2013年江门佛山联考(佛山二模)文科数学试题和答案
2013年佛山市普通高中高二教学质量检测(文科)及答案

高二数学检测(文科)参考公式:球的表面积公式24S R π=,其中R 为球的半径.一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知点(1,2),(3,6)A B -,则过,A B 两点的直线斜率为A.1-B.12C. 1D. 22.已知物体的运动方程为s =t2+3t (t 是时间,s 是位移),则物体在时刻t =2时的速度为( )A.194B.174C.154D.1343. 若命题p :0x ∃>,2320x x -+>,则命题p ⌝为A. 0x ∃>,2320x x -+≤B. 0x ∃≤,2320x x -+≤C. 0x ∀>,2320x x -+≤D. 0x ∀≤,2320x x -+≤4.圆1O :2220x y x +-=和圆2O :2240x y y +-=的位置关系是A .外离B .相切C .相交D .内切5.若空间三条直线c b a 、、满足b a ⊥,c b //,则直线a 与c A. 一定平行 B. 一定垂直 C. 一定是异面直线 D.6.若集合{}0,A m =,{}1,2B=,则“1m =”是“{}0,1,2AB =”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 7.某几何体的三视图如图所示,该几何体的体积是 A. 8 B.83C. 4D.438.过双曲线221916x y -=的右焦点,且平行于经过一、三象限的渐近线的直线方程是 A. 34150x y +-= B. 34150x y --=C. 43200x y -+=D. 43200x y --=9.已知命题p :sin y x =,R x ∈是奇函数;命题q :已知,a b 为实数,若22a b =,则a b =.则下列判断正确的是A. p q ∧为真命题B. ()p q ⌝∨为真命题C. ()p q ∧⌝为真命题D. ()()p q ⌝∨⌝为假命题10.已知1F 、2F 分别是椭圆()222210x y a b a b+=>>的左、右焦点,在直线x a =-上有一点P ,使112PF F F =,且o 21120=∠F PF ,则椭圆的离心率为A. 21B. 31C. 32D. 2正视图俯视图第7题图第16题图PBA MC二、填空题:本大题共4小题 ,每小题5分,满分20分. 11的球的表面积为 .12.若抛物线2y ax =的焦点坐标为()2,0 ,则实数a 的值为 .13.若直线210x y -+=平分圆01222=+-++my x y x 的面积,则m = .14.在棱长为4的正方体1111ABCD A B C D -中,E 、F 分别为棱1AA 、11D C 上的动点,点G 为正方形11B BCC 的中心. 则空间四边形AEFG 在该正方体各个面上的正投影所构成的图形中,面积的最大值为 .三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 15.(本小题满分12分)如图,已知四边形OABC 是矩形,O 是坐标原点,O 、A 、B 、C按逆时针排列,A 的坐标是),4AB =.(Ⅰ) 求点C 的坐标; (Ⅱ)求BC 所在直线的方程.16.(本小题满分13分)如图,在四棱锥P ABCD -中,四边形ABCD 为直角梯形,//AD BC ,90BAD ∠=︒,PA ⊥底面ABCD ,且2PA AD ==,1AB BC ==,M 为PD 的中点. (Ⅰ) 求证://CM 平面PAB ; (Ⅱ)求证:CD ⊥平面PAC .第15题图已知圆C 经过点(0,3)A 和(3,2)B ,且圆心C 在直线y x =上. (Ⅰ) 求圆C 的方程;(Ⅱ)若直线2y x m =+被圆C 所截得的弦长为4,求实数m 的值.18.(本小题满分14分)已知曲线C 上的任意一点到定点(1,0)F 的距离与到定直线1x =-的距离相等. (Ⅰ) 求曲线C 的方程;(Ⅱ)若曲线C 上有两个定点A 、B 分别在其对称轴的上、下两侧,且||2FA =,||5FB =,求原点O 到直线AB 的距离.如图,在底面为平行四边形的四棱柱1111ABCD A BC D -中,1D D⊥底面ABCD ,1AD =, 2CD =,60DCB ∠=︒.(Ⅰ) 求证:平面11A BCD ⊥平面11BDD B ; (Ⅱ)若1D D BD =,求四棱锥11D A BCD -的体积.20.(本小题满分14分)已知椭圆C 的中心在原点,焦点在坐标轴上,短轴的一个端点为()0,4B ,离心率35e =. (Ⅰ) 求椭圆C 的方程;(Ⅱ)若()0,0O 、()2,2P ,在椭圆上求一点Q 使OPQ ∆的面积最大.第19题图D CAA 1B 1C 1D 1。
【解析版】广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学(文)试题

