名师制作2019届中考数学总复习单元测试卷六《四边形》(无答案)
2019年中考数学专题复习卷 四边形(含解析)

四边形一、选择题1.下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形2.正十边形的每一个内角的度数为()A. B.C.D.3.在四边形ABCD中,∠A,∠B,∠C,∠D度数之比为1:2:3:3,则∠B的度数为()A. 30°B. 40°C. 80°D. 120°4.如图,在▱ABCD中,对角线AC与BD交于点D,若增加一个条件,使▱ABCD成为菱形,下列给出的条件正确的是()A. AB=ADB. AC=BDC. ∠ABC=90° D. ∠ABC=∠ADC5.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是()。
A.35°B.45°C.55°D.65°6.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()。
A.20B.24C.40D.487.如图,在矩形ACBO中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的取值为()A. -B.C. -2 D. 28.如图,在菱形ABCD中,点E,F,G,H分别是边AB,BC,CD和DA的中点,连接EF,FG,GH和HE,若EH=2EF,则下列结论正确的是()A. AB=EFB. AB=2EF C. AB=EF D. AB=EF9.如图,菱形的对角线,相交于点,,,则菱形的周长为()A. 52B.48 C.40 D. 2010.如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B.C.D.11.已知图2是由图1七巧板拼成的数字“0”,己知正方形ABCD的边长为4,则六边形EFGHMN的周长为()A. B.C.D. 1212.如图,在正方形ABCD外侧,作等边△ADE,AC,BE相交于点F,则∠BFC为()A. 75°B. 60°C. 55°D. 45°二、填空题13.四边形的外角和是________度.14.如图,在边长为2的菱形ABCD中,∠D=60°,点E、F分别在边AB、BC上.将△BEF沿着直线EF翻折,点B恰好与边AD的中点G重合,则BE的长等于________15.如图,在菱形ABCD中,AC=6cm,BD=8cm,则菱形ABCD的高AE为________cm.16.如图,在▱ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD 于点F,则四边形AECF的面积为________.17.如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴上,且点A坐标为(0,4),BC在x轴正半轴上,点C在B点右侧,反比例函数(x>0)的图象分别交边AD,CD于E,F,连结BF,已知,BC=k,AE= CF,且S四边形ABFD=20,则k=________.18.如图,在正五边形ABCDE中,AC与BE相交于点F,则AFE的度数为________19. 如图,在平行四边形ABCD中,对角线AC、BD相交于点0,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°EM⊥BC于点M,EM交BD于点N,FN= ,则线段BC的长为________.20.如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为________.(结果保留π)三、解答题21.如图,,,,在一条直线上,已知,,,连接.求证:四边形是平行四边形.22.如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°。
2019年人教版数学中考复习 《四边形》 综合测试(含解析)

中考复习《四边形》综合测试时间:120分钟满分:120分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(每题3分,共10小题)1.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形2.若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形3.只用下列正多边形地砖中的一种,不能镶嵌的是()A.正三角形B.正四边形C.正五边形D.正六边形4.如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,OE=1.5,则四边形EFCD的周长为()A.14 B.13 C.12 D.105.已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形6.如图,在平行四边形ABCD中,过对角线BD上一点P,作EF∥BC,HG∥AB,若四边形AEPH和四边形CFPG的面积分别为S1和S2,则S1与S2的大小关系为()A.S1=S2B.S1>S2C.S1<S2D.不能确定7.如图,在菱形ABCD中,AB=5,对角线AC与BD相交于点O,且AC:BD=3:4,AE⊥CD 于点E,则AE的长是()A.4 B.C.5 D.8.如图,在▱ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是()A.AE=AF B.EF⊥ACC.∠B=60°D.AC是∠EAF的平分线9.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形10.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形第Ⅱ卷(非选择题)二.填空题(每题3分,共10小题)11.小明在阅览时发现这样一个问题“在某次聚会中,共有6人参加,如果每两人都握一次手,共握几次手?”,小明通过努力得出了答案.为了解决更一般的问题,小明设计了下列图表进行探究:请你在图表右下角的横线上填上你归纳出的一般结论.12.如图,五边形ABCDE 是正五边形.若l 1∥l 2,则∠1﹣∠2= °.13.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =3,在DB 的延长线上取一点P ,满足∠ABD =∠M AP +∠PAB ,则AP = .14.如图,已知∠XOY =60°,点A 在边OX 上,OA =2.过点A 作AC ⊥OY 于点C ,以AC 为一边在∠XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是.15.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD于点E,交BC于点F,则EF的长为.16.已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形,你添加的条件是.17.如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.18.如图,在四边形ABCD中,已知AB∥DC,AB=DC.在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再加上的一个条件是.(填上你认为正确的一个答案即可)19.如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有D M=HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为.20.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件,使其成为正方形(只填一个即可)三.解答题(每题6分,共10小题)21.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.22.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.23.已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.24.如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行四边形.25.已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.26.如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.(1)求证:△ECG≌△GHD;(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.27.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD,CE∥AB.(1)证明:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求菱形ADCE的高.(计算结果保留根号)28.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.29.如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=50°,则当∠BOD=°时,四边形BECD是矩形.30.如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD上,连接BF、DF.(1)求证:BF=DF;(2)连接CF,请直接写出BE:CF的值(不必写出计算过程).参考答案一.选择题1.解:当剪去一个角后,剩下的部分是一个四边形,则这张纸片原来的形状可能是四边形或三角形或五边形,不可能是六边形.故选:A.2.解:360÷40=9,即这个多边形的边数是9,故选:C.3.解:∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,∴只用上面正多边形,不能进行平面镶嵌的是正五边形.故选:C.4.解:∵四边形ABCD是平行四边形,周长为18,∴AB=CD,BC=AD,OA=OC,AD∥BC,∴CD+AD=9,∠OAE=∠OCF,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴OE=OF=1.5,AE=CF,则EFCD的周长=ED+CD+CF+EF=(DE+CF)+CD+EF=AD+CD+EF=9+3=12.故选:C.5.解:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选:B.6.解:∵四边形ABCD是平行四边形,EF∥BC,HG∥AB,∴AD=BC,AB=CD,AB∥GH∥CD,AD∥EF∥BC,∴四边形GBEP、HPFD是平行四边形,∵在△ABD和△CDB中,∴△ABD≌△CDB,即△ABD和△CDB的面积相等;同理△BEP和△PGB的面积相等,△HPD和△FDP的面积相等,∴四边形AEPH和四边形CFPG的面积相等,即S1=S2.故选:A.7.解:∵四边形ABCD是菱形,∴AO=AC,OB=BD,AC⊥BD,∵AC:BD=3:4,∴AO:OB=3:4,设AO=3x,OB=4x,则AB=5x,∵AB=5,∴5x=5,x=1,∴AC=6,BD=8,S菱形ABCD=,∴,AE=,故选: B.8.解:∵四边形ABCD是平行四边形,∴∠B=∠D,∠DAB=∠DCB,AB=CD,AD=BC,∵AE,CF分别是∠BAD和∠BCD的平分线,∴∠DCF=∠DCB,∠BAE=∠BAD,∴∠BAE=∠DCF,∵在△ABE和△CDF中,∴△ABE≌△CDF,∴AE=CF,BE=DF,∵AD=BC,∴AF=CE,∴四边形AECF是平行四边形,A、∵四边形AECF是平行四边形,AE=AF,∴平行四边形AECF是菱形,故本选项正确;B、∵EF⊥AC,四边形AECF是平行四边形,∴平行四边形AECF是菱形,故本选项正确;C、根据∠B=60°和平行四边形AECF不能推出四边形是菱形,故本选项错误;D、∵四边形AECF是平行四边形,∴AF∥BC,∴∠FAC=∠ACE,∵AC平分∠EAF,∴∠FAC=∠EAC,∴∠EAC=∠ECA,∴AE=EC,∵四边形AECF是平行四边形,∴四边形AECF是菱形,故本选项正确;故选:C.9.解:∵对角线互相垂直的四边形不一定是菱形,∴选项A错误;∵有两边及一角对应相等的两个三角形不一定全等,∴选项B错误;∵矩形的对角线相等,∴选项C正确;∵平行四边形是中心对称图形,不一定是轴对称图形,∴选项D错误;故选:C.10.解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.二.填空题(共10小题)11.解:根据图表可得:当参加人数为2人时,握手次数为:1=×2×1,当参加人数为3人时,握手次数为:3=×3×2,当参加人数为4人时,握手次数为:6=×4×3,当参加人数为5人时,握手次数为:10=×5×4,…∴当参加人数为n人时,握手次数为:.故答案为:.12.解:过B点作BF∥l1,∵五边形ABCDE是正五边形,∴∠ABC=108°,∵BF∥l1,l1∥l2,∴BF∥l2,∴∠3=180°﹣∠1,∠4=∠2,∴180°﹣∠1+∠2=∠ABC=108°,∴∠1﹣∠2=72°.故答案为:72.13.解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴DN=AM=3,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AP=AM=6,故答案为:6.14.解:过P作PH⊥OY交于点H,∵PD∥OY,PE∥OX,∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,∴EP=OD=a,Rt△HEP中,∠EPH=30°,∴EH=EP=a,∴a+2b=2(a+b)=2(EH+EO)=2OH,当P在AC边上时,H与C重合,此时OH的最小值=OC=OA=1,即a+2b的最小值是2;当P在点B时,OH的最大值是:1+=,即(a+2b)的最大值是5,∴2≤a+2b≤5.15.解:∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=3,OC=AC=4,在Rt△BOC中,由勾股定理得,BC==5,∵S=×OB×OC=×BC×OF,△OBC∴OF=,∴EF=.故答案为.16.解:∵邻边相等的平行四边形是菱形,∴平行四边形ABCD的对角线AC、BD相交于点O,试添加一个条件:可以为:AD=DC;故答案为:AD=DC.17.解:设七巧板的边长为x,则AB=x+x,BC=x+x+x=2x,==.故答案为:.18.解:添加的条件是∠A=90°,理由是:∵AB∥DC,AB=DC,∴四边形ABCD是平行四边形,∵∠A=90°,∴平行四边形ABCD是矩形,故答案为:∠A=90°.19.解:由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AD,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故③正确;故答案为:①②③.20.