最新高考数学必背公式与知识点过关检测(精华版)
高考数学必背知识点及公式归纳总结大全

高考数学必背知识点及公式归纳总结大全高考数学必背知识点及公式归纳总结大全高中数学理科是10本书,其中的数学公式非常多,那么关于高考数学的公式及知识点有哪些呢?以下是小编准备的一些高考数学必背知识点及公式归纳总结,仅供参考。
高考数学必考知识点归纳必修一:1、集合与函数的概念(部分知识抽象,较难理解);2、基本的初等函数(指数函数、对数函数);3、函数的性质及应用(比较抽象,较难理解)。
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分。
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题。
3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空);2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右;2、数列:高考必考,17---22分;3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2。
选修1--1:重点:高考占30分。
1、逻辑用语:一般不考,若考也是和集合放一块考;2、圆锥曲线;3、导数、导数的应用(高考必考)。
选修1--2:1、统计;2、推理证明:一般不考,若考会是填空题;3、复数:(新课标比老课本难的多,高考必考内容)。
理科:选修2—1、2—2、2—3。
选修2--1:1、逻辑用语;2、圆锥曲线;3、空间向量:(利用空间向量可以把立体几何做题简便化)。
高考数学必背公式整理(衡水中学高中数学组)

高考数学必背公式整理(衡水中学高中数学组)以下是高考数学必背的公式整理(衡水中学高中数学组):1.一次函数的定义式:y = kx + b;-斜率公式:k = (y₂ - y₁) / (x₂ - x₁);-截距公式:b = y - kx;2.二次函数的标准式:y = ax² + bx + c;-顶点坐标公式:x = -b / (2a),y = -(Δ) / (4a);(Δ表示判别式)-开口方向:a > 0(开口向上),a < 0(开口向下);-判别式:Δ = b² - 4ac;- x与y轴交点:x₁ + x₂ = -b / a,x₁ * x₂ = c / a;3.直线的斜截式:y = kx + b;-斜率公式:k = tanθ,θ为直线与x轴的夹角;-截距公式:b = y - kx;-直线的两点式:(x - x₁) / (x₂ - x₁) = (y - y₁) / (y₂ - y₁);4.三角函数的基本关系:-正弦定理:a / sinA = b / sinB = c / sinC;-余弦定理:a² = b² + c² - 2bc * cosA;-正弦函数:sinA = a / c,正弦值的取值范围[-1, 1];-余弦函数:cosA = b / c,余弦值的取值范围[-1, 1];-直角三角形中,cosA = sin(90° - A);5.数列与数学归纳法:-等差数列通项公式:an = a₁ + (n - 1)d;-等差数列前n项和公式:Sn = (a₁ + an) * n / 2;-等比数列通项公式:an = a₁ * q^(n - 1);-等比数列前n项和公式:Sn = (a₁ * (1 - q^n)) / (1 - q);这里只列举了一些高考必备的数学公式,但数学的知识体系非常广泛深厚,其中还包括一元二次方程的求解、函数的性质与图像、立体几何的计算等等,这些需要学生掌握并灵活运用。
2023高考数学必背知识点归纳

2023高考数学必背知识点归纳第一篇:函数与方程1.函数概念与性质-函数的定义:函数是一种对应关系,每一个自变量都有唯一一个对应的因变量。
-定义域与值域:定义域是自变量的取值范围,值域是因变量的取值范围。
-奇偶函数:关于原点对称的函数称为奇函数,关于y轴对称的函数称为偶函数。
-单调性与极值:增函数是指函数值随自变量的增加而增加,减函数是指函数值随自变量的增加而减小;极值是函数在一些特定区间上达到的最大值或最小值。
-反函数:对于一个函数f(x),如果存在另一个函数g(x),使得f(g(x))=x,并且g(f(x))=x,那么f(x)与g(x)互为反函数。
2.幂函数与指数函数-幂函数:幂函数是指形如f(x)=x^a的函数,其中a为常数。
-指数函数:指数函数是指形如f(x)=a^x的函数,其中a为常数且大于0且不等于1- 对数函数:对数函数是指形如f(x) = loga(x)的函数,其中a为常数且大于0且不等于13.二次函数与一次函数- 二次函数:二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a不等于0。
- 一次函数:一次函数是指形如f(x) = ax + b的函数,其中a、b 为常数且a不等于0。
4.三角函数-正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的定义与性质。
-同角三角函数的关系:正弦函数与余弦函数的关系、正切函数与余切函数的关系、正割函数与余割函数的关系。
第二篇:平面几何与空间几何1.平面几何-二维坐标系:直角坐标系、极坐标系的概念及其性质。
-直线和直线段:点斜式方程、两点式方程的概念及其性质。
-圆与圆相关概念:圆心、半径、弦、弧、切线、法线的概念及其性质。
-相交、平行、垂直关系:两条直线相交的情况、两条直线平行的情况、两条直线垂直的情况。
2.空间几何-空间直角坐标系:点的坐标、距离的概念及其性质。