2013年广东省江门、佛山市高考数学二模试卷(文科)
一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
..D
±
2
4.(5分)(2013•江门二模)为了解一片经济林的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出样本的频率分布直方图,那么在这100株树木中,底部周长小于110cm的株数是()
5.(5分)(2013•江门二模)函数f(x)=sin,x∈[﹣1,1],则()
=sin
=q,>
,再由>
a
8.(5分)(2013•江门二模)设m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:
①若α∥β,α∥γ,则β∥γ
②若α⊥β,m∥α,则m⊥β
③若m⊥α,m∥β,则α⊥β
④若m∥n,n⊂α,则m∥α
其中真命题的序号是()。
2013广东佛山二模数学试题及答案

2013广东佛山二模数学试题及答案一、选择题(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.的算术平方根为( )A.B.C.D.2.据济宁市旅游局统计,2012年春节约有359525人来济旅游,将这个旅游人数(保留三个有效数字)用科学计数法表示为( )A.3.59×B.3.60×C.3.5 ×D.3.6 ×3.下列运算正确的是( )A.B.C.D.4.如图,由几个小正方体组成的立体图形的左视图是( )5.下列事件中确定事件是( )A.掷一枚均匀的硬币,正面朝上B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有个球D.掷一枚六个面分别标有,,,,,的均匀正方体骰子,骰子停止转动后奇数点朝上6.若式子有意义,则x的取值范围为()A.x≥2B.x≠3C.x≥2或x≠3D.x≥2且x≠37.已知且,则的取值范围为( )A.B.C.D.8.二次函数的图像与图像的形状、开口方向相同,只是位置不同,则二次函数的顶点坐标是()A.( )B.( )C.( )D.( )9. 如图,P1是反比例函数在第一象限图像上的一点,点A1 的坐标为(2,0).若△P1O A1与△P2 A1 A2均为等边三角形,则A2点的坐标为()A.2 B.2 -1C.2 D.2 -110.在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,………按这样的规律进行下去,第2012个正方形的面积为()A. B.注意事项:1.第Ⅱ卷共6页.用0.5mm黑色墨水签字笔答在答题卡上.2.答卷前将密封线内的项目填写清楚.考试期间,一律不得使用计算器.第II卷(非选择题共70分)得分评卷人二、填空题(本大题共5个小题.每小题3分,共15分.把答案填在题中横线上)11.分解因式:2 2+4 +2=.12.当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为cm.13. 化简的结果是_______________.14.如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于15. 将边长为8cm的正方形ABCD的四边沿直线l向右滚动(不滑动),当正方形滚动两周时,正方形的顶点A所经过的路线的长是cm三、解答题(本大题共8个小题.共55分.解答应写出文字说明、证明过程或演算步骤)得分评卷人18. (本题满分6分)(1) (3分)一个人由山底爬到山顶,需先爬的山坡,再爬的山坡,求山的高度(结果可保留根号).BC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.你添加的条件是: .证明:。
广东省九大市区2013届高三数学 最新试题精选二模分类汇编5 数列 文

广东省2013届高三最新文科试题精选(21套含八大市区的二模等)分类汇编5:数列一、选择题1 .(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学文试题)设等比数列{}n a 的前n 项和为n S ,则“10a >”是“32S a >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2 .(广东省汕头市潮阳黄图盛中学2013届高三4月练习数学(文)试题)在数列{}n a 中,12a =,11ln(1)n n a a n+=++,则n a =( )A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++3 .(广东省肇庆市2013届高三4月第二次模拟数学(文)试题)各项互不相等的有限正项数列{}n a ,集合{},,2,1,...n a a a A = ,集合{(,)i j B a a =},,,1,i j i j a A a A a a A i j n ∈∈-∈≤≤,则集合B 中的元素至多有( )个.