解:添加条件:AB=BC,理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是菱形,∴四边形ABCD是正方形,故答案为:AB=BC(答案不唯一).三.解答题(共10小题)21.解:(1)∵360°÷180°=2,630°÷180°=3…90°,∴甲的说法对,乙的说法不对,360°÷180°+2=2+2=4.答:甲同学说的边数n是4;(2)依题意有(n+x﹣2)×180°﹣(n﹣2)×180°=360°,解得x=2.故x的值是2.22.解:(1)∵AH=3,HE=1,∴AB=AE=4,又∵Rt△ABH中,BH==,=AE×BH=×4×=;∴S△ABE(2)如图,过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,则∠AMB=∠AME=∠BNG=90°,∵∠ACB=45°,∴∠MAC=∠NGC=45°,∵AB=AE,∴BM=EM=BE,∠BAM=∠EAM,又∵AE⊥BG,∴∠AHK=90°=∠BMK,而∠AKH=∠BKM,∴∠MAE=∠NBG,设∠BAM=∠MAE=∠NBG=α,则∠BAG=45°+α,∠BGA=∠GCN+∠GBC=45°+α,∴AB=BG,∴AE=BG,在△AME和△BNG中,,∴△AME≌△BNG(AAS),∴ME=NG,在等腰Rt△CNG中,NG=NC,∴GC=NG=ME=BE,∴BE=GC,∵O是AC的中点,∴OA=OC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠OAF=∠OCE,∠AFO=∠CEO,∴△AFO≌△CEO(AAS),∴AF=CE,∴AD﹣AF=BC﹣EC,即DF=BE,∴DF=BE=CG.23.解:四边形ABFC是平行四边形;理由如下:∵AB∥CD,∴∠BAE=∠CFE,∵E是BC的中点,∴BE=CE,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS);∴AE=EF,又∵BE=CE∴四边形ABFC是平行四边形.24.证明:∵四边形ABCD是平行四边形,∴AB∥CD,且AB=CD,又∵AE=CF,∴BE=DF,∴BE∥DF且BE=DF,∴四边形BFDE是平行四边形.25.证明:∵四边形ABCD是菱形,∴AD=CD,∵点E、F分别为边CD、AD的中点,∴AD=2DF,CD=2DE,∴DE=DF,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS).26.解:(1)∵AF=FG,∴∠FAG=∠FGA,∵AG平分∠CAB,∴∠CAG=∠FAG,∴∠CAG=∠FGA,∴AC∥FG,∵DE⊥AC,∴FG⊥DE,∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∴∠C=∠DHG=90°,∠CGE=∠GED,∵F是AD的中点,FG∥AE,∴H是ED的中点,∴FG是线段ED的垂直平分线,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD;(2)证明:过点G作GP⊥AB于P,∴GC=GP,而AG=AG,∴△CAG≌△PAG,∴AC=AP,由(1)可得EG=DG,∴Rt△ECG≌Rt△DPG,∴EC=PD,∴AD=AP+PD=AC+EC;(3)四边形AEGF是菱形,证明:∵∠B=30°,∴∠ADE=30°,∴AE=AD,∴AE=AF=FG,由(1)得AE∥FG,∴四边形AECF是平行四边形,∴四边形AEGF是菱形.27.(1)证明:∵AE∥CD,CE∥AB,∴四边形ADCE是平行四边形,又∵∠ACB=90°,D是AB的中点,∴CD=AB=BD=AD,∴平行四边形ADCE是菱形;(2)解:过点D作DF⊥CE,垂足为点F,如图所示:DF即为菱形ADCE的高,∵∠B=60°,CD=BD,∴△BCD是等边三角形,∴∠BDC=∠BCD=60°,CD=BC=6,∵CE∥AB,∴∠DCE=∠BDC=60°,又∵CD=BC=6,∴在Rt△CDF中,DF=CD sin60°=6×=3.28.解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=3×=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S△NAB=S△NAQ=×AN•NQ=××3×4=;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴=,∵AH≤AN=3,AB=4,∴可以看到点N是在以A为圆心3为半径的圆上运动,所以当射线BN与圆相切时,DF 最大,此时B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH===,∴CF=,∴DF的最大值=DC﹣CF=4﹣.29.(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=CD,∴∠OEB=∠ODC,又∵O为BC的中点,∴BO=CO,在△BOE和△COD中,,∴△BOE≌△COD(AAS);∴OE=OD,∴四边形BECD是平行四边形;(2)解:若∠A=50°,则当∠BOD=100°时,四边形BECD是矩形.理由如下:∵四边形ABCD是平行四边形,∴∠BCD=∠A=50°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=100°﹣50°=50°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四边形BECD是平行四边形,∴四边形BECD是矩形;故答案为:100.30.(1)证明:∵四边形ABCD和AEFG都是正方形,∴AB=AD,AE=AG=EF=FG,∠BEF=∠DGF=90°,∴BE=AB﹣AE,DG=AD﹣AG,∴BE=DG,在△BEF和△DGF中,,∴△BEF≌△DGF(SAS),∴BF=DF;(2)解:在△BCF和△DCF中∴△BCF≌△DCF(SSS),∴∠BCF=∠DCF,∴点F在对角线AC上∵AD∥EF∥BC∴BE:CF=AE:AF=AE: AE=∴BE:CF=.。
2019届中考数学压轴冲刺卷:四边形(含解析答案)

四边形1.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.2.定义:长宽比为:1(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图a所示.操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G处,折痕为AH.操作2:将FE沿过点G的直线折叠,使点F、点E分别落在边AF、BE上,折痕为CD.则四边形ABCD为矩形.(1)证明:四边形ABCD为矩形;(2)点M是边AB上一动点.①如图b,O是对角线AC的中点,若点N在边BC上,OM⊥ON,连接MN.求tan∠OMN的值;②连接CM,作BR⊥CM,垂足为R.若AB=,求DR的最小值.3.如图,在平面直角坐标系中,矩形OABC的顶点A在x轴上,点C在y轴上,点B的坐标为(8,4),动点D从点O向点A以每秒两个单位的速度运动,动点E从点C向点O以每秒一个单位的速度运动,设D、E两点同时出发,运动时间为t秒,将△ODE沿DE翻折得到△FDE.(1)若四边形ODFE为正方形,求t的值;(2)若t=2,试证明A、F、C三点在同一直线上;4.已知:Rt△EFP和矩形ABCD如图①摆放(点P与点B重合),点F,B(P),C在同一直线上,AB=EF=6cm,BC =FP=8cm,∠EFP=90°,如图②,△EFP从图①的位置出发,沿BC方向匀速运动,速度为1cm/s,EP与AB交于点G,与BD交于点K;同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s.过点Q作QM⊥BD,垂足为H,交AD于点M,连接AF,PQ,当点Q停止运动时,△EFP也停止运动设运动事件为(s)(0<t<6),解答下列问题:(1)当为何值时,PQ∥BD?(2)在运动过程中,是否存在某一时刻,使S五边形AFPQM:S矩形ABCD=9:8?若存在,求出t的值;若不存在,请说明理由.(3)在运动过程中,当t为秒时,PQ⊥PE.5.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一条直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系为.(2)拓展研究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM为△DCE 中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,若点P满足PD=2,且∠BPD=90°,请直接写出点A到BP的距离.6.如图,矩形ABCD(AB>AD)中,点M是边DC上的一点,点P是射线CB上的动点,连接AM,AP,且∠DAP=2∠AMD.(1)若∠APC=76°,则∠DAM=;(2)猜想∠APC与∠DAM的数量关系为,并进行证明;(3)如图1,若点M为DC的中点,求证:2AD=BP+AP;(4)如图2,当∠AMP=∠APM时,若CP=15,=时,则线段MC的长为.7.如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D 以1cm/s的速度运动;Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动.(1)当运动时间为t秒时,用含t的代数式表示以下线段的长:AP=BQ=;(2)当运动时间为多少秒时,四边形PQCD为平行四边形?(3)当运动时间为多少秒时,四边形ABQP为矩形?8.在四边形ABCD中,点E是线段AC上一点,BE∥CD,∠BEC=∠BAD.(1)如图1已知AB=AD;①找出图中与∠DAC相等的角,并给出证明;②求证:AE=CD;(2)如图2,若BC∥ED,,∠BEC=45°,求tan∠ABE的值.9.如图,已知△ABC,∠ABC=90°,AB=BC,AC=4,点E为直线AC上一点,以BE为边,点B为直角顶点作等腰直角三角形BEF.(1)如图①,当点E在线段AC上时,EF交BC于点D,连接CF;①找出一对全等三角形为;②若四边形ABFC的面积为7,则AE的长是.(2)如图②,当点E在AC的延长线上时,BE交CF于点D.①△CDE的面积记为m,△BDF的面积记为n,探究m、n之间的数量关系并说明理由;②当△CDE的面积为1时,求AE的长.10.如图,正方形ABCD的边长为2,O是BC边的中点,P是正方形内一动点,且OP=2,连接DP,将线段DP绕点D逆时针旋转90°到DQ,连接AP,CQ.(1)直接写出线段AP和CQ的关系.(2)当A,O,P三点共线时,求线段DP的长.(3)连接PQ,求线段PQ的最小值.11.课题学习:矩形折纸中的数学实践操作折纸不仅是一项有趣的活动,也是一项益智的数学活动.数学课上,老师给出这样一道题将矩形纸片ABCD沿对角线AC翻折,使点B落在矩形所在平面内,B'C和AD相交于点E,如图1所示.探素发现(1)在图1中,①请猜想并证明AE和EC的数量关系;②连接B'D,请猜想并证明B'D和AC的位置关系;(2)第1小组的同学发现,图1中,将矩形ABCD沿对角线AC翻折所得到的图形是轴对称图形.若沿对称轴EF 再次翻折所得到的图形仍是轴对称图形,展开后如图2所示,请你直接写出该矩形纸片的长、宽之比;(3)若将图1中的矩形变为平行四边形时(AB≠BC),如图3所示,(1)中的结论①和结论②是否仍然成立,请直接写出你的判断.拓展应用(4)在图3中,若∠B=30°,AB=2,请您直接写出:当BC的长度为多少时,△AB'D恰好为直角三角形.12.已知矩形ABCD,作∠ABC的平分线交AD边于点M,作∠BMD的平分线交CD边于点N.(1)若N为CD的中点,如图1,求证:BM=AD+DM;(2)若N与C点重合,如图2,求tan∠MCD的值;(3)若=,AB=6,如图3,求BC的长.13.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D为AB边上一点,且AD=1,点P从点C出发,沿射线CA以每秒1个单位长度的速度运动,以CP、DP为邻边作▱CPDE.设▱CPDE和△ABC重叠部分图形的面积为S(平方单位),点P的运动时间为t(秒)(t>0)(1)连结CD,求CD的长;(2)当▱CPDE为菱形时,求t的值;(3)求S与t之间的函数关系式;(4)将线段CD沿直线CE翻折得到线段C′D′.当点D′落在△ABC的边上时,直接写出t的值.14.如图,在矩形ABCD中,AB=4,BC=5,E是BC边上的一个动点,DF⊥AE,垂足为点F,连结CF (1)若AE=BC①求证:△ABE≌△DFA;②求四边形CDFE的周长;③求tan∠FCE的值;(2)探究:当BE为何值时,△CDF是等腰三角形.15.如图,在平面直角坐标系xOy中有矩形OABC,A(4,0),C(0,2),将矩形OABC绕原点O逆时针旋转得到矩形OA′B′C′.(Ⅰ)如图1,当点A′首次落在BC上时,求旋转角;(Ⅱ)在(Ⅰ)的条件下,求点B′的坐标;(Ⅲ)如图2,当点B′首次落在x轴上时,直接写出此时点A′的坐标.16.我们定义:有一组对角为直角的四边形叫做“对直角四边形”.如图1,四边形ABCD中,∠A=∠C=90°,则四边形ABCD是“对直角四边形”.(1)“对角线相等的对直角四边形是矩形”是命题;(填“真”或“假”)(3)如图3,在△ABC中,∠C=90°,AC=6,BC=8,过AB的中点D作射线DP∥AC,交BC于点O,∠BDP与∠ADP的角平分线分别交BC,AC于点E、F.①图中是“对直角四边形”的是;②当OP的长是时,四边形DEPF为对直角四边形.参考答案1.(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG=EF,∠BAD=∠EAG=∠ADC=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∠ADG=90°=∠ABE,∴∠BAE=∠DAG,在△ADG和△ABE中,,∴△ADG≌△ABE(AAS).(2)解:∠FCN=45°,理由如下:作FH⊥MN于H,如图1所示:则∠EHF=90°=∠ABE,∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°,∴∠FEH=∠BAE,在△EFH和△ABE中,,∴△EFH≌△ABE(AAS),∴FH=BE,EH=AB=BC,∴CH=BE=FH,∵∠FHC=90°,∴∠FCN=45°.(3)解:当点E由B向C运动时,∠FCN的大小总保持不变,理由如下:作FH⊥MN于H,如图2所示:由已知可得∠EAG=∠BAD=∠AEF=90°,结合(1)(2)得:△EFH≌△GAD,△EFH∽△ABE,∴EH=AD=BC=8,∴CH=BE,∴==;在Rt△FEH中,tan∠FCN====,∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=.2.