD的体积;(3)线段AC上是否存在点M,使EA∥平面FDM?证明你的结论.【答案】(1)证明:见解析.(2) (3)线段AC上存在点M,使得EA∥平面FDM成立.(3)解:线段AC上存在点M,且M为AC中点时,有EA∥平面FDM.证明如下:连接CE,与DF交于点N,取AC的中点M,连接MN,如图.因为四边形CDEF为正方形,所以N为CE的中点.所以EA∥MN.因为MN⊂平面FDM,EA⊄平面FDM,所以EA∥平面FDM.所以线段AC上存在点M,使得EA∥平面FDM成立.【趁热打铁】如图,在直角梯形ABCD中,AB∥CD,AD⊥2,E为CD的中点,将△BCE沿BE折起,使得CO⊥DE,其中点O在线段DE内.(1)求证:CO⊥平面ABED;(2)求∠CEO(记为θ)多大时,三棱锥C-AOE的体积最大?最大值为多少?【答案】(1)证明:见解析.(2)当θ=时,三棱锥C-AOE的体积最大,最大值为.【解析】(1)证明:在直角梯形ABCD中,CD=2AB,E为CD的中点,则AB=DE.又AB∥DE,AD⊥AB,知BE⊥CD.在四棱锥C-ABED中,BE⊥DE,BE⊥CE,CE∩DE=E,CE,DE⊂平面CDE,则BE⊥平面CDE.因为CO⊂平面CDE,所以BE⊥CO.又CO⊥DE,且BE,DE是平面ABED内两条相交直线,故CO⊥平面ABED.(2)解:由(1)知CO⊥平面ABED,知三棱锥C-AOE的体积V=S△AOE·OC=×OE×AD×OC.由直角梯形ABCD中,CD=2AB=4,AD=,CE=2,得三棱锥C-AOE中,OE=CE·cos θ=2cos θ,OC=CE·sin θ=2sin θ,V=sin 2θ≤,当且仅当sin 2θ=1,θ∈,即θ=时取等号(此时OE=<DE,O落在线段DE内).故当θ=时,三棱锥C-AOE的体积最大,最大值为.【方法总结☆全面提升】1.要注意线线平行(垂直)、线面平行(垂直)与面面平行(垂直)的相互转化.在解决线线平行、线面平行问题时,若题目中已出现了中点,可考虑在图形中再取中点,构成中位线进行证明.2.要证明线面平行,先在平面内找一条直线与已知直线平行,或找一个经过已知直线与已知平面相交的平面,找出交线,证明两线平行.3.要证明线线平行,可考虑公理4或转化为证明线面平行.4.要证明线面垂直可转化为证明线线垂直,应用线面垂直的判定定理与性质定理进行转化.5..判定面面平行的四个方法:(1)利用定义,即判断两个平面没有公共点; (2)利用面面平行的判定定理;(3)利用垂直于同一条直线的两平面平行;(4)利用平面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行. 6.面面垂直的证明方法:(1)用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线; (2)用面面垂直的定义,即证明两个平面所成的二面角是直二面角.7.从解题方法上说,由于线线平行(垂直)、线面平行(垂直)、面面平行(垂直)之间可以相互转化,因此整个解题过程始终沿着线线平行(垂直)、线面平行(垂直)、面面平行(垂直)的转化途径进行. 8.对命题条件的探索的三种途径:(1)先猜想后证明,即先察与尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性; (3)将几何问题转化为代数问题,探索出命题成立的条件. 9.对命题结论的探索方法:从条件出发,探索出要求的结论是什么,对于探索结论是否存在,求解时常假设结论存在,再寻找与条件相容或者矛盾的结论.【规范示例☆避免陷阱】【典例】【2017课标II ,文18】如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,01,90.2AB BC AD BAD ABC ==∠=∠= (1)证明:直线//BC 平面PAD ;(2)若△PAD 面积为7,求四棱锥P ABCD -的体积.【规范解答】【反思提升】(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直.(5)先利用线面平行说明点面距为定值,计算点面距时,如直接求不方便,应首先想到转化,如平行转化、对称转化、比例转化等,找到方便求值时再计算,可以减少运算量,提高准确度,求点到平面的距离有时能直接作出就直接求出,不方便直接求出的看成三棱锥的高,利用等体积法求出.【误区警示】在立体几何类解答题中,对于证明与计算过程中得分点的步骤,有则给分,无则没分,所以对于得分点步骤一定要写.考向四立体几何中的向量方法【高考改编☆回顾基础】1.