探索与发现三角形内角和教学设计

合集下载

小学数学《三角形内角和》教学设计(6篇)

小学数学《三角形内角和》教学设计(6篇)

小学数学《三角形内角和》教学设计(6篇)《三角形的内角和》教学反思篇一新课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。

这节课我设计了以“观察—猜想—验证—应用”为主线,让学生在自主学习中“不知不觉”学习到新的知识。

在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。

这节课我创设了学生喜欢的情境:“三个三角形的争吵”入手,让学生自己动手探索三角形的内角和。

让学生“量一量”“剪—拼”贴近了学生的生活,降低了学习难度,注重学生们的动手实践,亲生去体验去感悟。

在操作反馈的过程中我提出了两个问题:第一,你选用什么三角形,采用什么方法来验证;第二,经过操作得到什么结论。

学生分小组对大小不一的三角形进行验证,经历量、剪、拼一系列操作活动,从而得出“三角形内角和是180°”这一结论。

本节课不足之处:1学生在还没学习三角形的特性和三角形三边的关系及三角形的内角和的基础上进行学习三角形内角和。

就无法复习三角形的有关知识。

2、在解决三角形内角和是什么这个问题,说的不够透彻,课后我改成这样,先让两个学生说,说完让一个学生指出来,指完并让他用黑色水笔画出来。

为验证三角形内是180度做铺垫。

3、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。

而且由于内角和这个概念没有讲清楚,学生在这一环节花了一定的时间。

4、在学生汇报方法时,还应该用尺子比一下拼后的三个角是在一条直线上,更直观的说明三个角形成一个平角,三角形的内角和是180°。

5、练习设计是有分层次,但是学生说的较少,我比较急地去分析,留给学生的时间不足这是我今后要特别注意的一个方面。

本节课我引导学生用测量或剪拼的方法探究三角形的内角和。

三角形内角和教学设计(通用6篇)

三角形内角和教学设计(通用6篇)

三角形内角和教学设计三角形内角和教学设计(通用6篇)作为一名教师,总不可避免地需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。

那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的三角形内角和教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。

三角形内角和教学设计1【教学目标】1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。

2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

【教学难点】对不同探究方法的指导和学生对规律的灵活应用。

【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。

【教学过程】一、激趣引入。

1、猜谜语师:同学们喜欢猜谜语吗?生:喜欢。

师:那么,下面老师给大家出个谜语。

请听谜面:形状似座山,稳定性能坚,三竿首尾连,学问不简单。

(打一图形)大家一起说是什么?生:三角形2、介绍三角形按角的分类师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类师分别出示卡片贴于黑板。

3、激发学生探知心里师:大家会不会画三角形啊?生:会师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。

试一试吧!生:试着画师:画出来没有?生:没有师:画不出来了,是吗?生:是师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)二、探究新知。

1、认识三角形的内角看看这三个字,说说看,什么是三角形的内角?生:就是三角形里面的角。

师:三角形有几个内角啊?生:3个。

师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)师:你知道什么是三角形“内角和”吗?生:三角形里面的角加起来的度数。

三角形内角和教学设计15篇

三角形内角和教学设计15篇

三角形内角和教学设计15篇三角形内角和教学设计(15篇)作为一名教职工,时常需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。

我们该怎么去写教学设计呢?下面是小编收集整理的三角形内角和教学设计,仅供参考,欢迎大家阅读。

三角形内角和教学设计1北师大版四年级数学下册1、探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。

2、培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。

3、培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。

重点掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题;难点是探索性质的过程。

《三角形内角和》属于空间与图形的范畴,是在学生已经接触了三角形的稳定性和三角形的分类相关知识后对三角形的进一步研究,探索三个内角的和。

教材中安排了学生对不同形状的、大小的三角形进行进行度量,运用折叠、拼凑等方法发现三角形的内角和是180°。

扩充了学生认识图形的一般规律从直观感性的认识到具体的性质探索,更加深入的培养了学生的空间观念。

一、创设情境,激发兴趣。

出示课件,提出两个两个疑问:1、两个大小不一样的两个三角形的对话我比你大,所以我的内角和比你大,是这样的吗?2、三个形状不一样的三角形的争论。

我们的形状不一样,所以我们的内角和各不相同,是这样的吗?老师发现它们争论的焦点是三角形的内角和的问题,那什么是三角形的内角?什么又是三角形的内角和呢?二、初建模型,实际验证自己的猜想在第一步的基础上学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。