(1)证明:设正方形ABEF的边长为a,∵AE是正方形ABEF的对角线,∴∠DAG=45°,由折叠性质可知AG=AB=a,∠FDC=∠ADC=90°,则四边形ABCD为矩形,∴△ADG是等腰直角三角形,∴AD=DG=,∴AB:AD=a:=:1,∴四边形ABCD为矩形;(2)解:①作OP⊥AB,OQ⊥BC,垂足分别为P,Q,如图b所示:∵四边形ABCD是矩形,∠B=90°,∴四边形BQOP是矩形.∴∠POQ=90°,OP∥BC,OQ∥AB.∴=,=,∵O为AC中点,∴OP=BC,OQ=AB,∵∠MON=90°,∴∠QON=∠POM,∴===,∴tan∠OMN==;②如图c所示:∵四边形ABCD为矩形,AB=,∴BC=AD=1,∵BR⊥CM,∴点R在以BC为直径的圆上,记BC的中点为I,∴CI=BC=,∴DR最小=﹣=﹣=.3.(1)解:∵矩形OABC中,B(8,4),∴OA=8,OC=4,∵四边形ODEF为正方形,∴OE∥DF,OE=DF,∵△ODE沿DE翻折得到△FDE,∴OD=DF,∵OD=2t,OE=4﹣t,∴2t=4﹣t,t=;(2)证明:连接AC,作OG⊥AC于G,如图1所示:∵t=2,∴OE=BE=2,OD=DE=4,∴DE是△OAC的中位线,∴DE∥AC,且DE=AC,∴==,∴DE垂直平分OF,由折叠的性质得:DE垂直平分OF,∴G与F点重合,即A、C、F三点在同一条直线;(3)解:存在,理由如下:如图2所示:∵S△BDE=S△ABC﹣S△BCE﹣S△ABD﹣S△ODE=32﹣t×8﹣×4×(8﹣2t)﹣×2t(4﹣t)=32﹣4t﹣16+4t﹣4t+t2=t2﹣4t+16=(t﹣2)2+12,∴t=2时,S△BDE有最小值为12;即存在实数t,使△BDE的面积最小,t=2秒.4.解:(1)∵PQ∥BD,∴=,∴=,解得t=,∴当t=时,PQ∥BD.(2)假设存在.∵S五边形AFPQM=S△ABF+S矩形ABCD﹣S△PQC﹣S△MQD=×(8﹣t )×6+6×8﹣(8﹣t )×t ﹣×(6﹣t )×(6﹣t )=t 2﹣t +.又∵S 五边形AFPQM :S 矩形ABCD =9:8,∴(t 2﹣t +):48=9:8, 整理得:t 2﹣20t +36=0,解得t =2或18(舍弃),∴t =2s 时,S 五边形AFPQM :S 矩形ABCD =9:8.(3)∵PQ ⊥PE ,∴∠QPE =90°,∵∠EFP =∠C =90°,∴∠EPF +∠QPC =90°,∠QPC +∠PQC =90°,∴∠EPF =∠PQC ,∴△EPF ∽△PQC ,∴=,∴=,解得t =,∴当t =时,PQ ⊥PE .故答案为. 5.解:问题发现(1)①∵△ACB 和△DCE 均为等边三角形,∴AC =BC ,DC =CE ,∠ACB =∠DCE =∠CDE =60°=∠CED∵点A 、D 、E 在同一条直线上,∴∠ADC =120°∵∠ACB ﹣∠DCB =∠DCE ﹣∠DCB∴∠ACD =∠BCE ,且AC =BC ,DC =CE∴△ACD ≌△BCE (SAS )∴∠ADC =∠CEB =120°∴∠ABE =∠CEB ﹣∠CED =60°②∵△ACD ≌△BCE∴AD=BE故答案为:60°,AD=BE(2)拓展研究:猜想:①∠AEB=90°,②AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.且AC=BC,CD=CE∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.解决问题:(3)∵点P满足PD=2,∴点P在以D为圆心,2为半径的圆上,∵∠BPD=90°,∴点P在以BD为直径的圆上,∴如图,点P是两圆的交点,若点P在AD上方,连接AP,过点A作AH⊥BP,∵CD=2=BC,∠BCD=90°∴BD=4,∵∠BPD=90°∴BP==2∵∠BPD=90°=∠BAD∴点A,点B,点D,点P四点共圆∴∠APB=∠ADB=45°,且AH⊥BP∴∠HAP=∠APH=45°∴AH=HP在Rt△AHB中,AB2=AH2+BH2,∴8=AH2+(2﹣AH)2,∴AH=+1(不合题意),或AH=﹣1若点P在CD的右侧,同理可得AH=+1综上所述:点A到BP的距离为: +1或﹣11.解:(1)∵AD∥CP,∠APC=76°,∴∠DAP=104°,∵∠DAP=2∠AMD,∴∠AMD=52°,又∵∠D=90°,∴∠DAM=38°,故答案为:38°;(2)∠APC=2∠DAM,理由如下:∵四边形ABCD是矩形,∴∠D=90°,AD∥BC,∵点P是射线BC上的点,∴AD∥CP,∴∠DAP+∠APC=180°,∵∠DAP=2∠AMD,∴2∠AMD+∠APC=180°,在Rt△AMD中,∠D=90°,∴∠AMD=90°﹣∠DAM,∴2(90°﹣∠DAM)+∠APC=180°,∴∠APC=2∠DAM,故答案为:∠APC=2∠DAM;(3)如图1,延长AM交BC的延长线于点E,延长BP到F,使PF=AP,连接AF,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠ABC=90°,∴AD∥BE,AB⊥BE,∴∠DAM=∠E,∵M是DC中点,∴DM=CM,又∵∠1=∠2,∴△AMD≌△EMC(AAS),∴AD=CE,∴BE=BC+CE=2AD,∵∠APC=2∠DAM,∴∠APC=2∠E,∵PA=PF,∴∠PAF=∠F,∴∠APC=2∠F,∴∠E=∠F,∴AE=AF,又∵AB⊥BE,∴BE=BF,又∵BF=BP+PF=BP+AP,∴2AD=BP+AP;(4)如图2,延长MD到点E,使DE=MD,连接AE,过点E作EF⊥MA于点F,设AM=3x,AD=2x,则DM=DE=x,AE=AP=3x,∵∠AMD=∠EMF,∠ADM=∠EFM=90°,∴△ADM∽△EFM,∴=,即=,解得EF=x,∴AF==x,∵DE=MD,AD⊥CE,∴∠AME=∠AEM,则∠EAF=2∠AMD,∵AD∥BC,∠DAP=2∠AMD,∴∠APB=∠DAP=2∠AMD,∴∠EAF=∠APB,又∵∠EFA=∠B=90°,AE=AP,∴△EAF≌△APB(AAS),∴PB=AF=x,由AD=BC得x+15=2x,解得x=9,∴AB==12,∴MC=DC﹣DM=AB﹣DM=3,故答案为:3.2.解:(1)由题意知AP=t,BQ=26﹣3t,故答案为:t,26﹣3t;(2)由题意可得:PD=AD﹣AP=24﹣t,QC=3t,∵AD∥BC,∴PD∥QC,设当运动时间为t秒时PD=QC,此时四边形PQCD为平行四边形.由PD=QC得,24﹣t=3t,解得t=6,∴当运动时间为6秒时,四边形PQCD为平行四边形.(3)∵AD∥BC,∴AP∥BQ,设当运动时间为t秒时AP=BQ,四边形ABQP为平行四边形.由AP=BQ得:t=26﹣3t,解得:t=,又∵∠B=90°∴平行四边形ABQP为矩形.∴当运动时间为秒时,四边形ABQP为矩形.3.解:(1)①∠ABE=∠CAD,理由如下:以D为圆心,DC为半径画圆,交AC于F,连接DF,则CD=DF,∴∠DFC=∠DCF,∵BE∥CD,∴∠BEC=∠FCD,∴∠BEC=∠DFC,∴∠AEB=∠AFD,∠BEC=∠BAE+∠ABE,∠BAD=∠BAE+∠DAF,∠BEC=∠BAD,∴∠ABE=∠DAF,在△ABE和△DAF中,,∴△ABE≌△DAF(AAS),∴∠ABE=∠CAD,②∵△ABE≌△DAF,∴AE=DF,∵CD=DF,∴AE=CD;(3)过点D作DG⊥CD交AC于点G,∵BE∥CD,∴∠DCA=∠BEC=45°,∴∠AEB=∠DGA=135°,DG=DC,∵∠AEB=∠DGA,∠ABE=∠DAG,∴△ABE∽△DAG,∴==,∵BC∥DE,BE∥CD,∴四边形BCDE为平行四边形,∴BE=CD,过点A作AH垂直于BE交BE的延长线于点H,设AH=EH=m,则AE=m,DG=CD=BE=2m,∴BH=BE+EH=2m+m,tan∠ABE===.4.解:(1)①△ABE≌△CBF理由如下:∵∠ABC=∠EBF=90°,∴∠ABE=∠CBF,且AC=BC,EB=BF∴△ABE≌△CBF(SAS)故答案为:△ABE≌△CBF②如图,过点B作BM⊥AC于M,∵∠ABC=90°,AB=BC,AC=4,BM⊥AC,∴AM=CM=BM=2∴S△ABC=×4×2=4∵S四边形ABFC=7∴S△CBF=3=S△ABM,∴=3∴AE=3故答案为:3(2)①4+m=n理由如下:∵△ABE≌△CBF∴S△ABE=S△CBF,∴S△ABC+S△CBD+S△CDE=S△CBD+S△BDF,∴4+m=n②∵△CDE的面积为1,m+4=n∴n=5∴S△BDE=5,如图,过点B作BG⊥AC,BH⊥FC,∵△ABE≌△CBF∴AE=CF,∠A=∠BCH=45°=∠ACB,且BG⊥AC,BH⊥FC,∴BG=BH=2,∠ACF=90°∵S△BDE=5,∴DF×BH=5∴DF=5,∴设CE=x,则AE=4+x=CF,∴CD=4+x﹣5=x﹣1∵S△CDE=CD×CE=1∴1=×x×(x﹣1)∴x=2,x=﹣1(舍去)∴AE=2+x=6,5.解:(1)AP=CQ,AP⊥CQ;理由如下:延长QC、AP交于点E,AP的延长线交BC于F,如图1所示:∵四边形ABCD是正方形,∴AD=CD,∠ADC=∠BCD=90°,AD∥BC,由旋转的性质得:∠PDQ=90°,DP=DQ,∴∠ADP=∠CDQ,在△ADP和△CDQ中,,∴△ADP≌△CDQ(SAS),∴AP=CQ,∠DAP=∠DCQ,∵∠BCD=90°,∴∠DCQ+∠ECF=90°,∵AD∥BC,∴∠DAP=∠CFE,∴∠CFE+∠ECF=90°,∴∠CEF=90°,∴AE⊥QE,∴AP⊥CQ;(2)作DH⊥AP于H,如图2所示:∵O是BC边的中点,∴OB=BC=,当A,O,P三点共线时,由勾股定理得:AO===5,∵四边形ABCD是正方形,∴∠B=90°,AD∥BC,∴∠DAH=∠BOA,∴sin∠DAH=sin∠BOA==,cos∠DAH=cos∠BOA==,∴DH=AD×sin∠DAH=2×=4,AH=AD×cos∠DAH=2×=2,∴PH=AO﹣AH﹣OP=5﹣2﹣2=1,∴DP==;(3)连接OD,如图3所示:∵DQ=DP,∠PDQ=90°,∴PQ=DP,OD===5,∵OP+DP≥OD,∴DP≥OD﹣OP=5﹣2=3,∴PQ≥3,∴线段PQ的最小值为3.6.解:(1)∵AD∥CP,∠APC=76°,∴∠DAP=104°,∵∠DAP=2∠AMD,∴∠AMD=52°,又∵∠D=90°,∴∠DAM=38°,故答案为:38°;(2)∠APC=2∠DAM,理由如下:∵四边形ABCD是矩形,∴∠D=90°,AD∥BC,∵点P是射线BC上的点,∴AD∥CP,∴∠DAP+∠APC=180°,∴2∠AMD+∠APC=180°,在Rt△AMD中,∠D=90°,∴∠AMD=90°﹣∠DAM,∴2(90°﹣∠DAM)+∠APC=180°,∴∠APC=2∠DAM,故答案为:∠APC=2∠DAM;(3)如图1,延长AM交BC的延长线于点E,延长BP到F,使PF=AP,连接AF,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠ABC=90°,∴AD∥BE,AB⊥BE,∴∠DAM=∠E,∵M是DC中点,∴DM=CM,又∵∠1=∠2,∴△AMD≌△EMC(AAS),∴AD=CE,∴BE=BC+CE=2AD,∵∠APC=2∠DAM,∴∠APC=2∠E,∵PA=PF,∴∠PAF=∠F,∴∠E=∠F,∴AE=AF,又∵AB⊥BE,∴BE=BF,又∵BF=BP+PF=BP+AP,∴2AD=BP+AP;(4)如图2,延长MD到点E,使DE=MD,连接AE,过点E作EF⊥MA于点F,设AM=3x,AD=2x,则DM=DE=x,AE=AP=3x,∵∠AMD=∠EMF,∠ADM=∠EFM=90°,∴△ADM∽△EFM,∴=,即=,解得EF=x,∴AF==x,∵DE=MD,AD⊥CE,∴∠AME=∠AEM,则∠EAF=2∠AMD,∵AD∥BC,∠DAP=2∠AMD,∴∠APB=∠DAP=2∠AMD,∴∠EAF=∠APB,又∵∠EFA=∠B=90°,AE=AP,∴△EAF≌△APB(AAS),∴PB=AF=x,由AD=BC得x+15=2x,解得x=9,∴AB==12,∴MC=DC﹣DM=AB﹣DM=3,故答案为:3.7.解:(1)由题意知AP=t,BQ=26﹣3t,故答案为:t,26﹣3t;(2)由题意可得:PD=AD﹣AP=24﹣t,QC=3t,∵AD∥BC,∴PD∥QC,设当运动时间为t秒时PD=QC,此时四边形PQCD为平行四边形.由PD=QC得,24﹣t=3t,解得t=6,∴当运动时间为6秒时,四边形PQCD为平行四边形.(3)∵AD∥BC,∴AP∥BQ,设当运动时间为t秒时AP=BQ,四边形ABQP为平行四边形.由AP=BQ得:t=26﹣3t,解得:t=,又∵∠B=90°∴平行四边形ABQP为矩形.∴当运动时间为秒时,四边形ABQP为矩形.8.解:(1)①∠ABE=∠CAD,理由如下:以D为圆心,DC为半径画圆,交AC于F,连接DF,则CD=DF,∴∠DFC=∠DCF,∵BE∥CD,∴∠BEC=∠FCD,∴∠BEC=∠DFC,∴∠AEB=∠AFD,∠BEC=∠BAE+∠ABE,∠BAD=∠BAE+∠DAF,∠BEC=∠BAD,∴∠ABE=∠DAF,在△ABE和△DAF中,,∴△ABE≌△DAF(AAS),∴∠ABE=∠CAD,②∵△ABE≌△DAF,∴AE=DF,∵CD=DF,∴AE=CD;(3)过点D作DG⊥CD交AC于点G,∵BE∥CD,∴∠DCA=∠BEC=45°,∴∠AEB=∠DGA=135°,DG=DC,∵∠AEB=∠DGA,∠ABE=∠DAG,∴△ABE∽△DAG,∴==,∵BC∥DE,BE∥CD,∴四边形BCDE为平行四边形,∴BE=CD,过点A作AH垂直于BE交BE的延长线于点H,设AH=EH=m,则AE=m,DG=CD=BE=2m,∴BH=BE+EH=2m+m,tan∠ABE===.9.解:(1)①△ABE≌△CBF理由如下:∵∠ABC=∠EBF=90°,∴∠ABE=∠CBF,且AC=BC,EB=BF∴△ABE≌△CBF(SAS)故答案为:△ABE≌△CBF②如图,过点B作BM⊥AC于M,∵∠ABC=90°,AB=BC,AC=4,BM⊥AC,∴AM=CM=BM=2∴S△ABC=×4×2=4∵S四边形ABFC=7∴S△CBF=3=S△ABM,∴=3∴AE=3故答案为:3(2)①4+m=n理由如下:∵△ABE≌△CBF∴S△ABE=S△CBF,∴S△ABC+S△CBD+S△CDE=S△CBD+S△BDF,∴4+m=n②∵△CDE的面积为1,m+4=n∴n=5∴S△BDE=5,如图,过点B作BG⊥AC,BH⊥FC,∵△ABE≌△CBF∴AE=CF,∠A=∠BCH=45°=∠ACB,且BG⊥AC,BH⊥FC,∴BG=BH=2,∠ACF=90°∵S△BDE=5,∴DF×BH=5∴DF=5,∴设CE=x,则AE=4+x=CF,∴CD=4+x﹣5=x﹣1∵S△CDE=CD×CE=1∴1=×x×(x﹣1)∴x=2,x=﹣1(舍去)∴AE=2+x=6,10.