-空间中的直线和平面:平行、垂直关系的概念及其性质。
高中学业水平考试复习必背数学公式过关检测

高中学业水平考试复习必背数学公式过关检测班级 姓名 评价必修一1.★元素与集合的关系如果a 是集合A 的元素,就说a 属于集合A ,记作:; 如果a 不是集合A 的元素,就说a 不属于集合A ,记作:. 2. ★集合的运算:A B = ;A B = ;补集:U C A =.3.子集的个数问题:若集合A 有n 个元素,则集合A 有个子集,有个真子集.4.★函数定义域:①;②;③.5.★奇偶性(1)奇函数的定义:一般地,对于函数()f x 定义域内的任意一个x ,都有,那么函数()f x 叫奇函数.(2)偶函数的定义:一般地,对于函数()f x 定义域内的任意一个x ,都有,那么函数()f x 叫偶函数.(3)奇(偶)函数图像的特点:奇函数图象关于原点对称;偶函数图象关于y 对称. 6.★函数的单调性(1) 增函数:设函数()f x 的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的 值12,x x ,当12x x <时,都有,那么就说函数()f x 在区间D 上是增函数, 区间D 称为函数()f x 的单调区间.(2)减函数:设函数()f x 的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的 值12,x x ,当12x x <时,都有,那么就说函数()f x 在区间D 上是减函数, 区间D 称为函数()f x 的单调区间. (3)一次函数()0y kx b k =+≠,当0k >时,y 随x 的增大而,当0k <时,y 随x 的增大而; (4)反比例函数()0ky k x=≠, 当0k >时,在每个区间内y 随x 的增大而,当0k <时,在每个区间内y 随x 的增大而; (5)二次函数()20y ax bx c a =++≠,当0a >时,在对称轴的左侧,y 随x 的增大而,在对称轴的右侧,y 随x 的增大而. 当0a <时,在对称轴的左侧,y 随x 的增大而,在对称轴的右侧,y 随x 的增大而.(6)指数函数(0,1)x y a a a =>≠当1a >时,y 随x 的增大而,当01a <<时,y 随x 的增大而. (7)对数函数log (0,1)a y x a a =>≠当1a >时,y 随x 的增大而,当01a <<时,y 随x 的增大而. 7. 指数及指数函数 (1)根式与指数幂互化=nm a ()1,,,0*>∈>n N n m a ; =-p a ()0,0>>p a (2) 指数幂的运算性质(),,0,0R s r b a ∈>>=s r a a ;=s r a )(; =r ab )(.(3) 函数 叫做指数函数,其中x 是自变量.(4) 指数函数的图像及其性质(1)对数与指数之间的互化:=⇔=x N a x(01)a a >≠且. (2)对数log a N (01)a a >≠且的简单性质:=1log a ;=a a log ; (3) 以10为底的对数叫做 ;记作 ; 以e 为底的对数叫做 ;记作 ;(4)对数的运算性质:0,0,1,0>>≠>N M a a=⋅)(log N M a ;=NMalog ;=n a M log . (5)函数 叫做对数函数,其中x 是自变量.(6) 对数函数的图像及其性质9.幂函数:函数叫做幂函数(只考虑21,1,3,2,1-=α的图象). 10.★函数的零点(1) 对于函数)(x f y =,把使叫做函数)(x f y =的零点.(2)方程0)(=x f 的⇔函数)(x f y =的⇔函数)(x f y =的零点.(3)零点存在性定理:若连续函数()f x 在区间(,)a b 上满足,则函数()f x 在(,)a b 上至少有一个 零点.必修二1. =柱V ;=椎体V ;=球V ;=球表S ;2.★★线面平行的判定定理:平面外一条直线与此平面内的一.条直线平行,则该直线与此平面平行. 符号语言:.3.★★线面垂直的判定定理:一条直线与平面内的两.条相交直线垂直,则该直线与此平面垂直. 符号语言:.4. 两点的直线的斜率公式:;5. ★★两直线平行与垂直的判定6.★直线方程的形式(1)一般式: (A 、B 不同时为0),; (2)点斜式:; (3)斜截式:; 7.★距离公式:(1)两点间距离公式:设1122(,),A x y B x y ,()是平面直角坐标系中的两个点,则AB =.(2)点到直线距离公式: ()00,y x P 到直线0:1=++CBy Ax l 的距离=d . 8. ★圆的方程:标准方程,圆心()b a ,,半径为r ;一般方程220x y Dx Ey F ++++=,半径为 ,圆心坐标.9. ★线与圆的位置关系:设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离=d ,⇔相离与C l ; ⇔相切与C l ; ⇔相交与C l .必修三1.★★分层抽样:一般地,若从容量为N 的总体中抽取容量为n 的样本,则抽样比为λ=,若第i 层含有a的个体数为i N 个,则第i 层抽取的入样个体数为i i i nn N N Nλ==⋅. 2.★★频率分布直方图: =频率小矩形面积(注意:不是小矩形的高度) 计算公式: =频数频率样本容量;=⨯频数样本容量频率;==⨯频率频率小矩形面积组距组距;各组频数之和=样本容量;各组频率之和=1 3.茎叶图:茎表示高位,叶表示低位. 4.★古典概型的概率公式:()A m P A n==事件包含的基本事件个数实验中基本事件的总数5.★几何概型的概率公式:()A P A =事件构成的区域的长度(面积或体积)实验的全部结果构成的区域的长度(面积或体积)必修四1.