( )A .2)1(-n n B .121--nC .2)1)(2(-+n n D .1-n4 .(广东省湛江一中等“十校”2013届高三下学期联考数学(文)试题)如图,在区域}0,0|),{(≥≥y x y x 内植树,第一棵树在)1,0(1A 点,第二棵树在)1,1(1B 点,第三棵树在)0,1(1C 点,第四棵树在)0,2(2C 点,接着按图中箭头方向,每隔一个单位种一棵树,那么,第2011棵树所在的点的坐标是 ( )A .)44,13(B .)44,12(C .)43,13(D .)43,14(5 .(广东省湛江一中等“十校”2013届高三下学期联考数学(文)试题)在等差数列{}n a 中,0>n a ,且301021=+++a a a ,则65a a ⋅的最大值是( )A .3B .6C .9D .36 6 .(广东省珠海一中等六校2013届高三第一次联考数学(文)试题)如下图所示,将若干个点摆成三角形图案,每条边(包括两个端点)有(1,)n n n N *>∈个点,相应的图案中总的点数记为n a ,则233445201220139999a a a a a a a a ++++=( )A .20102011 B .20112012 C .20122013 D .20132012(一)必做题(11-13题) 7 .(广东省汕头市2013届高三3月教学质量测评数学(文)试题)在等差数列{a n }中,首项a 1=0,公差d≠0,若 a k =a 1+a 2+a 3++a 10,则k= ( ) A .45 B .46 C .47 D .48 8 .(广东省汕头市2013届高三3月教学质量测评数学(文)试题)某种动物繁殖数量少(只)与时间x(第x 年)的关系式为y = alog 2(x +1),设这种动物 第一年繁殖的数量为100只,则第15年它们繁殖的数量为 ( ) A .300 只 B .400 只 C . 500 只 D .600 只9 .(广东省韶关市2013届高三年级第一次调研测试数学文试题)设{a n }(n ∈N *)是等差数列,S n 是其前n项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误..的是 ( ) A .d <0 B .a 7=0 C .S 9>S 5 D .S 6与S 7均为S n 的最大值 10.(广东省惠州市2013届高三第一次模拟考试数学(文)试题)在数列1,2,2,3,3,3,4,4,4,4,中,第25项为 ( ) A .2 B .6 C .7 D .8 11.(2012年广东省深圳市沙井中学高三(文)高考模拟卷 )古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16这样的数成为正方形数.下列数中既是三角形数又是正方形数的是 ( ) A .1125 B .1024 C .289 D .1378 12.(2012年广东省深圳市沙井中学高三(文)高考模拟卷 )等比数列{}n a 的前n 项和为n S ,且32124a a a ,,成等差数列,==411S a 则若, ( )A .7B .8C .15D .16二、填空题13.(广东省潮州市2013届高三第二次模拟考试数学(文)试题)已知等差数列{}n a 的首项11=a ,前三项之和93=S ,则{}n a 的通项____=n a .14.(广东省广州市2013届高三4月综合测试(二)数学文试题(WORD 版))数列}{n a 的项是由1或2构成,且首项为1,在第k 个1和第1k +个1之间有21k -个2,即数列}{n a为:1,2,1,2,2,2,1,2,2,2,2,2,1,,记数列}{n a 的前n 项和为n S ,则20S =___;2013S =___.15.(广东省深圳市2013届高三第二次调研考试数学文试题)已知公比为2的等比数列{}n a 中,2581114172013a a a a a a a ++++++=,则该数列前21项的和21S =___________.16.(广东省肇庆市2013届高三4月第二次模拟数学(文)试题)在等差数列{n a }中,152533,66a a ==,则35a =________.17.(广东省珠海一中等六校2013届高三第一次联考数学(文)试题)若a ,b ,c 成等比数列,则函数c bx ax x f ++=2)(的图像与x 轴交点的个数为_______.18.(广东省梅州市2013届高三3月总复习质检数学(文)试题)设等比数列{n a }的公比q=2,前n 项和为n S ,则42S a =___ 19.(广东省茂名市实验中学2013届高三下学期模拟(一)测试数学(文)试题)公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是3a 与7a 的等比中项,832S =,则10S 等于_______________.20.