这时教师要组织学生进行小组合作,每人用量角器量出一种三角形的三个内角,并计算出它们的总和是多少?把小组的测量结果和讨论结果记录下来以便全班进行交流。

三角形的形状三角形每个内角的度数内角和锐角三角形钝角三角形直角三角形等腰三角形等边三角形三、再建模型,彻底的得出正确的结论因为在上一环节学生已经得出三角形的内角和大约都是或接近180度。

“三角形内角和”教学设计(精选10篇)

“三角形内角和”教学设计(精选10篇)

“三角形内角和”教学设计(精选10篇)“三角形内角和”教学设计篇1一、教学目标1.学问目标:通过测量、撕拼(剪拼)、折叠等方法,探究和发觉三角形三个内角的度数和等于180°这一规律,并能实际应用。

2.力量目标:培育同学主动探究、动手操作的力量。

使同学养成良好的合作习惯。

3.情感目标:让同学体会几何图形内在的结构美。

并充分体会到学习数学的欢乐。

二、教学过程(一)创设情境,导入新课1、师:我们已经熟悉了三角形,你知道哪些关于三角形的学问?(同学畅所欲言。

)2、师:我们在争论三角形学问的时候,三角形中的三个好伴侣却吵了起来,想知道是怎么回事吗?让我们一起去看看吧!师口述:一个大的直角三角形说:“我的个头大,我的内角和肯定比你们大。

”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”,3、究竟谁说的对呢?今日我们就来讨论有关三角形内角和的学问。

(板书课题:三角形内角和)(二)自主探究,发觉规律1、熟悉什么是三角形的内角和。

师:你知道什么是三角形的内角和吗?通过同学争论,得出三角形的内角和就是三角形三个内角的度数和。

2、探究三角形内角和的特点。

①让同学想一想、说一说怎样才能知道三角形的内角和?同学会想到量一量每个三角形的内角,再相加的方法来得到三角形的内角和。

(假如同学想到别的方法,只要合理的,老师就赐予确定,并鼓舞他们对自己想到的方法进行)②小组合作。

通过小组合作后沟通,汇报。

(老师同时板书出几个小组汇报的结果)让同学们发觉每个三角形的内角和都在180°左右。

引导同学推想出三角形的内角和可能都是180°。

3、验证推想。

让同学动脑筋想一想,怎样才能验证自己的推想是否正确,同学可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。

(小组合作验证,老师参加其中。

小学四年级下册数学《三角形的内角和》教案(5篇)

小学四年级下册数学《三角形的内角和》教案(5篇)

小学四年级下册数学《三角形的内角和》教案(5篇)《三角形的内角和〉教学设计篇一课题三角形的内角和手记教学目标1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

重点难点重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。

难点:探索、验证三角形内角和是180°的过程。

过程资源体验目标“学”与“教”创设问题情境课件出示:两个三角板遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。

这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?生: 45°、90°、45°。

生: 30°、90°、60°。

师:仔细观察,算一算这两个三角形的内角和是多少度?生:90°+45°+45°=180°。

生:90°+60°+30°=180°。

师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。

师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。

构建模型每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)课件学生自己剪的一个任意三角形大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。