解:(1)AP=CQ,AP⊥CQ;理由如下:延长QC、AP交于点E,AP的延长线交BC于F,如图1所示:∵四边形ABCD是正方形,∴AD=CD,∠ADC=∠BCD=90°,AD∥BC,由旋转的性质得:∠PDQ=90°,DP=DQ,∴∠ADP=∠CDQ,在△ADP和△CDQ中,,∴△ADP≌△CDQ(SAS),∴AP=CQ,∠DAP=∠DCQ,∵∠BCD=90°,∴∠DCQ+∠ECF=90°,∵AD∥BC,∴∠DAP=∠CFE,∴∠CFE+∠ECF=90°,∴∠CEF=90°,∴AE⊥QE,∴AP⊥CQ;(2)作DH⊥AP于H,如图2所示:∵O是BC边的中点,∴OB=BC=,当A,O,P三点共线时,由勾股定理得:AO===5,∵四边形ABCD是正方形,∴∠B=90°,AD∥BC,∴∠DAH=∠BOA,∴sin∠DAH=sin∠BOA==,cos∠DAH=cos∠BOA==,∴DH=AD×sin∠DAH=2×=4,AH=AD×cos∠DAH=2×=2,∴PH=AO﹣AH﹣OP=5﹣2﹣2=1,∴DP==;(3)连接OD,如图3所示:∵DQ=DP,∠PDQ=90°,∴PQ=DP,OD===5,∵OP+DP≥OD,∴DP≥OD﹣OP=5﹣2=3,∴PQ≥3,∴线段PQ的最小值为3.11.解:(1)如图1中,①结论:EA=EC.理由:∵四边形ABCD是矩形,∴AD∥BC,∴∠EAC=∠ACB,由翻折可知:∠ACB=∠ACE,∴∠EAC=∠ECA,∴EA=EC.②连接DB′.结论:DB′∥AC.∵EA=EC,∴∠EAC=∠ECA,∴ED=EB′,∴∠EB′D=∠EDB′,∵∠AEC=∠DEB′,∴∠EB′D=∠EAC,∴DB′∥AC.(2)如图2中,①当AB:AD=1:1时,四边形ABCD是正方形,∴∠BAC=∠CAD=∠EAB′=45°,∵AE=AE,∠B′=∠AFE=90°,∴△AEB′≌△AEF(AAS),∴AB′=AF,此时四边形AFEB′是轴对称图形,符合题意.②当AD:AB=时,也符合题意,∵此时∠DAC=30°,∴AC=2CD,∴AF=FC=CD=AB=AB′,∴此时四边形AFEB′是轴对称图形,符合题意.(3)如图3中,当四边形ABCD是平行四边形时,仍然有EA=EC,DB′∥AC.理由:∵四边形ABCD是平行四边形,∴AD∥BC,由翻折可知:∠ACB=∠ACE,∴∠EAC=∠ECA,∴EA=EC.∵EA=EC,∴∠EAC=∠ECA,∵AD=BC=CB′,∴ED=EB′,∴∠EB′D=∠EDB′,∵∠AEC=∠DEB′,∴∠EB′D=∠EAC,∴DB′∥AC.(4)①如图3﹣1中,当∠AB′C=90°时,易证∠BAC=90°,BC==.②如图3﹣2中,当∠ADB′=90°时,易证∠ACB=90°,BC=AB•cos30°=.③如图3﹣3中,当∠DAB′=90°时,易证∠B=∠ACB=30°,BC=2•AB•cos30°=2.④如图3﹣4中,当∠DAB′=90°时,易证:∠B=∠CAB=30°,BC==,综上所述,满足条件的BC的长为或或2或12.(1)证明:如图1,延长MN、BC交于点E,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠ABC=90°,∴∠D=∠NCE,∠DMN=∠NEC,∵N是DC的中点,∴DN=CN,∴△DNM≌△CNE(AAS),∴DM=CE,∵BM平分∠ABC,∠ABC=90°,∴∠ABM=∠MBE=45°,∵AD∥BC,∴∠AMB=∠EBM=45°,∴∠BMD=180°﹣45°=135°,∵MN平分∠BMD,∴∠BMN=∠DMN=67.5°,∴∠E=∠DMN=67.5°,∴∠BMN=∠E=67.5°,∴BM=BE=BC+CE=AD+DM;(2)解:如图2,当N与C重合时,由(1)知:∠BMC=∠DMN=∠BCM,∴BC=BM,设AB=x,则BM=BC=x,∵AD=BC,∴DM=x﹣x,Rt△DMC中,tan∠MCD===﹣1;(3)解:如图3,延长MN、BC交于点G,∵四边形ABCD是矩形,∴CD=AB=6,∵,∴CN=2,DN=4,∵△ABM是等腰直角三角形,∴BM=6,由(1)知:BM=BG=6,∵DM∥CG,∴△DMN∽△CGN,∴=2,设CG=m,则DM=2m,6=6+2m+m,m=2﹣2,∴BC=6+2m=2+4.13.解:(1)过点D作DF⊥AC于点F.如图1中.在Rt△ABC中,∠ACB=90°,∴AB===5,∵DF∥BC,∴△AFD∽△ACB.∴==,∴==,∴AF=,DF=,∴CF=AC﹣AF=3﹣=,在Rt△CDF中,∠CFD=90°,∴CD===.(2)当▱CPDE为菱形时,如图2中,连接BP交CD于O.∵四边形PCED是菱形,∴PD=PC,∵BD=BC=1,∴PB垂直平分线段CD,∴点E在直线PB上,∵∠CPO+∠PCO=90°,∠CPB+∠PBC=90°,∴∠PCO=∠PBC,∵∠POC=∠PCB,∴△COP∽△BCP∴=,∴=.∴t=.(3)当0<t≤时,如图3中,重叠部分是四边形PCED..S=t•=t.当<t≤3时,如图4中,重叠部分是四边形PCFD.S=(4×+t)﹣=t+.当t>3时,如图 5中,重叠部分是四边形ACFD,S=(4×+3)﹣=.综上所述,S=.(4)如图6中,当点D′落在AB上时,延长CE交AB于O,易知OC⊥AB,OC=.AO=,∴OD=OA﹣AD=,∵DE∥AC,∴=,∴=,∴DE=,此时t=,如图7中,当点D′落在BC上时,延长DE交BC于F,作OM⊥BC于M,ON⊥CD于N.∵∠DCO=∠OCB,ON⊥CD,OM⊥CB,∴ON=OM,∵S△DCB=S△CDO+S△BCO,∴×4×=××ON+×4×OM,∴OM=,∵OM∥AC,∴=,∴BM=,CM=,∵EF∥OM,∴=,可得EF=,∴CP=DE=﹣=,此时t=,综上所述,满足条件的t的值为s或s.14.解:(1)①如图1中,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠B=90°,∴∠AEB=∠DAF.∵DF⊥AE,∴∠AFD=90°.∴∠B=∠AFD=90°,又∵AE=BC,∴AE=AD,∴△ABE≌△DFA(AAS).②如图1中,在Rt△ABE中,∠B=90°,根据勾股定理,得BE===3,∵△ABE≌△DFA,∴DF=AB=DC=4,AF=BE=3.∵AE=BC=5,∴EF=EC=2,∴四边形CDFE的周长=2(DC+EC)=2×(4+2)=12.③如图2中,过点F作FM⊥BC于点M.∴sin∠AEB==,cos∠AEB==,在Rt△FME中,FM=EF=,ME=EF=,∴MC=ME+EC=+2=,在Rt△FMC中,tan∠FCE==.(2)如图3﹣1中,当DF=DC时,则DF=DC=AB=4.∵∠AEB=∠DAF,∠B=∠AFD=90°,∴△ABE≌△DFA(AAS).∴AE=AD=5,由②可知,BE=3,∴当BE=3时,△CDF是等腰三角形.…(11分)如图3﹣2中,当CF=CD时,过点C作CG⊥DF,垂足为点H,交AD于点G,则CG∥AE,DH=FH.∴AG=GD=2.5.∵CG∥AE,AG∥EC,∴四边形AECG是平行四边形,∴EC=AG=2.5,∴当BE=2.5时,△CDF是等腰三角形.…(13分)如图3﹣中,当FC=FD时,过点F作FQ⊥DC,垂足为点Q.则AD∥FQ∥BC,DQ=CQ,∴AF=FE=AE.∵∠B=∠AFD=90°,∠AEB=∠DAF,∴△ABE∽△DFA,∴=,即AD×BE=AF×AE.设BE=x,∴5x=×,解得x1=2,x2=8(不符合题意,舍去)∴当BE=2时,△CDF是等腰三角形.综上所述,当BE为3或2.5或2时,△CDF是等腰三角形.15.解:(Ⅰ)∵A(4,0),C(0,2),∴OA=4,OC=2,由旋转的性质得:OA'=OA=4,∵四边形OABC是矩形,∴∠OCB=90°,OA∥BC,在Rt△OCA'中,OC=OA',∴∠OA'C=30°,∵OA∥BC,∴∠AOA'=∠OA'C=30°,即当点A′首次落在BC上时,旋转角为30°;(Ⅱ)由矩形和旋转的性质得:OA′=OA=4,A′B′=AB=OC=2,作B'E⊥BC于E,如图1所示:∵BC∥AO,∴∠OA′C=∠A′OA=30°,∴∠B′A′E=60°,B′E=sin∠B′A′E×BB′=×2=,EA′=cos∠B′A′E×BB′=×2=1,A′C=cos∠OA′C×OA′=×4=2,∴CE=CA′﹣EA′=2﹣1,B′的纵坐标为:2+,∴点B′的坐标为:(2﹣1,2+);(Ⅲ)过点A'作A'F⊥x轴于F,如图2所示:∵∠B'A'O=90°,A'F⊥B'O,∴B'O==2,∠A'FO=90°,∵∠A'OF=∠B'OA',∴△B'A'O∽△A'FO,∴==,即==,解得:OF=,A'F=,∴点A的坐标为(﹣,).16.(1)解:结论:真.理由:如图1﹣1中,∵∠BAD=∠BCD=90°,∴A,B,C,D四点共圆,∴BD是⊙O的直径,∵AC=BD,∴AC也是⊙O的直径,∴∠ADC=∠ABC=90°,∴四边形ABCD是矩形.故答案为真.(2)证明:如图2中,∵四边形ABCD是对直角四边形,∠DAB<90°,∴∠D=∠B=90°,∴AD2+DC2=AC2,AB2+BC2=AC2,∴AD2+DC2=AB2+BC2,∵AD+DC=AB+BC∴(AD+DC)2=(AB+BC)2,即:AD2+2AD•DC+DC2=AB2+2AB•BC+BC2,∴2AD•DC=2AB•BC,∴•AD•DC=•AB•BC,即:S△ADC=S△ABC.(3)①结论:四边形ECFD是“对直角四边形”.理由:如图3中,∵DE平分∠BDP,DF平分∠ADP,∴∠EDP=∠BDP,∠FDP=∠ADP,∴∠EDF=(∠BDP+∠ADP)=90°,∵∠C=90°,∴四边形ECFD是“对直角四边形”.故答案为四边形ECFD.②如图3中,当OP=2时,四边形DEPF是“对直角四边形”.理由:在Rt△ABC中,∵∠C=90°,BC=8,AC=6,∴AB==10,∵BD=AD=5,DP∥AC,∴OB=OC,∴OD=AC=3,∵OP=2,∴DP=5,∵∠PDF=∠DFA=∠ADF,∴AD=AF=5,∴DP=AF,DP∥AF,∴四边形ADPF是平行四边形,∴∠A=∠DPF,∵DP=DB,DE=DE,∠EDB=∠EDP,∴△EDB≌△EDP(SAS),∴∠DPE=∠B,∴∠EPF=∠DPE+∠DPF=∠B+∠A=90°,∵∠EDF=90°,∴四边形DEPF是“对直角四边形”.故答案为2.。
【中考复习】2019年 中考数学 四边形 中考复习(含答案)

2019年中考数学四边形中考复习姓名:__________班级:__________一、选择题1.下列命题中,假命题是()A.有一组对角是直角且一组对边平行的四边形是矩形B.有一组对角是直角且一组对边相等的四边形是矩形C.有两个内角是直角且一组对边平行的四边形是矩形D.有两个内角是直角且一组对边相等的四边形是矩形2.如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有()A.4个B.6个C.8个D.10个3.如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.45°B.30°C.60°D.55°4.如图,在菱形ABCD中,E,F分别在AB,CD上,且BE=DF,EF与BD相交于点O,连结AO.若∠CBD=35°,则∠DAO的度数为()A.35°B.55°C.65°D.75°5.两个正方形和一个正六边形按如图方式放置在同一平面内,则∠ɑ的度数为( )A.60°B.50°C.40°D.30°6.如图,在五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的邻补角,则∠1+∠2+∠3等于( )A.90°B.180°C.210°D.270°7.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66° B.104° C.114° D.124°8.在△ABC中,点D、E、F分别在BC、AB、CA上,且DE∥CA,DF∥BA,则下列三种说法:①如果∠BAC=90°,那么四边形AEDF是矩形②如果AD平分∠BAC,那么四边形AEDF是菱形③如果AD⊥BC且AB=AC,那么四边形AEDF是菱形其中正确的有()A.3个 B.2个 C.1个 D.0个9.用一条直线将一个菱形分割成两个多边形,若这两个多边形的内角和分别为M和N,则M+N值不可能是()A.360°B.540°C.630°D.720°10.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的个数为()A.1B.2C.3D.411.如图,在正方形OABC中,点B的坐标是(3,3),点E、F分别在边BC、BA上,CE=1,若∠EOF=45°,则F 点的纵坐标是( )A.1B.C.D.12.如图,把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A. B.6 C. D.二、填空题13.如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是.14.如图,平行四边形ABCD的周长为40,△BOC的周长比△AOB的周长多10,则AB为.15.在平行四边形ABCD中,AB=3,BC=5,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,则△CDE的周长为______.16.如图,四边形ABCD是平行四边形,E为BC边的中点,DE、AC相交于点F,若△CEF的面积为6,则△ADF的面积为.17.如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为.18.如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(4,3),∠CAO的平分线与y轴相交于点D,则点D的坐标为.三、解答题19.如图,已知在正方形ABCD中,点E在边BC上,点F在边CD的延长线上,且BE=DF.(1)求∠AEF的度数;(2)如果∠AEB=75°,AB=2,求△FEC的面积.20.(1)如图1,纸片□ABCD中,AD=5,S=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至□ABCD△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为()A.平行四边形 B.菱形 C.矩形 D.正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F/的位置,拼成四边形AFF′D.①证四边形AFF′D是菱形;②求四边形AFF′D两条对角线的长.21.如图所示,在正方形ABCD中,M是CD的中点,E是CD上一点,且∠BAE=2∠DAM.求证:AE=BC+CE.22.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.23.如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P、Q的速度的速度都是1cm/s,连结PQ,AQ,CP,设点P、Q运动的时间为t(s).(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?(3)分别求出(2)中菱形AQCP的周长和面积.24.如图,以矩形ABCD的边CD为直径作⊙O,交矩形的对角线BD于点E,点F是BC的中点,连接EF.(1)试判断EF与⊙O的关系,并说明理由.(2)若DC=2,EF=,点P是⊙O上除点E、C外的任意一点,则∠EPC的度数为(直接写出答案)参考答案1.C.2.C;3.A;4.B.5.A6.B7.C8.A.9.C;10.D;11.A;12.A.13.答案为:AD=BC;14.答案为:5.15.答案为:8.16.答案为:24.17.答案为:y=﹣3x-1.18.答案为:(0,).19.20.略21.22.(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴EF==13,∴OC=0.5EF=6.5;(3)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.23.解:(1)当四边形ABQP是矩形时,BQ=AP,即:t=8﹣t,解得t=4.答:当t=4时,四边形ABQP是矩形;(2)设t秒后,四边形AQCP是菱形当AQ=CQ,即=8﹣t时,四边形AQCP为菱形.解得:t=3.答:当t=3时,四边形AQCP是菱形;(3)当t=3时,CQ=5,则周长为:4CQ=20cm,面积为:4×8﹣2××3×4=20(cm2).24.解:(1)直线EF与⊙O相切.理由如下:如图,连接OE、OF.∵OD=OE,∴∠1=∠D.∵点F是BC的中点,点O是DC的中点,∴OF∥BD,∴∠3=∠D,∠2=∠1,∴∠2=∠3.在△EFO与△CFO中,∵,∴△EFO≌△CFO(SAS),∴∠FEO=∠FCO=90°,∴直线EF与⊙O相切.(2)如图,连接DF.∵由(1)知,△EFO≌△CFO,∴FC=EF=.∴BC=2在直角△FDC中,tan∠D==,∴∠D=60°.当点P在上时,∵点E、P、C、D四点共圆,∴∠EPC+∠D=180°,∴∠EPC=120°,当点P在上时,∠EPC=∠D=60°,故答案为:60°或120°.。