【空间向量求异面直线角】【2017·全国卷Ⅱ改编】已知直三棱柱ABC­A1B1C1中,∠ABC=120°,AB=2,BC=CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为________. 【答案】105方法二:如图,将该直三棱柱补充成直四棱柱,其中CD ∥AB 且CD =AB ,则可得AB 1∥DC 1且AB 1=DC 1,图中∠BC 1D 即为异面直线AB 1与BC 1所成的角或所成角的补角.在△BC 1D 中,BC 1=2,DC 1=5,BD =4+1-2×2×1×12=3,所以cos ∠BC 1D =2+5-32×2×5=105.故异面直线AB 1与BC 1所成角的余弦值为105.2.【空间向量求二面角】【2015·安徽卷改编】如图所示,在多面体A 1B 1D 1DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F ,则二面角E ­ A 1D ­ B 1的余弦值为________.【答案】63【解析】因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD ,且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1).因为E 点为B 1D 1的中点,所以E 点的坐标为(0.5,0.5,1).设面A 1DE 的一个法向量n 1=(r 1,s 1,t 1),A 1E →=(0.5,0.5,0),A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →,得r 1,s 1,t 1应满足方程组令t 1=1,可得n 1=(-1,1,1).设面A 1B 1CD 的一个法向量n 2=(r 2,s 2,t 2),A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1). 结合图形知,二面角E ­ A 1D ­ B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.【命题预测☆看准方向】立体几何问题是高考的必考内容,立体几何解答题,一般设2至3问,2问的较多,前一问较简单,最后一问难度较大,而选用向量法可以降低解题难度,但增加了计算量. 考查的主要题目类型,一是利用向量知识证明空间的平行与垂直;利用向量知识求线线角、线面角、二面角的大小;围绕此利用向量知识解决立体几何中的探索性问题有所升温.【典例分析☆提升能力】【例1】在直三棱柱ABC-A 1B 1C 1中,∠ABC=90°,BC=2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D,F,G 分别为CC 1,C 1B 1,C 1A1的中点.求证:(1)B 1D ⊥平面ABD;(2)平面EGF ∥平面ABD. 【答案】见解析.(2)由(1)知,E(0,0,3),G ,F(0,1,4),则=(0,1,1),=0+2-2=0,=0+2-2=0,即B 1D ⊥EG,B 1D ⊥EF,又EG ∩EF=E,因此B 1D ⊥平面EGF.结合(1)可知平面EGF ∥平面ABD.【趁热打铁】已知直三棱柱ABC-A 1B 1C 1中,AC ⊥BC,D 为AB 的中点,AC=BC=BB 1.(1)求证:BC 1⊥AB 1;(2)求证:BC 1∥平面CA 1D.【答案】见解析.【解析】证明: 如图,以C 1为原点,C 1A 1,C 1B 1,C 1C 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.由AC=BC=BB 1,设AC=2,则A(2,0,2),B(0,2,2),C(0,0,2),A 1(2,0,0),B 1(0,2,0),C 1(0,0,0),D(1,1,2).(1)因为=(0,-2,-2),=(-2,2,-2),所以=0-4+4=0,因此,故BC 1⊥AB 1.(2)证法一 由于=(2,0,-2),=(1,1,0),若设=x+y,则得解得-2,所以是共面向量,又BC 1⊄平面CA 1D,因此BC 1∥平面CA 1D.证法二 设平面CA 1D 的法向量为n =(x,y,z),则即不妨令x=1,则y=-1,z=1, ∴n =(1,-1,1).=(0,-2,-2),n =1×0+(-2)×(-1)+(-2)×1=0. n .又BC 1在平面CA 1D 外,∴BC 1∥平面CA 1D.【例2】【2017课标II ,理19】如图,四棱锥P-ABCD 中,侧面PAD 为等比三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点。

相关文档
最新文档