四年级下册数学教案-第二单元第3课时-探索与发现:三角形内角和10|北师大版

四年级下册数学教案-第二单元第3课时-探索与发现:三角形内角和10|北师大版

四年级下册数学教案第二单元第3课时-探索与发现:三角形内角和一、教学目标1. 让学生通过观察、操作和推理,探索并发现三角形的内角和是180度。

2. 培养学生的空间观念和推理能力,提高学生运用数学知识解决实际问题的能力。

3. 培养学生合作交流、积极思考的良好学习习惯。

二、教学重点1. 探索并发现三角形的内角和是180度。

2. 能用三角形的内角和解决实际问题。

三、教学难点1. 理解并掌握三角形的内角和是180度。

2. 能用三角形的内角和解决实际问题。

四、教学过程1. 导入新课通过提问的方式引导学生回顾三角形的定义和特性,为新课的学习做好铺垫。

2. 探索发现(1)让学生拿出准备好的三角形模型,观察三角形的内角,并试着计算三角形的内角和。

(2)学生分组讨论,每组选一个代表汇报计算结果和发现。

(3)教师引导学生总结三角形的内角和是180度。

3. 实践应用(1)出示一些实际问题,让学生运用三角形的内角和解决。

(2)学生独立完成,教师巡回指导。

4. 总结提升让学生用自己的话说一说本节课的学习收获,教师及时点评并总结。

五、课后作业1. 让学生回家后,用三角形的内角和解决一些实际问题,巩固所学知识。

2. 预习下一节课的内容。

六、教学反思本节课通过观察、操作和推理,让学生自主探索并发现三角形的内角和是180度,培养了学生的空间观念和推理能力。

在实践应用环节,学生能够运用所学知识解决实际问题,提高了学生运用数学知识解决实际问题的能力。

总体来说,本节课达到了预期的教学目标,但也存在一些不足之处,如部分学生在探索过程中对三角形的内角和概念理解不够深入,需要在今后的教学中加强引导和讲解。

重点关注的细节:探索并发现三角形的内角和是180度。

详细补充和说明:一、导入新课的补充说明在导入新课环节,教师可以通过提出一些与三角形相关的生活实例,例如:“我们常见的三角形的标志、图形有哪些?”、“三角形的特性有哪些?”等问题,引导学生回顾三角形的定义和特性。

小学四年级数学《探索与发现(一)三角形内角》教案模板五篇

小学四年级数学《探索与发现(一)三角形内角》教案模板五篇

小学四年级数学《探索与发现(一)三角形内角》教案模板五篇“三角形内角和”的度数推理是三角形中的一个重要环节,也是“空间与图形”领域中的重要内容之一,下面就是小编给大家带来的小学四年级数学《探索与发现(一)三角形内角》教案模板,欢迎大家阅读!小学四年级数学《探索与发现(一)三角形内角》教案模板一教学目标:1、掌握三角形内角和是180 ,并能应用这一规律解决一些实际问题。

2、让学生经历“猜想、动手操作、直观感知、探索、归纳、应用”等知识形成的过程,掌握“转化”的数学思想方法,培养学生动手实践能力,发展学生的空间思维能力。

3、在活动中,让学生体验主动探究数学规律的乐趣,体验数学的价值,激发学生学习数学的热情,同时使学生养成独立思考的好习惯。

教学重点:让学生经历“三角形内角和是180度”这一知识的形成、发展和应用的全过程。

教学难点:三角形内角和的探索与验证。

教学准备:量角器各种类型的三角形(硬的纸板) 三角板教学过程:一、设疑激趣,导入新课师:今天老师给大家带来了一位朋友(课件)出示三角形,师:对于三角形你有哪些认识与了解。

生:三角形有锐角三角形、直角三角形、钝角三角形生:由三条线段围成的平面图形叫三角形。

师:介绍内角、内角和三角形中每两条边组成的角叫做三角形的内角。

师:三角形有几个内角。

生:三个。

师:这三个角的和,就叫做三角形的内角和。

你知道三角形内角和是多少度?生1:我通过直角三角板知道的生2:我通过长方形中四个角都是直角,是360度,三角形是长方形的一半,所以是180度生3:我预习了,三角形内角和就是180度)师:是不是向他们说的一样,所有的三角形内角和都是180度呢?二、自主探索,进行验证师:你打算怎样验证呢?生1用量角器量出每个角的度数,再加一加看看是不是180度生2:把三角形撕下来师:怎么撕?象这样撕吗?(作乱撕状),能说的详细些具体些吗? 生2:(补充),把三个角撕下来,拼在一起,看能不能拼成一个平角生3:把三个角顺次画下来也可以生4:拼一拼的方法师:好!同学们想出了这么多办法,下面就用你喜欢的方法验证师:CAI多媒体课件展示操作要求:合作探究:1、每四人一组,每组至少选两个三角形,用你喜欢的方法验证2、看那个小组验证的方法新、方法多师:在巡视,并进行个别操作指导三、交流探索的方法和结果孩子们探索的方法可能有三个:生1:一是用量角器量各个角,然后再算出三角形中三个角的度数和,用这种方法求的结果可能是180度也可能比180度小一些,也可能比180度大一些。