弧度:=α,l 为α所对的弧长,r 为半径,正负号的确定:逆时针为,顺时针为.2.弧度制与角度制的互化:=π,=rad 1,=01.3. 三角函数的定义:设角α是一个任意角,(),P x y 是终边上的任意一点,点P 与原点的距离r =, 那么sin α=;cos α=;tan α=;4. 三角函数诱导公式:()2kk z απ+∈与α之间函数值的关系,主要有:公式一:sin(2)k απ+⋅=()k z ∈;公式二:sin()πα+=()k z ∈; cos(2)k απ+⋅=()k z ∈; cos()πα+=()k z ∈; tan(2)k απ+⋅=()k z ∈.tan()πα+=()k z ∈. 公式三:sin()α-=;公式四:sin()πα-=; cos()α-=;cos()πα-=; tan()α-=.tan()πα-=.公式五:sin()2πα-=;公式六:sin()2πα+=;cos()2πα-=.cos()2πα+=.其规律(口诀)是“ ”.5.★同角三角函数的基本关系:平方关系:;商数关系:.6.★三角和差公式:()=±βαsin ;()=±βαcos ;()=±βαtan .7.★三角二倍角公式:=α2sin ;=α2cos ==;tan 2α=.8.★ 三角降幂公式:=α2sin ;=α2cos .9. 正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质10.★★()(0;0)y Asin x A ωϕω=+>>的最大值为,最小值为,最小正周期为; 由(0,0)y Asin x A ωω=>>向左平移个单位可得到()(0;0)y Asin x A ωϕω=+>>.11. 向量的模:线段AB 的长度叫向量AB 的长度,记为|AB|或|a |; (1)若 (,)a x y =,则 |a |= .(2)若1122(,),(,)A x y B x y ,则AB = ,|AB|=.12. ★向量的线性运算:(平行四边形法则) (三角形法则)13. ★★向量的平行与垂直的判定 (1) 向量共线定理①a ∥b (a ≠0)⇔存在惟一的实数λ使得;②若),,(),,(2211y x b y x a ==则a ∥b ⇔(a 可以为0 ).(2)两个向量垂直的充要条件①a b ⊥⇔;②设1122(,),(,)a x y b x y ==,则a b ⊥ ⇔ .必修五1.★正弦定理:在ABC ∆中,在ABC ∆中,a ,b ,c 分别为角,,A B C 的对边, 则有:.(其中R 为的半径)2.★余弦定理:在ABC ∆中,若a ,b ,c 分别为角,,A B C 的对边,则有①=2a .=2b .=2c .②=A cos .=B cos .=C cos .3.三角形面积公式:=∆ABC S ==.4.★等差数列{}n a (1) 定义:(d 为常数); (2)通项公式:;(3)等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且=A ;(4)性质:若()*,,,m n p q m n p q N +=+∈,则;(5)求和公式: n S =或n S =. 5.★等比数列 (1) 定义:(q 为常数); (2)通项公式:;(3)等比中项:若,,a G b 成等比数列,则G 叫做a 与b 的等比中项,且=G ;(4)性质:若()*,,,m n p q m n p q N +=+∈,则;(5)求和公式:=n S .6.★数列{}n a 的前n 项和n S 与项n a 之间的关系:=n a .7.★y kx b <+表示直线y kx b =+的区域;表示直线y kx b =+上方区域. 8.★基本不等式: 若0a >,0b >,则,当且仅当a b =时取到等号.。
高考数学知识点总结及公式大全(2023)

高考数学知识点总结及公式大全(2023)高三数学公式整理1.y=c(c为常数) y=02.y=x^n y=nx^(n-1)3.y=a^x y=a^xlnay=e^x y=e^x4.y=logax y=logae/xy=lnx y=1/x5.y=sinx y=cosx6.y=cosx y=-sinx7.y=tanx y=1/cos^2x8.y=cotx y=-1/sin^2x9.y=arcsinx y=1/√1-x^210.y=arccosx y=-1/√1-x^211.y=arctanx y=1/1+x^212.y=arccotx y=-1/1+x^2三角函数公式锐角三角函数公式sin α=∠α的对边/ 斜边cos α=∠α的邻边/ 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A) )三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosasin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(√3/2)2-sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(√3/2)2]=4cosa(cos2a-cos230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)数学圆锥公式知识点正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的`标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