(广东省惠州市2013届高三第一次模拟考试数学(文)试题)若等比数列{n a }中54a =,则28a a ⋅等于_________. 三、解答题21.(广东省潮州市2013届高三第二次模拟考试数学(文)试题)设数列{}n a 的前n 项和为n S ,11=a ,且对任意正整数n ,点) , (1n n S a +在直线022=-+y x 上. ⑴求数列{}n a 的通项公式;⑵若2n n na b =,求数列{}n b 的前n 项和.22.(广东省广州市2013届高三4月综合测试(二)数学文试题(WORD 版))在等差数列{}n a 中,125a a +=,37a =,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S .(1)求数列{}n a 的通项公式;(2)是否存在正整数m 、n ,且1m n <<,使得1S 、m S 、n S 成等比数列?若存在,求出所有符合条件的m 、n 的值;若不存在,请说明理由.23.(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学文试题)环保刻不容缓,或许人类最后一滴水将是自己的泪水.某地水资源极为紧张,且受工业污染严重,预计20年后该地将无洁净的水可用.当地决定重新选址建设新城区,同时对旧城区进行拆除.已知旧城区的住房总面积为64a 2m ,每年拆除的数量相同;新城区计划第一年建设住房面积a 2m ,前四年每年以100%的增长率建设新住房,从第五年开始,每年都比上一年增加a 2m .设第n (1,N n n ≥∈且)年新城区的住房总面积为n a 2m ,该地的住房总面积为n b 2m .(1)求{}n a 的通项公式;(2)若每年拆除4a 2m ,比较+1n a 与n b 的大小.24.(广东省茂名市2013届高三4月第二次高考模拟数学文试题(WORD 版))数列{}n a 的前n 项和n S ,1a t =,点(n S ,1n a +)在直线y=2x+1上,( ,2,1=n ) (1) 若数列{}n a 是等比数列,求实数t 的值; (2) 设n b =31(1)log n n a ++,数列{1}nb 前n 项和n T .在(1)的条件下,证明不等式n T <1; (3) 设各项均不为0的数列{}nc 中,所有满足10i i c c +<的整数i 的个数称为这个数列{}n c 的“积异号数”, 在(1)的条件下,令n c =4n nna na -( ,2,1=n ),求数列{}n c 的“积异号数”25.(广东省汕头市潮阳黄图盛中学2013届高三4月练习数学(文)试题)等差数列{}n a 的各项均为正数,13a =,前n 项和为n S ,{}n b 为等比数列, 11b =,且2264,b S = 33960b S =. (1)求n a 与n b ; (2)求和:12111nS S S +++.26.(广东省韶关市2013届高三4月第二次调研测试数学文试题)已知各项均为正数的等比数列{}n a 的首项12a =,n S 为其前n 项和,若15S ,3S ,23S 成等差数列. (1)求数列{}n a 的通项公式; (2)设2log n n b a =,11n n n c b b +=,记数列{}n c 的前n 项和n T . 若对n N *∀∈,(4)n T k n ≤+ 恒成立,求实数k 的取值范围.27.(广东省深圳市2013届高三第二次调研考试数学文试题)各项为正数的数列{}n a 满足2421n n n a S a =--(*n ∈N ),其中n S 为{}n a 前n 项和. (1)求1a ,2a 的值;(2)求数列{}n a 的通项公式;(3)是否存在正整数m 、n ,使得向量22n a m +=(,)a 与向量53n n a a +=-+(,)b 垂直?说明理由.28.(广东省湛江市2013届高三4月高考测试(二)数学文试题(WORD 版))已知函数f(x)=x 2-2x+4,数列{n a }是公差为d 的等差数列,若1(1)a f d =-,3(1)a f d =+ (1)求数列{n a }的通项公式;29.(广东省肇庆市2013届高三4月第二次模拟数学(文)试题)设{}n a 为等差数列,n S 为数列{}n a 的前n 项和,已知7157,75S S ==. (1)求数列{}n a 的通项公式n a ;(2)设82na nb =⋅,n T 为数列{}n n b +的前n 项和,求n T .30.(广东省湛江一中等“十校”2013届高三下学期联考数学(文)试题)已知等差数列{}n a 的首项1a =1,公差0d >,且第2项、第5项、第14项分别为等比数列{}n b 的第2项、第3项、第4项. (1)求数列{}n a 与{}n b 的通项公式; (2)设数列{}n c 对任意n ∈N +均有3121123...n n nc c c c a b b b b +++++=成立,求1232012...c c c c ++++.31.