《三角形内角和》数学教案设计

《三角形内角和》数学教案设计

《三角形内角和》數學教案設計标题:《三角形内角和》數學教案設計一、教学目标:1. 学生能理解和掌握三角形的内角和定理。

2. 学生能够通过实验操作,观察并发现三角形内角和等于180度的规律。

3. 培养学生的空间想象能力、逻辑推理能力和动手操作能力。

二、教学重点和难点:教学重点:理解并掌握三角形内角和定理。

教学难点:通过实验操作,发现并理解三角形内角和等于180度的规律。

三、教学过程:1. 引入新课:教师可以通过提问:“同学们,你们知道三角形有几条边,几个角吗?”引导学生复习三角形的基本概念。

然后提出问题:“那么,一个三角形的三个内角加起来是多少度呢?”,引发学生思考,引入新课。

2. 新课讲解:教师可以利用教具或PPT展示,先让学生自己尝试测量不同类型的三角形的内角,并记录下来。

然后,教师引导学生观察数据,发现三角形内角和总是等于180度的规律。

最后,教师给出三角形内角和定理的定义和证明方法。

3. 实验操作:教师可以让学生分组进行实验,每组准备一些不同类型的三角形纸片,用量角器测量每个三角形的内角,验证三角形内角和是否等于180度。

4. 巩固练习:教师提供一些题目,让学生运用所学知识解题,以巩固对三角形内角和定理的理解和掌握。

5. 课堂小结:教师带领学生回顾本节课的内容,总结三角形内角和定理,强调其在实际生活中的应用。

四、作业布置:安排一些与三角形内角和相关的习题,要求学生独立完成,以检验他们对本节课内容的理解程度。

五、教学反思:在课程结束后,教师需要反思教学效果,看看是否达到了预期的教学目标,对于教学过程中出现的问题,应该如何改进等。

以上就是关于《三角形内角和》的数学教案设计,希望对您有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“探索与发现(一)三角形内角和”教学设计
太阳小学文维生
教学目标
知识与技能:通过小组合作,运用直观操作的方法,探索并发现三角形内角和等于180°能应用三角形内角和的性质解决一些简单问题。

过程与方法:经历亲自动手实践、探索三角形内角和的过程,体会运用“量一量”、“算一算”、“拼一拼”、“折一折”进行验证的数学思想方法。

情感态度与价值观:使孩子们在数学活动中获得成功的体验,增强自信心。

培养学生的创新意识、探索精神和实践能力,在学生亲自动手实践和归纳中,感受理性的美。

教学重点、难点
教学重点:学生经历“探究三角形内角和”的全过程,并归纳概括。

教学难点:掌握探究方法,学会用“转化”的数学思想探究三角形内角和。

教学过程
一、故事导入:
1、同学们,大家喜欢听故事吗,我给大家讲个小故事,图形王国的一些三角形在一起聚会,可是它们却因为内角和的问题争吵了起来,(出示一大一小两个三角形)我的个子比你大,我的内角和就比你大,小三角形听了很不高兴,说:“内角和的大小跟个子有关吗?”大三角形说,要不我们找个裁判评评理,看谁的内角和大。

师:故事讲完啦,这两三角形究竟为了什么事而吵架?
生:他们因为内角和的大小在争吵。

师:那么什么是三角形的内角和?(板书:三角形内角和)
(出示幻灯片)我们要怎么做才能知道三角形的内角和是多少呢?通过这节课的学习,相信每位同学都能做个公平的裁判。

二、探索新知:
1、请同学们拿出导学案完成预习自测。

(学生口述结果。


师:(出示一副三角尺)这是一副三角尺,它们都是什么形状?每块三角尺的三个角分别是多少度?
生:它们都是直角三角形,(拿起等腰的三角尺)这块三角尺三个角的度数分别是45°、45°和90°;另一块三角尺的三个角分别是30°、60°、90°。