F0抛物线标准方程y2=2pxy2=-2px-x2=2pyx2=-2py直棱柱侧面积S=c.h斜棱柱侧面积S=c.h正棱锥侧面积S=1/2c.h正棱台侧面积S=1/2(c+c)h圆台侧面积S=1/2(c+c)l=pi(R+r)l球的表面积S=4pi.r2圆柱侧面积S=c.h=2pi.h圆锥侧面积S=1/2.c.l=pi.r.l弧长公式l=a.ra是圆心角的弧度数r0扇形面积公式s=1/2.l.r锥体体积公式V=1/3.S.H圆锥体体积公式V=1/3.pi.r2h斜棱柱体积V=SL注:其中,S是直截面面积,L是侧棱长柱体体积公式V=s.h圆柱体V=p.r2h乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b=-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1.X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac0注:方程有两个不等的实根b2-4ac0注:方程没有实根,有共轭复数根三倍角公式三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]三倍角公式推导附推导:tan3α=sin3α/cos3α=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)上下同除以cos^3(α),得:tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos^2(α)+(1-2sin^2(α))sinα=2sinα-2sin^3(α)+sinα-2sin^3(α)=3sinα-4sin^3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos^2(α)-1)cosα-2cosαsin^2(α)=2cos^3(α)-cosα+(2cosα-2cos^3(α))=4cos^3(α)-3cosα即sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα三倍角公式联想记忆记忆方法:谐音、联想正弦三倍角:3元减4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))余弦三倍角:4元3角减3元(减完之后还有“余”)∠∠注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
2023高考数学必背知识点

2023高考数学必背知识点1. 函数与方程- 函数的定义及基本性质- 利用函数图像求解方程- 一次函数与二次函数的性质和应用- 指数函数与对数函数的性质和应用2. 三角函数- 基本三角函数的定义和性质- 三角函数的图像及其性质- 三角函数的和差化积公式和积化和差公式- 三角函数的应用:解三角形、解三角方程等3. 平面几何- 几何运动的性质和判定条件- 二维图形的基本性质和计算方法- 相似三角形的判定条件和性质- 圆的性质和计算方法4. 空间几何- 空间直线和平面的性质和计算方法- 空间几何体的计算方法- 三视图的绘制和应用- 空间曲线和曲面的性质5. 概率与统计- 随机事件及其概率计算- 事件的相互关系和计算- 统计数据的收集和整理- 统计图的绘制和数据的分析6. 数列与数学归纳法- 数列的定义和基本性质- 等差数列和等比数列的性质及应用- 递推数列和通项公式的求解- 数学归纳法的原理和应用7. 导数与微分- 导数的定义和计算方法- 函数的极值和单调性的判定- 高阶导数及其应用- 微分的概念和计算方法8. 积分与不定积分- 不定积分的定义和计算方法- 牛顿-莱布尼茨公式和定积分的应用- 定积分与区间函数的计算- 反常积分的计算方法9. 线性代数- 矩阵的基本概念和运算法则- 线性方程组的解的判别与求解- 行列式的定义和计算方法- 向量的基本概念和运算法则10. 逻辑与集合论- 命题的逻辑联结词和真值表- 命题的充分条件和必要条件- 集合的基本概念和运算法则- 关系的定义和性质以上就是2023高考数学必背知识点的内容概要,希望对你的备考有所帮助!。
高考数学必背公式和知识点

高考数学必背公式和知识点在高中数学学习中,公式和知识点的记忆是非常重要的。
尤其在高考数学中,对于公式的熟悉程度直接决定了解题的效率和准确性。
下面将介绍一些高考数学必备的公式和知识点,希望能对大家备战高考有所帮助。
一、函数1. 一次函数的一般形式: y = kx + b,其中 k 表示斜率,b 表示截距。
2. 二次函数的一般形式: y = ax^2 + bx + c,其中 a 表示抛物线的开口方向,a>0 表示开口向上,a<0 表示开口向下。
二、直线和曲线1. 直线的斜率 k = (y2 - y1) / (x2 - x1)。
2. 直线的截距 b = y - kx,其中 (x, y) 是直线上的一个点。
3. 判定直线与坐标轴的交点: x 轴截距为 b1 = -b / k,y轴截距为 b2 = b。
4. 曲线的极限:当 x 趋近于 a 时,若存在一个常数 L,使得函数值 f(x) 趋近于 L,则称函数 f(x) 在 x=a 处有极限 L。
三、三角函数1. sinA = a / c,cosA = b / c,tanA = a / b,其中 c 表示斜边,a 表示对边,b 表示邻边。
2. 正弦定理:a / sinA = b / sinB = c / sinC。
3. 余弦定理:a^2 = b^2 + c^2 - 2bc*cosA。