(广东省珠海一中等六校2013届高三第一次联考数学(文)试题)已知数列{}na是各项均不为0的等差数列,公差为d ,n S 为其前n 项和,且满足221n n a S -=,n *N ∈.数列{}n b 满足11n n n b a a +=⋅,n *N ∈,n T 为数列{}n b 的前n 项和.(1)求数列{}n a 的通项公式n a 和数列{}n b 的前n 项和n T ;(2)若对任意的n *N ∈,不等式8(1)nn T n λ<+⋅-恒成立,求实数λ的取值范围;(3)是否存在正整数,m n (1)m n <<,使得1,,m n T T T 成等比数列?若存在,求出所有,m n 的值;若不存在,请说明理由.2013届高三六校第一次联32.(广东省汕头市2013届高三3月教学质量测评数学(文)试题)数列{a n }的前S n 项和为存在常数A ,B ,C ,使得a n +S n =A 2 +Bn + C 对任意正整数 N 都成立.(1)若,C = 1,设b n =a n +n,求证:数列{b n }是等比数列;(2)在(1)的条件下,c n =(2n+1)b n ,数列{c n }的前n 项和为T n ;,证明:T n <5;(3)若C= 0, {a n }是首项为1的等差数列,若对任意的正整数n 都成立,求实数λ的取值范围.(注:)33.(广东省梅州市2013届高三3月总复习质检数学(文)试题)已知函数213()22f x x x =+,数列{n a }的前n 项和为n S ,点(,)n n S (*)n N ∈都在函数y=f(x)的图象上.(1)求数列{n a }的通项公式n a ; (2)令12nn n a b +=,n T 是数列{n b }的前n 项和,求n T ; (3)令34.(广东省韶关市2013届高三年级第一次调研测试数学文试题)设等差数列}{n a 的公差0≠d ,等比数列}{n b 公比为q ,且11a b =,33b a =,57b a = (1)求等比数列}{n b 的公比q 的值;(2)将数列}{n a ,}{n b 中的公共项按由小到大的顺序排列组成一个新的数列}{n c ,是否存在正整数,,λμω(其中λμω<<)使得,,λμω和,,c c c λμωλμω+++都构成等差数列?若存在,求出一组,,λμω的值;若不存在,请说明理由.韶关市2013届高三年级第一次调研(期末)测35.(广东省揭阳市2013届高三3月第一次高考模拟数学(文)试题)设}{n a 是各项都为正数的等比数列,{}n b 是等差数列,且111,a b ==,3513,a b +=5321.a b +=(1)求数列}{n a ,{}n b 的通项公式;(2)设数列}{n a 的前n 项和为n S ,求数列{}n n S b ⋅的前n 项和n T .36.(广东省茂名市实验中学2013届高三下学期模拟(一)测试数学(文)试题)数列{}n b 的首项11b =,前n 项和为n S ,对任意的n N *∈,点(,)n n S ,(4,10)都在二次函数2y ax bx =+的图像上,数列{}n a 满足2n nnb a =. (1) 求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式; (2) 令11(1)1n nc n a =-⋅+,1231111n nR c c c c =++++,求对n N *∀∈,n m R >都成立的最小正整数m .37.(广东省惠州市2013届高三第一次模拟考试数学(文)试题)已知数列{}n a 的相邻两项1,n n a a +是关于x 的方程220()n n x x b n N *-+=∈的两根,且11a =.(1)求证: 数列123n n a ⎧⎫-⨯⎨⎬⎩⎭是等比数列;(2)设n S 是数列{}n a 的前n 项和,求n S ;(3)问是否存在常数λ,使得0n n b S λ->对任意n N *∈都成立,若存在,求出λ的取值范围; 若不存在,请说明理由.惠州市2013届高三第一次模拟考试试38.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(文)试题)设数列{}n a 的前n 项和为n S ,已知12a =,28a =,()11452n n n S S S n +-+=≥,n T 是数列{}2n a log 的前n 项和. (1)求数列{}n a 的通项公式; (2)求n T ; (3)求满足2311110101112013n T T T ⎛⎫⎛⎫⎛⎫--⋅⋅-> ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的最大正整数n 的值.39.(2013年广东省佛山市普通高中高三教学质量检测(一)数学(文)试题)数列{}n a 的前n 项和为22n n S a =-,数列{}n b 是首项为1a ,公差不为零的等差数列,且1311,,b b b 成等比数列.(1)求123,,a a a 的值;(2)求数列{}n a 与{}n b 的通项公式; (3)求证:3121235nnb b b b a a a a ++++<. 