师:这两个三角形三个内角的和分别是多少度?
生:都是180°。

师:大家猜想一下其他的三角形的内角和是多少度?是不是也一样呢?
2、下面同学们接着完成“学案引导,自主学习”。

学生活动后,反馈给组长:你测量的三角形三个角分别是多少度?它的内角和是多少度?
生1:我测量的三角形三个内角分别是:()度、31()度、()度,它的内角和是180度。

师:组长班内展示你们组的结果:我们组了什么?
组长:我们组的每个三角形的内角和都是180度。

(可以抽2-3个组展示)师:从这一现象中,你能猜想一下,三角形的内角和可能存在着什么规律?
生1:我猜想三角形的内角和是180°。

师:是不是钝角三角形的内角和比180°大,并且大的三角形内角和大。

生1:不对。

我画的是一个钝角三角形,但它的内角和也是180°。

生2:三角形的内角和与大小无关,只与角的大小有关系。

师:他们说的对不对啊?(没有人举手)由猜想得出的结论往往是不可靠的,需要我们进一步去验证,现在大家就来动手验证一下吧。

2、我们用先量后加的办法证明了三角形的内角的和是180度左右。

除了先量后加的办法,还有其他的办法吗?
师:怎样验证“三角形的内角和等于180°”呢?请同学们先在小组里讨论讨论,可以怎样进行验证?再选择合适的材料,以四人小组为单位进行验证。

比一比,哪个组验证的方法多,有创意。

学生分小组活动,教师参与学生的活动,并给予必要的指导。

师:哪个小组先来汇报,你们是怎样验证的?
预设:小组1:我们小组每个人用量角器量课本后面的三角形,量出各个三角形的内角度数,再加一加,最后每个三角形的内角和都是180度,因此我们认为三角形内角和是180度这一结论是正确的。

小组2:我们小组把三角形的三个内角拼在一起,(边说边演示)我们发现三角形的三个内角正好拼成了一个平角,所以我们也认为三角形内角和是180
度这一结论是对的。

小组3:我们小组采用了折一折的方法。

我们将正方形纸沿对角线对折,这样,就折成了两个大小一样的三角形。

因为正方形的四个直角的和是360°,所以三角形的内角和就是它的一半,是180度。

小组4:我们小组采用的是拼一拼的方法。

我们将两个完全一样的三角形拼成了一个长方形,长方形的内角和360°,所以三角形的内角和就是它的一半,是180°。

师:同学们说的都很对,现在大家一起看黑板(出示课件,撕一撕,折一折)黑板上的方法与同学们的方法一样,同学们真是太聪明了。

引导学生小结:最终证明:三角形的内角的和是180度。

3、除了上述办法,我们还可以用计算机来验证三角形内角和是180度。

(出示白板).不论三角形怎样变化,三个内角的和始终是180度。

升入初中我们还会学习更严密的方法来证明三角形内角和是180度。

师:现在我们回到课堂开始的问题,请同学们给大小三角形做一个公平的裁判,到底谁的内角和大?
生:一样大,他们的内角和都是180°。

引导探究,拓展延伸
师:知道了三角形的内角和等于180°,就可以运用它去解决一些问题。

1、完成课本P25的试一试。

2、我是一个直角三角形,我的两个锐角之和是()度。

3、课本P26页6题
练习巩固,达标测评
1、填空。

(1)任意一个三角形,不论大小或形状它们的内角和都是()°。

(2)在一个直角三角形中,已知一个锐角是25度,另一个锐角是()。

2、我会判断。

(1)一个三角形的三个内角度数分别是80°、75°、24°。

()
(2)一个大三角形分成两个小三角形,每个小三角形的内角和都是90°。

()(3)钝角三角形的两个锐角之和一定小于90°()
四、课堂小结
师:这节课你有什么收获?是怎么获得这一知识的?
师:同学们今天的表现真棒,很高兴今天能与你们共同来上这节课,在今后的学习中希望同学们一样能这么优秀,同学们下课。

相关文档
最新文档