2019届中考数学压轴冲刺卷:四边形(含解析答案)

四边形1.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.2.定义:长宽比为:1(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图a所示.操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G处,折痕为AH.操作2:将FE沿过点G的直线折叠,使点F、点E分别落在边AF、BE上,折痕为CD.则四边形ABCD为矩形.(1)证明:四边形ABCD为矩形;(2)点M是边AB上一动点.①如图b,O是对角线AC的中点,若点N在边BC上,OM⊥ON,连接MN.求tan∠OMN的值;②连接CM,作BR⊥CM,垂足为R.若AB=,求DR的最小值.3.如图,在平面直角坐标系中,矩形OABC的顶点A在x轴上,点C在y轴上,点B的坐标为(8,4),动点D从点O向点A以每秒两个单位的速度运动,动点E从点C向点O以每秒一个单位的速度运动,设D、E两点同时出发,运动时间为t秒,将△ODE沿DE翻折得到△FDE.(1)若四边形ODFE为正方形,求t的值;(2)若t=2,试证明A、F、C三点在同一直线上;4.已知:Rt△EFP和矩形ABCD如图①摆放(点P与点B重合),点F,B(P),C在同一直线上,AB=EF=6cm,BC =FP=8cm,∠EFP=90°,如图②,△EFP从图①的位置出发,沿BC方向匀速运动,速度为1cm/s,EP与AB交于点G,与BD交于点K;同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s.过点Q作QM⊥BD,垂足为H,交AD于点M,连接AF,PQ,当点Q停止运动时,△EFP也停止运动设运动事件为(s)(0<t<6),解答下列问题:(1)当为何值时,PQ∥BD?(2)在运动过程中,是否存在某一时刻,使S五边形AFPQM:S矩形ABCD=9:8?若存在,求出t的值;若不存在,请说明理由.(3)在运动过程中,当t为秒时,PQ⊥PE.5.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一条直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系为.(2)拓展研究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM为△DCE 中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,若点P满足PD=2,且∠BPD=90°,请直接写出点A到BP的距离.6.如图,矩形ABCD(AB>AD)中,点M是边DC上的一点,点P是射线CB上的动点,连接AM,AP,且∠DAP=2∠AMD.(1)若∠APC=76°,则∠DAM=;(2)猜想∠APC与∠DAM的数量关系为,并进行证明;(3)如图1,若点M为DC的中点,求证:2AD=BP+AP;(4)如图2,当∠AMP=∠APM时,若CP=15,=时,则线段MC的长为.7.如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D 以1cm/s的速度运动;Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动.(1)当运动时间为t秒时,用含t的代数式表示以下线段的长:AP=BQ=;(2)当运动时间为多少秒时,四边形PQCD为平行四边形?(3)当运动时间为多少秒时,四边形ABQP为矩形?8.在四边形ABCD中,点E是线段AC上一点,BE∥CD,∠BEC=∠BAD.(1)如图1已知AB=AD;①找出图中与∠DAC相等的角,并给出证明;②求证:AE=CD;(2)如图2,若BC∥ED,,∠BEC=45°,求tan∠ABE的值.9.如图,已知△ABC,∠ABC=90°,AB=BC,AC=4,点E为直线AC上一点,以BE为边,点B为直角顶点作等腰直角三角形BEF.(1)如图①,当点E在线段AC上时,EF交BC于点D,连接CF;①找出一对全等三角形为;②若四边形ABFC的面积为7,则AE的长是.(2)如图②,当点E在AC的延长线上时,BE交CF于点D.①△CDE的面积记为m,△BDF的面积记为n,探究m、n之间的数量关系并说明理由;②当△CDE的面积为1时,求AE的长.10.如图,正方形ABCD的边长为2,O是BC边的中点,P是正方形内一动点,且OP=2,连接DP,将线段DP绕点D逆时针旋转90°到DQ,连接AP,CQ.(1)直接写出线段AP和CQ的关系.(2)当A,O,P三点共线时,求线段DP的长.(3)连接PQ,求线段PQ的最小值.11.课题学习:矩形折纸中的数学实践操作折纸不仅是一项有趣的活动,也是一项益智的数学活动.数学课上,老师给出这样一道题将矩形纸片ABCD沿对角线AC翻折,使点B落在矩形所在平面内,B'C和AD相交于点E,如图1所示.探素发现(1)在图1中,①请猜想并证明AE和EC的数量关系;②连接B'D,请猜想并证明B'D和AC的位置关系;(2)第1小组的同学发现,图1中,将矩形ABCD沿对角线AC翻折所得到的图形是轴对称图形.若沿对称轴EF 再次翻折所得到的图形仍是轴对称图形,展开后如图2所示,请你直接写出该矩形纸片的长、宽之比;(3)若将图1中的矩形变为平行四边形时(AB≠BC),如图3所示,(1)中的结论①和结论②是否仍然成立,请直接写出你的判断.拓展应用(4)在图3中,若∠B=30°,AB=2,请您直接写出:当BC的长度为多少时,△AB'D恰好为直角三角形.12.已知矩形ABCD,作∠ABC的平分线交AD边于点M,作∠BMD的平分线交CD边于点N.(1)若N为CD的中点,如图1,求证:BM=AD+DM;(2)若N与C点重合,如图2,求tan∠MCD的值;(3)若=,AB=6,如图3,求BC的长.13.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D为AB边上一点,且AD=1,点P从点C出发,沿射线CA以每秒1个单位长度的速度运动,以CP、DP为邻边作▱CPDE.设▱CPDE和△ABC重叠部分图形的面积为S(平方单位),点P的运动时间为t(秒)(t>0)(1)连结CD,求CD的长;(2)当▱CPDE为菱形时,求t的值;(3)求S与t之间的函数关系式;(4)将线段CD沿直线CE翻折得到线段C′D′.当点D′落在△ABC的边上时,直接写出t的值.14.如图,在矩形ABCD中,AB=4,BC=5,E是BC边上的一个动点,DF⊥AE,垂足为点F,连结CF (1)若AE=BC①求证:△ABE≌△DFA;②求四边形CDFE的周长;③求tan∠FCE的值;(2)探究:当BE为何值时,△CDF是等腰三角形.15.如图,在平面直角坐标系xOy中有矩形OABC,A(4,0),C(0,2),将矩形OABC绕原点O逆时针旋转得到矩形OA′B′C′.(Ⅰ)如图1,当点A′首次落在BC上时,求旋转角;(Ⅱ)在(Ⅰ)的条件下,求点B′的坐标;(Ⅲ)如图2,当点B′首次落在x轴上时,直接写出此时点A′的坐标.16.我们定义:有一组对角为直角的四边形叫做“对直角四边形”.如图1,四边形ABCD中,∠A=∠C=90°,则四边形ABCD是“对直角四边形”.(1)“对角线相等的对直角四边形是矩形”是命题;(填“真”或“假”)(3)如图3,在△ABC中,∠C=90°,AC=6,BC=8,过AB的中点D作射线DP∥AC,交BC于点O,∠BDP与∠ADP的角平分线分别交BC,AC于点E、F.①图中是“对直角四边形”的是;②当OP的长是时,四边形DEPF为对直角四边形.参考答案1.(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG=EF,∠BAD=∠EAG=∠ADC=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∠ADG=90°=∠ABE,∴∠BAE=∠DAG,在△ADG和△ABE中,,∴△ADG≌△ABE(AAS).(2)解:∠FCN=45°,理由如下:作FH⊥MN于H,如图1所示:则∠EHF=90°=∠ABE,∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°,∴∠FEH=∠BAE,在△EFH和△ABE中,,∴△EFH≌△ABE(AAS),∴FH=BE,EH=AB=BC,∴CH=BE=FH,∵∠FHC=90°,∴∠FCN=45°.(3)解:当点E由B向C运动时,∠FCN的大小总保持不变,理由如下:作FH⊥MN于H,如图2所示:由已知可得∠EAG=∠BAD=∠AEF=90°,结合(1)(2)得:△EFH≌△GAD,△EFH∽△ABE,∴EH=AD=BC=8,∴CH=BE,∴==;在Rt△FEH中,tan∠FCN====,∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=.2.(1)证明:设正方形ABEF的边长为a,∵AE是正方形ABEF的对角线,∴∠DAG=45°,由折叠性质可知AG=AB=a,∠FDC=∠ADC=90°,则四边形ABCD为矩形,∴△ADG是等腰直角三角形,∴AD=DG=,∴AB:AD=a:=:1,∴四边形ABCD为矩形;(2)解:①作OP⊥AB,OQ⊥BC,垂足分别为P,Q,如图b所示:∵四边形ABCD是矩形,∠B=90°,∴四边形BQOP是矩形.∴∠POQ=90°,OP∥BC,OQ∥AB.∴=,=,∵O为AC中点,∴OP=BC,OQ=AB,∵∠MON=90°,∴∠QON=∠POM,∴===,∴tan∠OMN==;②如图c所示:∵四边形ABCD为矩形,AB=,∴BC=AD=1,∵BR⊥CM,∴点R在以BC为直径的圆上,记BC的中点为I,∴CI=BC=,∴DR最小=﹣=﹣=.3.(1)解:∵矩形OABC中,B(8,4),∴OA=8,OC=4,∵四边形ODEF为正方形,∴OE∥DF,OE=DF,∵△ODE沿DE翻折得到△FDE,∴OD=DF,∵OD=2t,OE=4﹣t,∴2t=4﹣t,t=;(2)证明:连接AC,作OG⊥AC于G,如图1所示:∵t=2,∴OE=BE=2,OD=DE=4,∴DE是△OAC的中位线,∴DE∥AC,且DE=AC,∴==,∴DE垂直平分OF,由折叠的性质得:DE垂直平分OF,∴G与F点重合,即A、C、F三点在同一条直线;(3)解:存在,理由如下:如图2所示:∵S△BDE=S△ABC﹣S△BCE﹣S△ABD﹣S△ODE=32﹣t×8﹣×4×(8﹣2t)﹣×2t(4﹣t)=32﹣4t﹣16+4t﹣4t+t2=t2﹣4t+16=(t﹣2)2+12,∴t=2时,S△BDE有最小值为12;即存在实数t,使△BDE的面积最小,t=2秒.4.解:(1)∵PQ∥BD,∴=,∴=,解得t=,∴当t=时,PQ∥BD.(2)假设存在.∵S五边形AFPQM=S△ABF+S矩形ABCD﹣S△PQC﹣S△MQD=×(8﹣t )×6+6×8﹣(8﹣t )×t ﹣×(6﹣t )×(6﹣t )=t 2﹣t +.又∵S 五边形AFPQM :S 矩形ABCD =9:8,∴(t 2﹣t +):48=9:8, 整理得:t 2﹣20t +36=0,解得t =2或18(舍弃),∴t =2s 时,S 五边形AFPQM :S 矩形ABCD =9:8.(3)∵PQ ⊥PE ,∴∠QPE =90°,∵∠EFP =∠C =90°,∴∠EPF +∠QPC =90°,∠QPC +∠PQC =90°,∴∠EPF =∠PQC ,∴△EPF ∽△PQC ,∴=,∴=,解得t =,∴当t =时,PQ ⊥PE .故答案为. 5.解:问题发现(1)①∵△ACB 和△DCE 均为等边三角形,∴AC =BC ,DC =CE ,∠ACB =∠DCE =∠CDE =60°=∠CED∵点A 、D 、E 在同一条直线上,∴∠ADC =120°∵∠ACB ﹣∠DCB =∠DCE ﹣∠DCB∴∠ACD =∠BCE ,且AC =BC ,DC =CE∴△ACD ≌△BCE (SAS )∴∠ADC =∠CEB =120°∴∠ABE =∠CEB ﹣∠CED =60°②∵△ACD ≌△BCE∴AD=BE故答案为:60°,AD=BE(2)拓展研究:猜想:①∠AEB=90°,②AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.且AC=BC,CD=CE∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.解决问题:(3)∵点P满足PD=2,∴点P在以D为圆心,2为半径的圆上,∵∠BPD=90°,∴点P在以BD为直径的圆上,∴如图,点P是两圆的交点,若点P在AD上方,连接AP,过点A作AH⊥BP,∵CD=2=BC,∠BCD=90°∴BD=4,∵∠BPD=90°∴BP==2∵∠BPD=90°=∠BAD∴点A,点B,点D,点P四点共圆∴∠APB=∠ADB=45°,且AH⊥BP∴∠HAP=∠APH=45°∴AH=HP在Rt△AHB中,AB2=AH2+BH2,∴8=AH2+(2﹣AH)2,∴AH=+1(不合题意),或AH=﹣1若点P在CD的右侧,同理可得AH=+1综上所述:点A到BP的距离为: +1或﹣11.