四、平面几何1. 相似三角形的比例定理:设两个三角形 ABC 和 A'B'C',若有三个边对应成比例,则可以推出两个三角形对应的角相等。
2. 两条平行线与一条横截线的对应角相等,即内错角和外错角互为补角。
3. 圆的面积公式:S = πr^2。
五、立体几何1. 直线和平面垂直的判定:若直线的方向向量与平面的法向量相互垂直,则两者垂直。
2. 圆柱体的体积公式:V = πr^2h。
3. 球体的表面积公式:S = 4πr^2。
六、概率与统计1. 组合公式:C(n, m) = n! / (m!(n-m)!),表示从 n 个数中取出 m 个数的组合数。
高考必备数学公式大全

高考必备数学公式大全一、集合。
1. 集合的基本运算。
- 交集:A∩ B={xx∈ A且x∈ B}- 并集:A∪ B ={xx∈ A或x∈ B}- 补集:∁_UA={xx∈ U且x∉ A}(U为全集)2. 集合元素个数公式。
- n(A∪ B)=n(A)+n(B)-n(A∩ B)二、函数。
1. 函数的定义域。
- 分式函数y = (f(x))/(g(x)),定义域为g(x)≠0的x的取值范围。
- 偶次根式函数y=sqrt[n]{f(x)}(n为偶数),定义域为f(x)≥slant0的x的取值范围。
2. 函数的单调性。
- 设x_1,x_2∈[a,b]且x_1,对于函数y = f(x)- 若f(x_1),则y = f(x)在[a,b]上是增函数,f^′(x)≥slant0(可导函数时)。
- 若f(x_1)>f(x_2),则y = f(x)在[a,b]上是减函数,f^′(x)≤slant0(可导函数时)。
3. 函数的奇偶性。
- 对于函数y = f(x),定义域关于原点对称。
- 若f(-x)=f(x),则y = f(x)是偶函数,其图象关于y轴对称。
- 若f(-x)= - f(x),则y = f(x)是奇函数,其图象关于原点对称。
4. 一次函数y=kx + b(k≠0)- 斜率k=frac{y_2-y_1}{x_2-x_1},截距为b。
5. 二次函数y = ax^2+bx + c(a≠0)- 对称轴x =-(b)/(2a)。
- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})。
- 当a>0时,函数开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a<0时,函数开口向下,在x =-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。
6. 指数函数y = a^x(a>0,a≠1)- 性质:当a > 1时,函数在R上单调递增;当0 < a < 1时,函数在R上单调递减。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学必背公式与知识点过关检测姓名 班级第一部分:集合与常用逻辑用语1.子集个数:含n 个元素的集合有 个子集,有 个真子集,有 个非空子集,有 个非空真子集2.常见数集:自然数集: 正整数集: 或 整数集: 有理数集: 实数集:3.空集:φ是任何集合的 ,是任何非空集合的 .4.元素特点: 、 、 确定性5.集合的的运算: 集运算、 集运算、 集运算6.四种命题:原命题:若p ,则q ;逆命题:若 ,则 ;否命题:若 ,则 ;逆否命题:若 ,则 ; 原命题与逆命题,否命题与逆否命题互 ;原命题与否命题、逆命题与逆否命题互 ;原命题与逆否命题、否命题与逆命题互为 。
互为逆否的命题7.充要条件的判断:p q ⇒,p 是q 的 条件;p q ⇒,q 是p 的 条件;p q ⇔,,p q 互为 条件;若命题p 对应集合A ,命题q 对应集合B ,则p q ⇒等价于 ,p q ⇔等价于 注意区分:“甲是乙的充分条件(甲⇒乙)”与“甲的充分条件是乙(乙⇒甲)”; 8.逻辑联结词:或命题:p q ∨,,p q 有一为真即为 ,,p q 均为假时才为 ;且命题:p q ∧,,p q 均为真时才为 ,,p q 有一为假即为 ;非命题:p ⌝和p 为一真一假两个互为对立的命题 9.全称量词与存在量词:⑴全称量词-------“所有的”、“任意一个”等,用∀表示;全称命题p :)(,x p M x ∈∀;全称命题p 的否定⌝p : ; ⑵存在量词--------“存在一个”、“至少有一个”等,用∃表示;特称命题p :)(,x p M x ∈∃;特称命题p 的否定⌝p : ;第二部分:函数与导数及其应用1.函数的定义域:分母 0;偶次被开方数 0;0次幂的底数 0 ;对数函数的真数 0;指数与对数函数的底数 0且 1 2.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论; 分段函数是一个函数,其定义域是各段定义域的 、值域是各段值域的3.函数的单调性:设1x ,2[,]x a b ∈(1⇔[]1212()()0(),f x f x f x a b x x ->⇔-在上是 函数;(2)[]1212()()()0x x f x f x --<⇔[]1212()()0(),f x f x f x a b x x -<⇔-在上是 函数;(3)如果0)(>'x f ,则)(x f 为 函数;0)(<'x f ,则)(x f 为 函数; (4)复合函数的单调性:根据“同 异 ”来判断原函数在其定义域内的单调性. 4.函数的奇偶性: ⑴函数的定义域关于 对称是函数具有奇偶性的前提条件.... ⑵)(x f 是 函数)()(x f x f -=-⇔;)(x f 是 函数)()(x f x f =-⇔. ⑶奇函数)(x f 在0处有定义,则⑷在关于原点对称的单调区间内:奇函数有 的单调性,偶函数有 的单调性⑸偶函数图象关于 轴对称、奇函数图象关于坐标 对称 5.