40.(2012年广东省深圳市沙井中学高三(文)高考模拟卷 )已知数列{}na 满足:13a =,11232,n n n n a a a a n N ++++=+∈,记21n n n a b a -=+. (1) 求证:数列{}n b 是等比数列;(2) 若n t a 4⋅≤对任意n N +∈恒成立,求t 的取值范围;(3)证明:.432321+>+⋅⋅⋅+++n a a a a n广东省2013届高三最新文科试题精选(21套含八大市区的二模等)分类汇编5:数列参考答案一、选择题 1. C2. A 211ln(1)1a a =++,321ln(1)2a a =++,,11ln(1)1n n a a n -=++- 1234ln()()()()2ln 1231n na a n n ⇒=+=+- 3. A 解析:利用特殊值法进行求解.设集合{}1,2,3A =,则由{(2,1),(3,2),(3,1)}B =知C 不正确;设集合{}1,2,3,4A =,则由{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)}B =知B,D 不正确;故选A4. A5. C6. B7. B8. B9. C10. 【解析】数字共有n 个,当数字6n =时,有12345621+++++=项,所以第25项是7,故选C. 11. A 12. C 二、填空题13. 12-n 14. 36;3981 15.91216. 99解析1:由11351143313.223.234 3.3992466 3.3a d a a a d d +==-⎧⎧⇒⇒=-+⨯=⎨⎨+==⎩⎩解析2: 25153.32515a a d -==-,35251099a a d =+=.解析2:由等差数列的性质可知152535,,a a a 成等差数列,所以25153535299a a a a =+⇒= 17. 0 18.15219. 60 20. 16 三、解答题21.解:⑴因为点) , (1n n S a +在直线022=-+y x 上,所以0221=-++n n S a ,当1>n 时,0221=-+-n n S a ,两式相减得02211=-+--+n n n n S S a a ,即0221=+-+n n n a a a ,n n a a 211=+又当1=n 时,022221212=-+=-+a a S a ,122121a a ==所以{}n a 是首项11=a ,公比21=q 的等比数列 , {}n a 的通项公式为1)21(-=n na . ⑵由⑴知,124-==n n n n na b ,记数列{}n b 的前n 项和为n T ,则 12244143421--+-++++=n n n n n T , 2344143244--+-++++=n n n n n T ,两式相减得 123441414153----++++=n n n n n T ,14343316-⨯+-n n , 所以,数列{}n b 的前n 项和为14943916-⨯+-=n n n T . 22. (本小题主要考查等差数列、裂项法求和等基础知识,考查运算求解能力和推理论证能力等,本小题满分14分)解:(1)设等差数列{}n a 的公差为d ,因为1235,7.a a a +=⎧⎨=⎩即1125,27.a d a d +=⎧⎨+=⎩ 解得11,3.a d =⎧⎨=⎩所以()()1113132n a a n d n n =+-=+-=-.所以数列{}n a 的通项公式为32n a n =-*()n ∈N (2)因为()()111111323133231n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭, 所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和 1223341111111n n n n n S a a a a a a a a a a -+=+++++ 1111111111111113434737103353233231n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪---+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 11133131n n n ⎛⎫=-= ⎪++⎝⎭ 假设存在正整数m 、n ,且1m n <<,使得1S 、m S 、n S 成等比数列,则21m n S S S = 即2131431m n m n ⎛⎫=⨯ ⎪++⎝⎭ 所以224361m n m m =-++. 因为0n >,所以23610m m -++>.即23610m m --<.因为1m >,所以113m <<+<. 