解:(1)∵AD∥CP,∠APC=76°,∴∠DAP=104°,∵∠DAP=2∠AMD,∴∠AMD=52°,又∵∠D=90°,∴∠DAM=38°,故答案为:38°;(2)∠APC=2∠DAM,理由如下:∵四边形ABCD是矩形,∴∠D=90°,AD∥BC,∵点P是射线BC上的点,∴AD∥CP,∴∠DAP+∠APC=180°,∵∠DAP=2∠AMD,∴2∠AMD+∠APC=180°,在Rt△AMD中,∠D=90°,∴∠AMD=90°﹣∠DAM,∴2(90°﹣∠DAM)+∠APC=180°,∴∠APC=2∠DAM,故答案为:∠APC=2∠DAM;(3)如图1,延长AM交BC的延长线于点E,延长BP到F,使PF=AP,连接AF,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠ABC=90°,∴AD∥BE,AB⊥BE,∴∠DAM=∠E,∵M是DC中点,∴DM=CM,又∵∠1=∠2,∴△AMD≌△EMC(AAS),∴AD=CE,∴BE=BC+CE=2AD,∵∠APC=2∠DAM,∴∠APC=2∠E,∵PA=PF,∴∠PAF=∠F,∴∠APC=2∠F,∴∠E=∠F,∴AE=AF,又∵AB⊥BE,∴BE=BF,又∵BF=BP+PF=BP+AP,∴2AD=BP+AP;(4)如图2,延长MD到点E,使DE=MD,连接AE,过点E作EF⊥MA于点F,设AM=3x,AD=2x,则DM=DE=x,AE=AP=3x,∵∠AMD=∠EMF,∠ADM=∠EFM=90°,∴△ADM∽△EFM,∴=,即=,解得EF=x,∴AF==x,∵DE=MD,AD⊥CE,∴∠AME=∠AEM,则∠EAF=2∠AMD,∵AD∥BC,∠DAP=2∠AMD,∴∠APB=∠DAP=2∠AMD,∴∠EAF=∠APB,又∵∠EFA=∠B=90°,AE=AP,∴△EAF≌△APB(AAS),∴PB=AF=x,由AD=BC得x+15=2x,解得x=9,∴AB==12,∴MC=DC﹣DM=AB﹣DM=3,故答案为:3.2.解:(1)由题意知AP=t,BQ=26﹣3t,故答案为:t,26﹣3t;(2)由题意可得:PD=AD﹣AP=24﹣t,QC=3t,∵AD∥BC,∴PD∥QC,设当运动时间为t秒时PD=QC,此时四边形PQCD为平行四边形.由PD=QC得,24﹣t=3t,解得t=6,∴当运动时间为6秒时,四边形PQCD为平行四边形.(3)∵AD∥BC,∴AP∥BQ,设当运动时间为t秒时AP=BQ,四边形ABQP为平行四边形.由AP=BQ得:t=26﹣3t,解得:t=,又∵∠B=90°∴平行四边形ABQP为矩形.∴当运动时间为秒时,四边形ABQP为矩形.3.解:(1)①∠ABE=∠CAD,理由如下:以D为圆心,DC为半径画圆,交AC于F,连接DF,则CD=DF,∴∠DFC=∠DCF,∵BE∥CD,∴∠BEC=∠FCD,∴∠BEC=∠DFC,∴∠AEB=∠AFD,∠BEC=∠BAE+∠ABE,∠BAD=∠BAE+∠DAF,∠BEC=∠BAD,∴∠ABE=∠DAF,在△ABE和△DAF中,,∴△ABE≌△DAF(AAS),∴∠ABE=∠CAD,②∵△ABE≌△DAF,∴AE=DF,∵CD=DF,∴AE=CD;(3)过点D作DG⊥CD交AC于点G,∵BE∥CD,∴∠DCA=∠BEC=45°,∴∠AEB=∠DGA=135°,DG=DC,∵∠AEB=∠DGA,∠ABE=∠DAG,∴△ABE∽△DAG,∴==,∵BC∥DE,BE∥CD,∴四边形BCDE为平行四边形,∴BE=CD,过点A作AH垂直于BE交BE的延长线于点H,设AH=EH=m,则AE=m,DG=CD=BE=2m,∴BH=BE+EH=2m+m,tan∠ABE===.4.解:(1)①△ABE≌△CBF理由如下:∵∠ABC=∠EBF=90°,∴∠ABE=∠CBF,且AC=BC,EB=BF∴△ABE≌△CBF(SAS)故答案为:△ABE≌△CBF②如图,过点B作BM⊥AC于M,∵∠ABC=90°,AB=BC,AC=4,BM⊥AC,∴AM=CM=BM=2∴S△ABC=×4×2=4∵S四边形ABFC=7∴S△CBF=3=S△ABM,∴=3∴AE=3故答案为:3(2)①4+m=n理由如下:∵△ABE≌△CBF∴S△ABE=S△CBF,∴S△ABC+S△CBD+S△CDE=S△CBD+S△BDF,∴4+m=n②∵△CDE的面积为1,m+4=n∴n=5∴S△BDE=5,如图,过点B作BG⊥AC,BH⊥FC,∵△ABE≌△CBF∴AE=CF,∠A=∠BCH=45°=∠ACB,且BG⊥AC,BH⊥FC,∴BG=BH=2,∠ACF=90°∵S△BDE=5,∴DF×BH=5∴DF=5,∴设CE=x,则AE=4+x=CF,∴CD=4+x﹣5=x﹣1∵S△CDE=CD×CE=1∴1=×x×(x﹣1)∴x=2,x=﹣1(舍去)∴AE=2+x=6,5.解:(1)AP=CQ,AP⊥CQ;理由如下:延长QC、AP交于点E,AP的延长线交BC于F,如图1所示:∵四边形ABCD是正方形,∴AD=CD,∠ADC=∠BCD=90°,AD∥BC,由旋转的性质得:∠PDQ=90°,DP=DQ,∴∠ADP=∠CDQ,在△ADP和△CDQ中,,∴△ADP≌△CDQ(SAS),∴AP=CQ,∠DAP=∠DCQ,∵∠BCD=90°,∴∠DCQ+∠ECF=90°,∵AD∥BC,∴∠DAP=∠CFE,∴∠CFE+∠ECF=90°,∴∠CEF=90°,∴AE⊥QE,∴AP⊥CQ;(2)作DH⊥AP于H,如图2所示:∵O是BC边的中点,∴OB=BC=,当A,O,P三点共线时,由勾股定理得:AO===5,∵四边形ABCD是正方形,∴∠B=90°,AD∥BC,∴∠DAH=∠BOA,∴sin∠DAH=sin∠BOA==,cos∠DAH=cos∠BOA==,∴DH=AD×sin∠DAH=2×=4,AH=AD×cos∠DAH=2×=2,∴PH=AO﹣AH﹣OP=5﹣2﹣2=1,∴DP==;(3)连接OD,如图3所示:∵DQ=DP,∠PDQ=90°,∴PQ=DP,OD===5,∵OP+DP≥OD,∴DP≥OD﹣OP=5﹣2=3,∴PQ≥3,∴线段PQ的最小值为3.6.解:(1)∵AD∥CP,∠APC=76°,∴∠DAP=104°,∵∠DAP=2∠AMD,∴∠AMD=52°,又∵∠D=90°,∴∠DAM=38°,故答案为:38°;(2)∠APC=2∠DAM,理由如下:∵四边形ABCD是矩形,∴∠D=90°,AD∥BC,∵点P是射线BC上的点,∴AD∥CP,∴∠DAP+∠APC=180°,∴2∠AMD+∠APC=180°,在Rt△AMD中,∠D=90°,∴∠AMD=90°﹣∠DAM,∴2(90°﹣∠DAM)+∠APC=180°,∴∠APC=2∠DAM,故答案为:∠APC=2∠DAM;(3)如图1,延长AM交BC的延长线于点E,延长BP到F,使PF=AP,连接AF,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠ABC=90°,∴AD∥BE,AB⊥BE,∴∠DAM=∠E,∵M是DC中点,∴DM=CM,又∵∠1=∠2,∴△AMD≌△EMC(AAS),∴AD=CE,∴BE=BC+CE=2AD,∵∠APC=2∠DAM,∴∠APC=2∠E,∵PA=PF,∴∠PAF=∠F,∴∠E=∠F,∴AE=AF,又∵AB⊥BE,∴BE=BF,又∵BF=BP+PF=BP+AP,∴2AD=BP+AP;(4)如图2,延长MD到点E,使DE=MD,连接AE,过点E作EF⊥MA于点F,设AM=3x,AD=2x,则DM=DE=x,AE=AP=3x,∵∠AMD=∠EMF,∠ADM=∠EFM=90°,∴△ADM∽△EFM,∴=,即=,解得EF=x,∴AF==x,∵DE=MD,AD⊥CE,∴∠AME=∠AEM,则∠EAF=2∠AMD,∵AD∥BC,∠DAP=2∠AMD,∴∠APB=∠DAP=2∠AMD,∴∠EAF=∠APB,又∵∠EFA=∠B=90°,AE=AP,∴△EAF≌△APB(AAS),∴PB=AF=x,由AD=BC得x+15=2x,解得x=9,∴AB==12,∴MC=DC﹣DM=AB﹣DM=3,故答案为:3.7.解:(1)由题意知AP=t,BQ=26﹣3t,故答案为:t,26﹣3t;(2)由题意可得:PD=AD﹣AP=24﹣t,QC=3t,∵AD∥BC,∴PD∥QC,设当运动时间为t秒时PD=QC,此时四边形PQCD为平行四边形.由PD=QC得,24﹣t=3t,解得t=6,∴当运动时间为6秒时,四边形PQCD为平行四边形.(3)∵AD∥BC,∴AP∥BQ,设当运动时间为t秒时AP=BQ,四边形ABQP为平行四边形.由AP=BQ得:t=26﹣3t,解得:t=,又∵∠B=90°∴平行四边形ABQP为矩形.∴当运动时间为秒时,四边形ABQP为矩形.8.解:(1)①∠ABE=∠CAD,理由如下:以D为圆心,DC为半径画圆,交AC于F,连接DF,则CD=DF,∴∠DFC=∠DCF,∵BE∥CD,∴∠BEC=∠FCD,∴∠BEC=∠DFC,∴∠AEB=∠AFD,∠BEC=∠BAE+∠ABE,∠BAD=∠BAE+∠DAF,∠BEC=∠BAD,∴∠ABE=∠DAF,在△ABE和△DAF中,,∴△ABE≌△DAF(AAS),∴∠ABE=∠CAD,②∵△ABE≌△DAF,∴AE=DF,∵CD=DF,∴AE=CD;(3)过点D作DG⊥CD交AC于点G,∵BE∥CD,∴∠DCA=∠BEC=45°,∴∠AEB=∠DGA=135°,DG=DC,∵∠AEB=∠DGA,∠ABE=∠DAG,∴△ABE∽△DAG,∴==,∵BC∥DE,BE∥CD,∴四边形BCDE为平行四边形,∴BE=CD,过点A作AH垂直于BE交BE的延长线于点H,设AH=EH=m,则AE=m,DG=CD=BE=2m,∴BH=BE+EH=2m+m,tan∠ABE===.9.解:(1)①△ABE≌△CBF理由如下:∵∠ABC=∠EBF=90°,∴∠ABE=∠CBF,且AC=BC,EB=BF∴△ABE≌△CBF(SAS)故答案为:△ABE≌△CBF②如图,过点B作BM⊥AC于M,∵∠ABC=90°,AB=BC,AC=4,BM⊥AC,∴AM=CM=BM=2∴S△ABC=×4×2=4∵S四边形ABFC=7∴S△CBF=3=S△ABM,∴=3∴AE=3故答案为:3(2)①4+m=n理由如下:∵△ABE≌△CBF∴S△ABE=S△CBF,∴S△ABC+S△CBD+S△CDE=S△CBD+S△BDF,∴4+m=n②∵△CDE的面积为1,m+4=n∴n=5∴S△BDE=5,如图,过点B作BG⊥AC,BH⊥FC,∵△ABE≌△CBF∴AE=CF,∠A=∠BCH=45°=∠ACB,且BG⊥AC,BH⊥FC,∴BG=BH=2,∠ACF=90°∵S△BDE=5,∴DF×BH=5∴DF=5,∴设CE=x,则AE=4+x=CF,∴CD=4+x﹣5=x﹣1∵S△CDE=CD×CE=1∴1=×x×(x﹣1)∴x=2,x=﹣1(舍去)∴AE=2+x=6,10.解:(1)AP=CQ,AP⊥CQ;理由如下:延长QC、AP交于点E,AP的延长线交BC于F,如图1所示:∵四边形ABCD是正方形,∴AD=CD,∠ADC=∠BCD=90°,AD∥BC,由旋转的性质得:∠PDQ=90°,DP=DQ,∴∠ADP=∠CDQ,在△ADP和△CDQ中,,∴△ADP≌△CDQ(SAS),∴AP=CQ,∠DAP=∠DCQ,∵∠BCD=90°,∴∠DCQ+∠ECF=90°,∵AD∥BC,∴∠DAP=∠CFE,∴∠CFE+∠ECF=90°,∴∠CEF=90°,∴AE⊥QE,∴AP⊥CQ;(2)作DH⊥AP于H,如图2所示:∵O是BC边的中点,∴OB=BC=,当A,O,P三点共线时,由勾股定理得:AO===5,∵四边形ABCD是正方形,∴∠B=90°,AD∥BC,∴∠DAH=∠BOA,∴sin∠DAH=sin∠BOA==,cos∠DAH=cos∠BOA==,∴DH=AD×sin∠DAH=2×=4,AH=AD×cos∠DAH=2×=2,∴PH=AO﹣AH﹣OP=5﹣2﹣2=1,∴DP==;(3)连接OD,如图3所示:∵DQ=DP,∠PDQ=90°,∴PQ=DP,OD===5,∵OP+DP≥OD,∴DP≥OD﹣OP=5﹣2=3,∴PQ≥3,∴线段PQ的最小值为3.11.解:(1)如图1中,①结论:EA=EC.理由:∵四边形ABCD是矩形,∴AD∥BC,∴∠EAC=∠ACB,由翻折可知:∠ACB=∠ACE,∴∠EAC=∠ECA,∴EA=EC.②连接DB′.结论:DB′∥AC.∵EA=EC,∴∠EAC=∠ECA,∴ED=EB′,∴∠EB′D=∠EDB′,∵∠AEC=∠DEB′,∴∠EB′D=∠EAC,∴DB′∥AC.(2)如图2中,①当AB:AD=1:1时,四边形ABCD是正方形,∴∠BAC=∠CAD=∠EAB′=45°,∵AE=AE,∠B′=∠AFE=90°,∴△AEB′≌△AEF(AAS),∴AB′=AF,此时四边形AFEB′是轴对称图形,符合题意.②当AD:AB=时,也符合题意,∵此时∠DAC=30°,∴AC=2CD,∴AF=FC=CD=AB=AB′,∴此时四边形AFEB′是轴对称图形,符合题意.(3)如图3中,当四边形ABCD是平行四边形时,仍然有EA=EC,DB′∥AC.理由:∵四边形ABCD是平行四边形,∴AD∥BC,由翻折可知:∠ACB=∠ACE,∴∠EAC=∠ECA,∴EA=EC.∵EA=EC,∴∠EAC=∠ECA,∵AD=BC=CB′,∴ED=EB′,∴∠EB′D=∠EDB′,∵∠AEC=∠DEB′,∴∠EB′D=∠EAC,∴DB′∥AC.(4)①如图3﹣1中,当∠AB′C=90°时,易证∠BAC=90°,BC==.②如图3﹣2中,当∠ADB′=90°时,易证∠ACB=90°,BC=AB•cos30°=.③如图3﹣3中,当∠DAB′=90°时,易证∠B=∠ACB=30°,BC=2•AB•cos30°=2.④如图3﹣4中,当∠DAB′=90°时,易证:∠B=∠CAB=30°,BC==,综上所述,满足条件的BC的长为或或2或12.(1)证明:如图1,延长MN、BC交于点E,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠ABC=90°,∴∠D=∠NCE,∠DMN=∠NEC,∵N是DC的中点,∴DN=CN,∴△DNM≌△CNE(AAS),∴DM=CE,∵BM平分∠ABC,∠ABC=90°,∴∠ABM=∠MBE=45°,∵AD∥BC,∴∠AMB=∠EBM=45°,∴∠BMD=180°﹣45°=135°,∵MN平分∠BMD,∴∠BMN=∠DMN=67.5°,∴∠E=∠DMN=67.5°,∴∠BMN=∠E=67.5°,∴BM=BE=BC+CE=AD+DM;(2)解:如图2,当N与C重合时,由(1)知:∠BMC=∠DMN=∠BCM,∴BC=BM,设AB=x,则BM=BC=x,∵AD=BC,∴DM=x﹣x,Rt△DMC中,tan∠MCD===﹣1;(3)解:如图3,延长MN、BC交于点G,∵四边形ABCD是矩形,∴CD=AB=6,∵,∴CN=2,DN=4,∵△ABM是等腰直角三角形,∴BM=6,由(1)知:BM=BG=6,∵DM∥CG,∴△DMN∽△CGN,∴=2,设CG=m,则DM=2m,6=6+2m+m,m=2﹣2,∴BC=6+2m=2+4.13.解:(1)过点D作DF⊥AC于点F.如图1中.在Rt△ABC中,∠ACB=90°,∴AB===5,∵DF∥BC,∴△AFD∽△ACB.∴==,∴==,∴AF=,DF=,∴CF=AC﹣AF=3﹣=,在Rt△CDF中,∠CFD=90°,∴CD===.(2)当▱CPDE为菱形时,如图2中,连接BP交CD于O.