函数的周期性:周期有关的结论:(约定a >0)(1))()(a x f x f +=,则)(x f 的周期T= ; (2))()(x f a x f -=+,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠, 则)(x f 的周期T=(3))()(a x f a x f -=+或)0)(()2(>=-a x f a x f ⇒)(x f 的周期为 6.函数的对称性:①()y f x =的图象关于直线 对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=; ②()y f x =的图象关于直线 对称()()f a x f b x ⇔+=-()()f a b x f x ⇔+-=;7.对数运算规律:(1)对数式与指数式的互化:(2)对数恒等式:log 1a = ,log a a = ,log ba a = .lg 2+lg5= ,=lne(3)对数的运算性质:①加法:log log a a M N += ②减法: log aM N= ③数乘: log ()na M n R =∈ ④恒等式:log a N a =⑤log m n a b = ⑥换底公式:log log log m a m N N a=8.二次函数:二次函数c bx ax y ++=2(a ≠0)的图象的对称轴方程是 ,顶点坐标是 判别式ac b 42-=∆;0>∆时,图像与x 轴有 个交点;0=∆时,图像与x 轴有 个交点;0<∆时,图像与x 轴没有交点;9. 韦达定理:若x 1, x 2是一元二次方程)0(02≠=++a c bx ax 的两个根,则:x 1+x 2= ,x 1x 2= .10.零点定理:若y=f(x)在[a ,b ]上满足 , 则y=f(x)在(a ,b )内至少有一个零点11.常见函数的导数公式:①'()C = ;②'(n x =) ;'(nx =) ③'(sin x =) ; ④'(cos x =) ; ⑤'(x e =) ; ⑥ '(x a =) ; ⑦'(ln x =) ; ⑧'=(logx ) . 12.导数运算法则:()()f x g x '⋅=⎡⎤⎣⎦(1) ;()()2f x g x '⎡⎤=⎢⎥⎣⎦() .13.曲线的切线方程:函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率为)(0x f ',相应的切线方程是 . 14.微积分基本定理:如果()f x 是[],a b 上的连续函数,并且有()()F x f x '=,则第三部分:三角函数、三角恒等变换与解三角形1.角度制与弧度制互化:360°= rad ,180°= rad ,1°= ≈ rad ,1rad= ≈ 2.若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l = ,C = ,S= = .3.三角函数定义式:角α终边上任一点(非原点)P ),(y x ,设r OP =|| 则sin α= ,cos α= ,tan α=4.同角三角函数的基本关系:()1平方关系:()2tan =α商数关系: . 5.函数的诱导公式:口诀: .()()1sin 2sin k παα+=, , .(k ∈Z )(2) , ,()tan tan παα+=. (3) , ,()tan tan αα-=-. (4) , ,()tan tan παα-=-.()5sin cos 2παα⎛⎫-=⎪⎝⎭, .(6) ,cos sin 2παα⎛⎫+=- ⎪⎝⎭.8.几个常见三角函数的周期: ①x y sin =与x y cos =的周期为 .②)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期为 . ③2tan x y =的周期为 .④x y cos =的周期为9. 两角和与差的正弦、余弦和正切公式:()1cos αβ-=() ; ()2cos αβ+=() ; ()3sin αβ-=() ; ()4sin αβ+=() ; ()5tan αβ-=() ; ()6tan αβ+=() .10. 二倍角的正弦、余弦和正切公式:sin 2α=cos2α= = =2cos α⇒=降次公式: ,2sin α= , sin cos αα=tan 2α=11.引入辅助角公式: sin cos a b αα+= . (其中,辅助角ϕ所在象限由点(,)a b 所在的象限决定,tan b aϕ= ).12. 正弦定理: . (R 是ABC ∆外接圆直径) 注:①C B A c b a sin :sin :sin ::=;②C R c B R b A R a sin 2,sin 2,sin 2===;③C B A cb a Cc B b A a sin sin sin sin sin sin ++++=== 13. 余弦定理: ⇔ .(变式)(以A 角和其对边来表示)14. 三角形面积公式:ABC S ∆= = = . (用边与角的正弦值来表示) 三角形面积导出公式:ABC S ∆= (r 为ABC ∆内切圆半径)= (R 外接圆半径)15. 三角形内切圆半径r = 外接圆直径2R = = =第四部分:平面向量、数列与不等式1. 平面向量的基本运算:设11(,)a x y =,22(,)b x y =;(0b ≠)= ;a b -= ;a b ⋅= (定义公式)= (坐标公式).a 在b 方向上的投影为. = (坐标公式) a b ⊥⇔ (一般表示) ⇔ (坐标表示) .a ∥b ⇔ (一般表示)⇔ (坐标表示).cos θ=夹角公式: = (坐标公式).2.