∵四边形PCED是菱形,∴PD=PC,∵BD=BC=1,∴PB垂直平分线段CD,∴点E在直线PB上,∵∠CPO+∠PCO=90°,∠CPB+∠PBC=90°,∴∠PCO=∠PBC,∵∠POC=∠PCB,∴△COP∽△BCP∴=,∴=.∴t=.(3)当0<t≤时,如图3中,重叠部分是四边形PCED..S=t•=t.当<t≤3时,如图4中,重叠部分是四边形PCFD.S=(4×+t)﹣=t+.当t>3时,如图 5中,重叠部分是四边形ACFD,S=(4×+3)﹣=.综上所述,S=.(4)如图6中,当点D′落在AB上时,延长CE交AB于O,易知OC⊥AB,OC=.AO=,∴OD=OA﹣AD=,∵DE∥AC,∴=,∴=,∴DE=,此时t=,如图7中,当点D′落在BC上时,延长DE交BC于F,作OM⊥BC于M,ON⊥CD于N.∵∠DCO=∠OCB,ON⊥CD,OM⊥CB,∴ON=OM,∵S△DCB=S△CDO+S△BCO,∴×4×=××ON+×4×OM,∴OM=,∵OM∥AC,∴=,∴BM=,CM=,∵EF∥OM,∴=,可得EF=,∴CP=DE=﹣=,此时t=,综上所述,满足条件的t的值为s或s.14.解:(1)①如图1中,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠B=90°,∴∠AEB=∠DAF.∵DF⊥AE,∴∠AFD=90°.∴∠B=∠AFD=90°,又∵AE=BC,∴AE=AD,∴△ABE≌△DFA(AAS).②如图1中,在Rt△ABE中,∠B=90°,根据勾股定理,得BE===3,∵△ABE≌△DFA,∴DF=AB=DC=4,AF=BE=3.∵AE=BC=5,∴EF=EC=2,∴四边形CDFE的周长=2(DC+EC)=2×(4+2)=12.③如图2中,过点F作FM⊥BC于点M.∴sin∠AEB==,cos∠AEB==,在Rt△FME中,FM=EF=,ME=EF=,∴MC=ME+EC=+2=,在Rt△FMC中,tan∠FCE==.(2)如图3﹣1中,当DF=DC时,则DF=DC=AB=4.∵∠AEB=∠DAF,∠B=∠AFD=90°,∴△ABE≌△DFA(AAS).∴AE=AD=5,由②可知,BE=3,∴当BE=3时,△CDF是等腰三角形.…(11分)如图3﹣2中,当CF=CD时,过点C作CG⊥DF,垂足为点H,交AD于点G,则CG∥AE,DH=FH.∴AG=GD=2.5.∵CG∥AE,AG∥EC,∴四边形AECG是平行四边形,∴EC=AG=2.5,∴当BE=2.5时,△CDF是等腰三角形.…(13分)如图3﹣中,当FC=FD时,过点F作FQ⊥DC,垂足为点Q.则AD∥FQ∥BC,DQ=CQ,∴AF=FE=AE.∵∠B=∠AFD=90°,∠AEB=∠DAF,∴△ABE∽△DFA,∴=,即AD×BE=AF×AE.设BE=x,∴5x=×,解得x1=2,x2=8(不符合题意,舍去)∴当BE=2时,△CDF是等腰三角形.综上所述,当BE为3或2.5或2时,△CDF是等腰三角形.15.解:(Ⅰ)∵A(4,0),C(0,2),∴OA=4,OC=2,由旋转的性质得:OA'=OA=4,∵四边形OABC是矩形,∴∠OCB=90°,OA∥BC,在Rt△OCA'中,OC=OA',∴∠OA'C=30°,∵OA∥BC,∴∠AOA'=∠OA'C=30°,即当点A′首次落在BC上时,旋转角为30°;(Ⅱ)由矩形和旋转的性质得:OA′=OA=4,A′B′=AB=OC=2,作B'E⊥BC于E,如图1所示:∵BC∥AO,∴∠OA′C=∠A′OA=30°,∴∠B′A′E=60°,B′E=sin∠B′A′E×BB′=×2=,EA′=cos∠B′A′E×BB′=×2=1,A′C=cos∠OA′C×OA′=×4=2,∴CE=CA′﹣EA′=2﹣1,B′的纵坐标为:2+,∴点B′的坐标为:(2﹣1,2+);(Ⅲ)过点A'作A'F⊥x轴于F,如图2所示:∵∠B'A'O=90°,A'F⊥B'O,∴B'O==2,∠A'FO=90°,∵∠A'OF=∠B'OA',∴△B'A'O∽△A'FO,∴==,即==,解得:OF=,A'F=,∴点A的坐标为(﹣,).16.(1)解:结论:真.理由:如图1﹣1中,∵∠BAD=∠BCD=90°,∴A,B,C,D四点共圆,∴BD是⊙O的直径,∵AC=BD,∴AC也是⊙O的直径,∴∠ADC=∠ABC=90°,∴四边形ABCD是矩形.故答案为真.(2)证明:如图2中,∵四边形ABCD是对直角四边形,∠DAB<90°,∴∠D=∠B=90°,∴AD2+DC2=AC2,AB2+BC2=AC2,∴AD2+DC2=AB2+BC2,∵AD+DC=AB+BC∴(AD+DC)2=(AB+BC)2,即:AD2+2AD•DC+DC2=AB2+2AB•BC+BC2,∴2AD•DC=2AB•BC,∴•AD•DC=•AB•BC,即:S△ADC=S△ABC.(3)①结论:四边形ECFD是“对直角四边形”.理由:如图3中,∵DE平分∠BDP,DF平分∠ADP,∴∠EDP=∠BDP,∠FDP=∠ADP,∴∠EDF=(∠BDP+∠ADP)=90°,∵∠C=90°,∴四边形ECFD是“对直角四边形”.故答案为四边形ECFD.②如图3中,当OP=2时,四边形DEPF是“对直角四边形”.理由:在Rt△ABC中,∵∠C=90°,BC=8,AC=6,∴AB==10,∵BD=AD=5,DP∥AC,∴OB=OC,∴OD=AC=3,∵OP=2,∴DP=5,∵∠PDF=∠DFA=∠ADF,∴AD=AF=5,∴DP=AF,DP∥AF,∴四边形ADPF是平行四边形,∴∠A=∠DPF,∵DP=DB,DE=DE,∠EDB=∠EDP,∴△EDB≌△EDP(SAS),∴∠DPE=∠B,∴∠EPF=∠DPE+∠DPF=∠B+∠A=90°,∵∠EDF=90°,∴四边形DEPF是“对直角四边形”.故答案为2.。
浙江省2019年中考数学总复习阶段检测6 四边形试题

阶段检测6 四边形一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分)1.已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的( )A .OE =12DC B .OA =OC C .∠BOE =∠OBA D .∠OBE =∠OCE第1题图 第2题图 第4题图 第8题图2.如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a∥b ,∠1=60°,则∠2的度数为( )A .30°B .45°C .60°D .75°3.关于▱ABCD 的叙述,正确的是( )A .若AB⊥BC ,则▱ABCD 是菱形B .若AC⊥BD ,则▱ABCD 是正方形C .若AC =BD ,则▱ABCD 是矩形 D .若AB =AD ,则▱ABCD 是正方形4.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC =4,则四边形OCED 的周长为( )A .4B .8C .10D .125.在平行四边形ABCD 中,AB =3,BC =4,当平行四边形ABCD 的面积最大时,下列结论正确的有( )①AC =5;②∠A +∠C =180°;③AC⊥BD ;④AC =BD.A .①②③B .①②④C .②③④D .①③④6.将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是( )A .360°B .540°C .720°D .900°7.在平行四边形ABCD 中,AD =8,AE 平分∠BAD 交BC 于点E ,DF 平分∠ADC 交BC 于点F ,且EF =2,则AB 的长为( )A .3B .5C .2或3D .3或58.如图,有一平行四边形ABCD 与一正方形CEFG ,其中E 点在AD 上.若∠ECD =35°,∠AEF =15°,则∠B 的度数为何?( )A .50°B .55°C .70°D .75°9.如图,在正方形ABCD 中,△ABE 和△CDF 为直角三角形,∠AEB =∠CFD =90°,AE =CF =5,BE =DF =12,则EF 的长是( )第9题图 第10题图 A .7 B .8 C .7 2 D .7310.已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A (5,0),OB =45,点P 是对角线OB 上的一个动点,D (0,1),当CP +DP 最短时,点P 的坐标为( )A .(0,0) B.⎝ ⎛⎭⎪⎫1,12 C.⎝ ⎛⎭⎪⎫65,35 D.⎝ ⎛⎭⎪⎫107,57 二、填空题(本大题有6小题,每小题5分,共30分)11.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,E 为AD 的中点,若OE =3,则菱形ABCD 的周长为 .第11题图 第12题图 第13题图12.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE⊥BD ,垂足为点E ,若∠EAC =2∠CAD ,则∠BAE = 度.13.如图,在▱ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,AD ′与CE 交于点F.若∠B =52°,∠DAE =20°,则∠FED′的大小为 .14.如图,正方形ABCO 的顶点C 、A 分别在x 轴、y 轴上,BC 是菱形BDCE 的对角线,若∠D =60°,BC =2,则点D 的坐标是 .15.如图,矩形ABCD 中,AB =8,BC =4,点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上,若四边形EGFH 是菱形,则AE 的长是 .第14题图 第15题图 第16题图16.如图,边长为1的正方形ABCD 的对角线AC 、BD 相交于点O.有直角∠MPN ,使直角顶点P 与点O 重合,直角边PM 、PN 分别与OA 、OB 重合,然后逆时针旋转∠MPN ,旋转角为θ(0°<θ<90°),PM 、PN 分别交AB 、BC 于E 、F 两点,连结EF 交OB 于点G ,则下列结论中正确的是 .(1)EF =2OE ;(2)S 四边形OEBF ∶S 正方形ABCD =1∶4;(3)BE +BF =2OA ;(4)在旋转过程中,当△BEF 与△COF 的面积之和最大时,AE =34;(5)OG·BD =AE 2+CF 2. 三、解答题(本大题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.(2017·安顺)如图,DB ∥AC ,且DB =12AC ,E 是AC 的中点, (1)求证:BC =DE ;(2)连结AD 、BE ,若要使四边形DBEA 是矩形,则给△ABC 添加什么条件,为什么?第17题图18.如图,在菱形ABCD 中,AB =2,∠ABC =60°,对角线AC 、BD 相交于点O ,将对角线AC 所在的直线绕点O 顺时针旋转角α(0°<α<90°)后得直线l ,直线l 与AD 、BC 两边分别相交于点E和点F.第18题图(1)求证:△AOE≌△COF;(2)当α=30°时,求线段EF的长度.19.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连结MD,AN.第19题图(1)求证:四边形AMDN是平行四边形;(2)当AM的值为何值时,四边形AMDN是矩形?请说明理由.20.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点.以格点为顶点分别按下列要求画图:(1)在图1中,画出一个平行四边形,使其面积为6;(2)在图2中,画出一个菱形,使其面积为4;(3)在图3中,画出一个矩形,使其邻边不等,且都是无理数.第20题图21.如图3是利用四边形的不稳定性制造的一个移动升降装修平台,其基本图形是菱形,主体部分相当于由6个菱形相互连接而成,通过改变菱形的角度,从而可改变装修平台高度.(1)如图1是一个基本图形,已知AB=1米,当∠ABC为30°时,求AC的长及此时整个装修平台的高度(装修平台的基脚高度忽略不计);(2)当∠ABC从30°变为90°(如图2是一个基本图形变化后的图形)时,求整个装修平台升高了多少米.(结果精确到0.1米,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,2≈1.41)第21题图22.探究:如图1,△ABC是等边三角形,在边AB、BC的延长线上截取BM=CN,连结MC、AN,延长MC交AN于点P.(1)求证:△ACN≌△CBM;(2)∠CPN=°.应用:将图1的△ABC分别改为正方形ABCD和正五边形ABCDE,如图2、3,在边AB、BC的延长线上截取BM=CN,连结MC、DN,延长MC交DN于点P,则图2中∠CPN =°;图3中∠CPN=°.拓展:若将图1的△ABC改为正n边形,其他条件不变,则∠CPN=°(用含n的代数式表示).第22题图23.阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连结起来得到的四边形EFGH是平行四边形吗?小敏在思考问题时,有如下思路:连结AC.第23题图结合小敏的思路作答.(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题的方法解决以下问题:(2)如图2,在(1)的条件下,若连结AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.24.如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连结PA、QD,并过点Q作QO⊥BD,垂足为O,连结OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.第24题图参考答案阶段检测6 四边形一、1—5.DCCBB 6—10.DDCCD二、11.24 12.22.5 13.36° 14.(2+3,1) 15.5 16.(1),(2),(3),(5)三、17.(1)∵E 是AC 中点,∴EC =12AC.∵DB =12AC ,∴DB =EC. 又∵DB∥EC,∴四边形DBCE 是平行四边形.∴BC=DE. (2)添加AB =BC.理由:∵DB 綊AE ,∴四边形DBEA 是平行四边形.∵BC=DE ,AB =BC ,∴AB =DE.∴▱ADBE 是矩形.第17题图18.(1) ∵四边形ABCD 是菱形,∴AD ∥BC ,AO =OC ,∴AE CF =OE OF =AO OC=1,∴AE =CF ,OE =OF ,在△AOE 和△COF 中,⎩⎪⎨⎪⎧AO =CO ,OE =OF AE =CF ,∴△AOE ≌△COF. (2)当α=30°时,即∠AOE=30°,∵四边形ABCD 是菱形,∠ABC =60°,∴∠OAD =60°,∴∠AEO =90°,在Rt △AOB 中,sin∠ABO =AO AB =AO 2=12,∴AO =1,在Rt △AEO 中,cos ∠AOE =cos 30°=OE AO =32,∴OE =32,∴EF =2OE = 3.第18题图19.(1)∵四边形ABCD 是菱形,∴ND ∥AM ,∴∠NDE =∠M AE ,∠DNE =∠AME,∵点E是AD 中点,∴DE =AE ,在△NDE 和△MAE 中,⎩⎪⎨⎪⎧∠NDE =∠MAE,∠DNE =∠AME DE =AE ,,∴△NDE ≌△MAE(AAS),∴ND =MA ,∴四边形AMDN 是平行四边形; (2)AM =1.理由如下:∵四边形ABCD 是菱形,∴AD =AB =2,∵平行四边形AMDN 是矩形,∴DM ⊥AB ,即∠DMA=90°,∵∠DAB =60°,∴∠ADM =30°,∴AM =12AD =1. 20.(1)如图1, (2)如图2, (3)如图3.第20题图 21.(1)连结图1中菱形ABCD 的对角线AC 、BD ,交于点O ,在Rt △ABO 中,∠AOB =90°,∠ABO =12∠ABC =15°,∴OA =AB ·sin ∠ABO =1×sin 15°≈0.26米,此时AC =2AO =2×0.26=0.52≈0.5米,故可得整个装修平台的高度=0.52×6=3.12≈3.1米; (2)当∠ABC 从30°变为90°时,AC =2≈1.41米,此时的整个装修平台的高度=1.41×6=8.46米,整个装修平台升高了8.46-3.12≈5.3米.第21题图22.探究:(1)∵△ABC 是等边三角形,∴BC =AC ,∠ACB =∠ABC=60°.∴∠ACN =∠CBM=120°.在△ACN 和△CBM 中,⎩⎪⎨⎪⎧AC =BC ,∠ACN =∠CBM CN =BM ,,∴△ACN ≌△CBM. (2)∵△ACN≌△CBM,∴∠CAN =∠BCM,∵∠ABC =∠BMC+∠BCM,∠BAN =∠BAC+∠CAN,∴∠CPN =∠BMC+∠BAN =∠BMC+∠BAC+∠CAN=∠BMC+∠BAC+∠BCM=∠ABC+∠BAC=60°+60°=120°.应用:将等边三角形换成正方形,∵四边形ABCD 是正方形,∴BC =DC ,∠ABC =∠BCD=90°.∴∠MBC =∠DCN=90°.在△DCN 和△CBM 中,⎩⎪⎨⎪⎧DC =BC ,∠DCN =∠MBC,CN =BM ,∴△DCN ≌△CBM.∴∠CDN =∠BCM,∵∠BCM =∠PCN,∴∠CDN =∠PCN,在Rt △DCN 中,∠CDN +∠CND=90°,∴∠PCN +∠CND=90°,∴∠CPN =90°.将等边三角形换成正五边形,∵五边形ABCDE 是正五边形,∴∠ABC =∠BCD=108°.∴∠MBC =∠DCN=72°.在△DCN 和△CBM 中,⎩⎪⎨⎪⎧DC =BC ,∠DCN =∠MBC CN =BM ,,∴△DCN ≌△CBM.∴∠BMC =∠CND,∠BCM =∠CDN,∵∠ABC =∠BMC+∠BCM=108°,∴∠CPN =180°-(∠CND+∠PCN)=180°-(∠CND+∠BCM)=180°-(∠BCM+∠BMC)=180°-108°=72°. 拓展:方法和上面正五边形的方法一样,得到∠CPN=180°-(∠CND+∠PCN)=180°-(∠CND+∠BCM)=180°-(∠BCM+∠BMC)=180°-180°(n -2)n =360°n,故答案为360n. 23.(1)是平行四边形,证明:如图2,连结AC ,∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC ,EF =12AC ,同理HG∥AC,HG =12AC ,综上可得:EF∥HG,EF =HG ,故四边形EFGH 是平行四边形; (2)①AC=BD.理由如下:由(1)知,四边形EFGH 是平行四边形,且FG =12BD ,HG =12AC ,∴当AC =BD 时,FG =HG ,∴平行四边形EFGH 是菱形; ②当AC⊥BD 时,四边形EFGH 为矩形;理由如下:同①得:四边形EFGH 是平行四边形,∵AC ⊥BD ,GH ∥AC ,∴GH ⊥BD ,∵GF ∥BD ,∴GH ⊥GF ,∴∠HGF =90°,∴四边形EFGH 为矩形.第23题图24.(1)四边形APQD 为平行四边形; (2)OA =OP ,OA ⊥OP ,理由如下:∵四边形ABCD 是正方形,∴AB =BC =PQ ,∠ABO =∠OBQ=45°,∵OQ⊥BD,∴∠PQO =45°,∴∠ABO =∠OBQ=∠PQO=45°,∴OB =OQ ,在△AOB 和△OPQ 中,⎩⎪⎨⎪⎧AB =PQ ,∠ABO =∠PQO BO =QO ,,∴△AOB ≌△POQ(SAS),∴OA =OP ,∠AOB =∠POQ,∴∠AOP =∠BOQ=90°,∴OA ⊥OP ; (3)如图,过O 作OE⊥BC 于E.①如图1,当P 点在B 点右侧时,则BQ =x +2,OE =x +22,∴y =12×x +22·x ,即y =14(x +1)2-14,又∵0≤x≤2,∴当x =2时,y 有最大值为2;②如图2,当P 点在B 点左侧时,则BQ =2-x ,OE =2-x 2,∴y =12×2-x 2·x ,即y =-14(x -1)2+14,又∵0≤x≤2,∴当x =1时,y 有最大值为14;综上所述,当x =2时,y 有最大值为2.百度文库,精选试题第24题图试题习题,尽在百度。
全国各地2019年中考数学真题汇编 四边形

百度文库,精选试题四边形(填空+选择40题)一、选择题1.已知正多边形的一个外角等于40°、那么这个正多边形的边数为()A.6B.7C.8D.9【答案】D2.下列命题正确的是()A. 平行四边形的对角线互相垂直平分B. 矩形的对角线互相垂直平分C. 菱形的对角线互相平分且相等D. 正方形的对角线互相垂直平分【答案】D3.如图、将矩形沿对角线折叠、点落在处、交于点、已知 ,的度为()则A. B.C.D.D【答案】4.如图、菱形ABCD的对角线AC、BD相交于点O、点E为边CD的中点、若菱形ABCD的周长为16、∠BAD=60°,则△OCE的面积是()。
试题习题,尽在百度.百度文库,精选试题B A.C.. 2D.4A 【答案】)的半径为3、则图中阴影部分的面积是( 5.如图、在中、、B. A.C.D.C【答案】、下列作法中错误的是(用尺规在一个平行四边形内作菱形6.ABCD )A.B.C.D.试题习题,尽在百度.百度文库,精选试题【答案】C7.如图、将矩形ABCD沿GH折叠、点C落在点Q处、点D落在AB边上的点E处、若∠AGE=32°、则∠GHC等于()A. 112°B. 110°C. 108°D. 106°【答案】D8.下列命题、其中是真命题的为()A. 一组对边平行、另一组对边相等的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的四边形是矩形D. 一组邻边相等的矩形是正方形【答案】D到顺时针旋转的位置、的边上一点、把绕点如图、点9. 是正方形的面积为、则25、的长为(若四边形)A. 5B.C. 7D.D【答案】一定为平行四边形的AECF上不同的两点、下列条件中、不能得出四边形、EF是对角线BD中、10.□ABCD )是(试题习题,尽在百度.百度文库,精选试题A. BE=DFB. AE=CFC. AF//CED. ∠BAE=∠DCF【答案】B11.在中、若与的角平分线交于点、则的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定【答案】B12.如图、在?ABCD中、对角线AC与BD相交于点O、E是边CD的中点、连结OE.若∠ABC=60°、∠BAC=80°、则∠1的度数为()A.50°B.40°C.30°D.20°【答案】B13.如图、在 ABCD中、CD=2AD、BE⊥AD于点E、F为DC的中点、连结EF、BF、下列结论:①∠ABC=2∠ABF;②EF=BF;③S=2S;④∠CFE=3∠DEF,其中正确结论的个数共有()。
2019年九年级数学中考总复习考前训练:四边形综合测试题

∴ AD= OD =2 cos30
3.
19.( 1)证明:∵四边形
ABCD 是矩形,
∴∠ A =∠ D= 90°.
∴∠ AEF +∠ AFE = 90°.
∵ EF ⊥ EC , [来源:Z&xx&]
∴∠ FEC= 90°.
∴∠ AEF +∠ DEC = 90°.
∴∠ AFE =∠ DEC.
四边形综合测试题
一、选择题(每小题 4 分, 共 40 分)
1.六边形的内角和是(
)
A.540 °
B.720 °
C.900 ° D. 360 °
2.如图,在 □ ABCD中, O 是对角线 AC , BD 的交点,下列结论错误的是 ( )
A . AB ∥CD B .AB=CD
C.AC=BD D. OA=OC
∵∠ ACB=90° ,
∴∠ ACB= ∠ DFB.
∴ AC ∥ DE.
∵ MN ∥AB ,
∴四边形 ADEC 是平行四边形 .
∴ CE= AD.
( 2)解:①四边形 BECD 是菱形 .
理由:∵ D 为 AB 的中点,
∴ AD=BD.
∵ CE=AD ,
∴ BD=CE.
∵ MN ∥AB ,
∴四边形 BECD 是平行四边形 .
.
14.如图,菱形 ABCD 的边长为 8 cm,∠ A=60°, DE ⊥ AB 于点 E,DF ⊥ BC 于点 F,则四边形 BEDF 的 面积为 _ __cm2.
第 14 题图
第 15 题图
15.如图,在□ ABCD 中,AD=10 cm ,CD=6 cm ,E 为 AD 上一点, 且 BE=BC ,CE=CD ,则 DE=__ __cm.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四边形
(考试时间:100分钟;满分:100分)
一、选择题(本题满分36分,共有12道小题,每小题3分)
1. 用一块等边三角形的硬纸片(如图甲)做一个底面为等边三角形且高相等的无盖的盒子(边缝忽略不计,如图乙),在△ABC 的每个顶点处各需剪掉一个四边形,其中四边形AMDN 中,∠MDN 的度数为( )
A.100°
B.110°
C.120°
D.130°
2. 已知:如图,菱形ABCD 中,对角线AC 与BD 相交于点O,OE ∥DC 交BC 于点E,AD=6cm, 则OE 的长为( )
A 、6 cm
B 、4 cm
C 、3 cm
D 、2 cm
3.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是 ( )
A.3:4
B.5:8
C.9:16
D.1:2
4.如图,大正方形中有2个小正方形,如果它们的面积分别是 S 1
、S 2 ,那么
S 1、S 2的大小关系是( )
(A) S 1 > S 2 (B) S 1 = S 2
(C) S 1<S 2 (D) S 1、S 2 的大小关系不确定
5.若梯形的上底长为4,中位线长为6,则此梯形的下底长为( )
A.5
B.8
C.12
D.16 6.如图,⊙O 的外切梯形ABCD 中,若AD ∥BC ,那么∠DOC 的度数为( )
第2题
C 第3题
第4题
A 、700
B 、900
C 、600
D 、45
7.如图,在直角坐标系中,将矩形OABC 沿OB 对折,使点A 落在点A 1处,已知OA =,
AB =1,A 1的坐标是( )
A.(,)
B.(,3)
C.(,)
D.(,)
8..将矩形ABCD 沿AE 折叠,得到如图所示的图形,已知∠CE =60°,则∠AED 的大小是
( )
A.60°
B.50°
C.75°
D.55°
9.如图,在平行四边形ABCD 中,EF∥AB,DE :EA =2:3,EF =4,则CD 的长为( ) A.
B.8
C.10
D.16
10. 四边形ABCD 中,AB ∥CD ,且AB 、CD 长是关于x 的方程02232
2
=-++-m m mx x 的
两个实数根,则四边形ABCD 是( )
A. 矩形
B. 平行四边形
C. 梯形
D. 平行四边形或梯形 11.如图,平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果AC =12,BD =10,AB =m 那么m 的取值范围是( )
A.1<m<11
B.2<m<22
C.10<m<12
D.5<m<6
12.如图,在 ABCD 中,如果点M 为CD 中点,AM 与BD 相交于点N ,那么S △DMN :S ABCD
为
( )
A.1:12
B.1:9
C.1:8
D.1:6 二、解答题(本题满分30分,共10题,每题3分) 1.矩形ABCD 中,对角线的交点为O ,∠AOB=60°,AD=5cm,则AC=________,AB=________
2.如图,E ,F 是 ABCD 对角线BD 上的两点,请你添加一个适当的条件:____________________,使四边形AECF 是平行四边形.
3.已知菱形ABCD 的边长为6,∠A=60°,如果点P 是菱形内一点,且PB =PD =2,
那么AP 的长为_______________.
4.有一个直角梯形零件ABCD ,AD∥BC,斜腰DC 的长为10cm ,∠D=120°,则该零件另一腰AB 的长是_________cm ,(结果不取近似值)
5. 如图,矩形ABCD 中,AB =3,BC =4,如果将该矩形沿对角线BD 折叠,那么图中阴影部分的面积是_________.
6. 某面粉厂要制1万条长1米,宽0.5米的矩形包装用袋,已知一匹布长50米,宽1米,至少需要_________匹布
.
7. 如图,四边形ABCD 的两条对角线AC 、BD 互相垂直,A 1B 1C 1D 1是四边形ABCD 的中点四边形.如果AC =8,BD =10,那么四边形A 1B 1C 1D 1的面积为_________. 8. 如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合),且PE∥BC 交AB 于E ,PF∥CD 交AD 于F ,则阴影部分的面积是__________.
9.将边长分别为2、3、5的三个正方形按如图方式排列,则图中阴影部分的面积为 .
10.如图,等腰梯形ABCD 中对角线AC 、BD 相交于点O ,那么图中的全等三角形最多有_____对.
三、填空题(本题满分34分,共题,)
第9题
1. 如图所示,已知等腰梯形ABCD 中,AD ∥BC ,AB =DC ,
AC 与BD 相交 于点O .请在图中找出一对全等的三角形,
并加以证明.
2.如图,在梯形ABCD 中,AD∥BC,∠B=90°,AD=2,BC=5,tanC=3
4
. (1)求点D 到BC 边的距离; (2)求点B 到CD 边的距离. 3.作图题:(不要求写作法)
如图,在10×10的方格纸中,有一个格点四边形ABCD (即四边形的顶点都在格点上) (1)在给出的方格纸中,画出四边形ABCD 向下平移5格后的四边形A 1B 1C 1D 1; (2)在给出的方格纸中,画出四边形ABCD 关于直线l 对称的四边形A 2B 2C 2D 2.
4.已知:如图,在梯形ABCD 中,AD ∥BC ,BC=DC ,CF 平分∠BCD ,DF ∥AB ,BF 的延长线交DC 于点E 。
求证:(1)△BFC ≌△DFC ;(2)AD=DE
5.如图,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的
l
A
B C
D
第4题
点,且ACE △ 是等边三角形. (1)求证:四边形ABCD 是菱形;
(2)若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.
E
B
A。