若G 为ABC ∆的重心,则 =0;且G 点坐标为 ( , )3.三点共线的充要条件:P ,A ,B 三点共线⇔ →OP =x →OA +y →OB 且 =14.三角形的四心重心:三角形三条 交点.外心:三角形三边 相交于一点. 内心:三角形三 相交于一点.垂心:三角形三边上 的相交于一点.5. 数列{n a }中n a 与n S 的关系n a =2.n S =2.n S =性质1.,,a b c ⇒成等差数列称b 为a 与c 的等差中项 2.若m n p q +=+, 则1.,,a b c ⇒成等比数列 称b 为a 与c 的等比中项 2.若m n p q +=+, 则7.常见数列的和:①1+2+3+……+n=②12+22+32+……+n 2=③13+23+33+……+n 3=8.一元二次不等式解的讨论.0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象一元二次方程()的根002>=++a c bx ax的解集)0(02>>++a c bx ax的解集)0(02><++a c bx ax9. 均值不等式: 若0a >,0b >,则 ⇔ ; 10. 重要不等式: 11.极值定理:已知y x ,都是正数,则有:(1)如果积xy 是定值p ,那么当y x =时和y x +有最小值 ; (2)如果和y x +是定值s ,那么当y x =时积xy 有最大值 .12.两个著名不等式:(1)平均不等式: 如果a ,b 都是正数,那么(当仅当a =b 时取等号)即:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数) 特别地,222()22a b a b ab ++≤≤(当a = b 时,222()22a b a b ab ++==)),,,(332222时取等c b a R c b a c b a c b a ==∈⎪⎭⎫ ⎝⎛+++≥++ ⇒幂平均不等式:22122221)...(1...n n a a a na a a +++≥+++ (2)柯西不等式: .(当且仅当ad=bc 时取等号)第五部分:立体几何与解析几何1. 三视图与直观图:原图形与直观图面积之比为 2. 常见几何体表面积公式:圆柱的表面积 S= 圆锥的表面积S=圆台的表面积 S= 球的表面积 S= 3.常见几何体体积公式:柱体的体积 V= 锥体的体积 V=台体的体积 V= 球体的体积 V= 4. 常见空间几何体的有关结论:⑴棱锥的平行截面的性质:如果棱锥被平行于底面的平面所截,那么所得的截面与底面 ,截面面积与底面面积的比等于顶点到截面距离与棱锥高的 ;相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的 . ⑵长方体从一个顶点出发的三条棱长分别为a ,b ,c ,则体对角线长为 ,全面积为 ,体积V= ⑶正方体的棱长为a ,则体对角线长为 ,全面积为 ,体积V= ⑷球与长方体的组合体: 长方体的外接球的直径=长方体的 长.球与正方体的组合体:正方体的内切球的直径=正方体的 , 正方体的棱切球的直径=正方体的 长, 正方体的外接球的直径=正方体的体 长. ⑸正四面体的性质:设棱长为a ,则正四面体的:① 高: ;②对棱间距离: ;③内切球半径: ;④外接球半径: 5. 空间向量中的夹角和距离公式:(1)空间中两点A 111(,,)x y z ,B 222(,,)x y z 的距离d = (2)异面直线夹角:(0,]2πθ∈cosθ= (两直线方向向量为,a b )(3)线面角:[0,]2πθ∈,且sin θ= (l ,n 为直线的方向向量与平面的法向量)(4)二面角:[0,]θπ∈,且cos θ= (两平面的法向量分别为1n 和2n )(5)点到面的距离:平面α的法向量为n ,平面α内任一点为N ,点M 到平面α的距离d =6.直线的斜率:k = =(θ为直线的倾斜角,11(,)A x y 、22(,)B x y 为直线上的两点) 7. 直线方程的五种形式:直线的点斜式方程: (直线l 过点111(,)P x y ,且斜率为k ). 直线的斜截式方程: (b 为直线l 在y 轴上的截距).直线的两点式方程: (111(,)P x y 、222(,)P x y 12x x ≠,12y y ≠).直线的截距式方程: (a 、b 分别为直线在x 轴、y 轴上的截距,且0,0≠≠b a ).直线的一般式方程: (其中A 、B 不同时为0). 8.两条直线的位置关系:(1)若111:l y k x b =+,222:l y k x b =+,则:① 1l ∥2l ⇔ 且 ; .(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,则:①1l ∥2l ⇔ 且 ;②. 12l l ⊥⇔ . 9.距离公式:(1)点111(,)P x y ,222(,)P x y 之间的距离: (2)点00(,)P x y 到直线0Ax By C ++=的距离:(3)平行线间的距离:10Ax By C ++=与20Ax By C ++=的距离:10.圆的方程:(1)圆的标准方程:(2)圆的一般方程: ()0422>-+F E D 11.直线与圆的位置关系:判断圆心到直线的距离d 与半径R 的大小关系 (1)当 时,直线和圆 (有两个交点);(2)当 时,直线和圆 (有且仅有一个交点); (3)当 时,直线和圆 (无交点);12. 圆与圆的位置关系:判断圆心距d 与两圆半径和12R R +,半径差12R R -(12R R >)的大小关系:(1)当 时,两圆 ,有4条公切线; (2)当 时,两圆 ,有3条公切线; (3)当 时,两圆 ,有2条公切线; (4)当 时,两圆 ,有1条公切线; (5)当 时,两圆 ,没有公切线;13. 直线与圆相交所得弦长|AB|= (d 为直线的距离r 为半径) 14.椭圆的定义:(1)第一定义:平面内与两个定点21F F 、的距离和等于常数 的点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点间的距离叫焦距.(222c b a +=)(2)标准方程:焦点在x 轴上: ;焦点在y 轴上: .15.双曲线的定义:(1)第一定义:平面内与两个定点21F F 、的距离之差的绝对值等于常数: 的点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.(222a b c +=)(2)标准方程:焦点在x 轴上: ;焦点在y 轴上: . 16.抛物线的定义:(1)平面内与一个定点F 和一条定直线l (点F 不在l 上)的距离的 的点的轨迹叫做双曲线.这个定点是抛物线的焦点,定直线是抛物线的准线.(2)标准方程:焦点在x 轴上: ;焦点在y 轴上: .17.离心率:e = (椭圆的离心率 ,双曲线的离心率 ,抛物线的离心率 )18.双曲线的渐近线:22221x y a b -=(0a >,0b >)的渐近线方程为 ,且与22221x y a b -=具有相同渐近线的双曲线方程可设为2222x y a bλ-=. 19.过抛物线焦点的直线:倾斜角为θ的直线过抛物线22y px =的焦点F 且与抛物线交于11(,)A x y 、22(,)B x y 两点(10y >):|AF|= |BF|= |AB|= = x 1x 2= y 1y 2=1|AF| +1|BF|= 20.焦点三角形的面积:(1)椭圆:S= ;(2)双曲线:S= (12F PF θ∠=) 21.几何距离:(1)椭圆双曲线特有距离:①长轴(实轴): ; ②短轴(虚轴): ; ③两焦点间距离: .(2)焦准距:①椭圆、双曲线: ; ②抛物线: . (3)通径长:①椭圆、双曲线: ; ②抛物线: . 22.直线被曲线所截得的弦长公式:若弦端点为A ),(),,(2211y x B y x ,则|AB|= = = 23. 中点弦问题: 椭圆:k AB k OP = 双曲线:k AB k OP =第六部分:统计与概率1. 总体特征数的估计:⑴样本平均数⎺x= = ;⑵样本方差;S 2= = ; ⑶样本标准差S= 2.概率公式:⑴互斥事件(有一个发生)概率公式:P(A+B)=⑵古典概型:基本事件的总数数为N ,随机事件A 包含的基本事件个数为M ,则事件A 发生的概率为:P(A)= ⑶几何概型:等)区域长度(面积或体积试验的全部结果构成的积等)的区域长度(面积或体构成事件A A P =)(3.离散型随机变量:⑴随机变量的分布列:①随机变量分布列的性质:p i ≥ , i=1,2,3,…; p 1+p 2+…=均值(又称期望):EX =方差:DX = 注:DX a b aX D b aEX b aX E 2)(;)(=++=+;③二项分布(独立重复试验):若X ~B (n , p ),则EX = , DX =注:k n k k n p p C k X P --==)1()(⑵条件概率: P (B|A )=注:0≤P (B|A )≤1⑶独立事件同时发生的概率:P (AB )=第七部分:复数与计数原理1. 复数的基本概念:z a bi =+(a ,b R ∈)(1)实部: ;虚部: ; 虚数单位:i 2=(2)模:|z |= =(3)共轭复数:-z= (4)在复平面内对应的点为 (5)复数相等:a+bi=c+di (a ,b ,c ,d ∈R )⇔2. 复数的基本运算: (1)加减法:(a+bi )+(c+di )= (a+bi )-(c+di )= (2)乘法:(a+bi )×(c+di )=(3)除法:(a+bi )÷(c+di )= 注:对虚数单位i ,有1 , ,1,4342414=-=-==+++n n n n i i i i i i.3.分类计数原理(加法原理)与分步计数原理(乘法原理):.(1)完成一件事有n 类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,…,在第n 类方案中有n m 种不同的方法.那么完成这件事共有 N= 种不同的方法.(2)完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有N= 种不同的方法. 4.排列数公式:= = ;=(m≤ n, m 、n ∈N*) 规定0!1=5.组合数公式: = (n ,m N *∈,且m n ≤);6. 组合数性质: ;7.二项式定理:(a+b )n = (rn C 叫做二项式系数)8.二项展开式的通项公式:T r+1= (r=0,1,2……,n )第八部分:坐标系与参数方程1. 极坐标→直角坐标cos sin x y ρθρθ=⎧⎨=⎩直角坐标→极坐标tan (0)y x x ρθ⎧=⎪⎨=≠⎪⎩2. 圆的极坐标方程:①以极点为圆心,a 为半径的圆的极坐标方程是 ; ②以(,0)a )0(>a 为圆心, a 为半径的圆的极坐标方程是 ; ③以(,)2a π)0(>a 为圆心,a 为半径的圆的极坐标方程是 ;④以(),(0)a a π>为圆心,a 为半径的圆的极坐标方程是 ; ⑤以3,(0)2a a π⎛⎫> ⎪⎝⎭为圆心,a 为半径的圆的极坐标方程是 3. 常见曲线的参数方程:。