因为*m ∈N ,所以2m = 此时22416361m n m m ==-++ 所以存在满足题意的正整数m 、n ,且只有一组解,即2m =,16n =23. ⑴设第n 年新城区的住房建设面积为n λ2m ,则当14n ≤≤时,12n n a λ-=;当5n ≥时,(4)n n a λ=+所以, 当14n ≤≤时,(21)n n a a =-当5n ≥时,2489(4)n a a a a a a n a =+++++++ (29222)n n a +-=(列式1分) 故2(21)(14),922(5).2n n a n a n n a n ⎧-≤≤⎪=⎨+-≥⎪⎩ ⑵13n ≤≤时,11(21)n n a a ++=-,(21)644n n b a a na =-+-,显然有1n n a b +<4n = 时,1524n a a a +==,463n b b a ==,此时1n n a b +<516n ≤≤ 时,2111122n n n a a ++-=,29226442n n n b a a na +-=+-(每式1分) 1(559)n n a b n a +-=-所以,511n ≤≤时,1n n a b +<;1216n ≤≤时,1n n a b +>.17n ≥时,显然1n n a b +> (对1-2种情况给1分,全对给2分)故当111n ≤≤时,1n n a b +<;当 12n ≥时,1n n a b +>24.25. (1)设{}n a 的公差为d ,{}n b 的公比为q ,则d 为正整数,3(1)n a n d =+-,1n n b q -=依题意有23322(93)960(6)64S b d q S b d q ⎧=+=⎨=+=⎩① 解得2,8d q =⎧⎨=⎩或65403d q ⎧=-⎪⎪⎨⎪=⎪⎩(舍去) 故132(1)21,8n n n a n n b -=+-=+=(2)35(21)(2)n S n n n =++++=+ ∴121111111132435(2)n S S S n n +++=++++⨯⨯⨯+ 11111111(1)2324352n n =-+-+-++-+ 1111(1)2212n n =+--++32342(1)(2)n n n +=-++ 26.解:(1) 15S ,3S ,23S 成等差数列∴ 312253S S S =+即21111112()53()a a q a q a a a q ++=++化简得 2260q q --=解得:2q =或32q =- 因为数列{}n a 的各项均为正数,所以32q =-不合题意 所以{}n a 的通项公式为:2n n a =(2)由2log n n b a =得 2log 2n n b =n =∴ 11n n n c b b +=111(1)1n n n n ==-+- ∴ 1111112231n T n n =-+-++-+111n =-+1n n =+ (4)1n k n n ≤++ ∴ (1)(4)n k n n ≥++254n n n =++ 145n n=++ 445259n n n n ++≥⋅+=,当且仅当4n n=,即2n =时等号成立 ∴11495n n≤++ ∴ k 的取值范围1[,).9+∞ 27.28.解:(1)1(1)a f d =-=d 2-4d+7,3(1)a f d =+=d 2+3, 又由312a a d =+,可得d=2,所以,1a =3,na =2n+1 (2)n S =(321)(2)2n n n n ++=+,11111()(2)22n S n n n n ==-++所以,1211111111111(1)2324352n S S S n n ++⋅⋅⋅+=-+-+-+⋅⋅⋅+-+ =1311()2212n n --++≥1311()221112--++=1329.解: ( 1) 设等差数列{}n a 的公差为d ,则11(1)2n S na n n d =+-,∵7157,75S S ==, ∴⎩⎨⎧=+=+.7510515,721711d a d a ∴121a d =-⎧⎨=⎩. ∴1(1)213n a a n d n n =+-=-+-=-(2)由(1)得3382222n a n n n b -=⋅=⨯= ∴231222322n n T n =++++++++ 23(123)(2222)n n =+++++++++12(12)(1)212nn n -=++-212222n nn+=++-30. .解:(1)由已知得2b =2a =1d +, 3b =5a 14d =+,2b =14a 113d =+,由于{}n b 为等比数列,所以2324b b b =⋅.∴2(14)d +=(1)(113)d d ++, 0,2d d >∴=∴21n a n =- . zxxk 又2b =2a =3,3b = 5a =9 ,∴数列{n b }的公比为3,∴n b =3⋅23n -=13n -(2)由11c b +22c b ++nnc b =1n a + , (1)当1n =时,11c b =2a =3, ∴1c =3当1n >时,11c b +22c b ++11n n c b --= n a , (2) 由(1)-(2)得 nn c b =1n a +-n a =2 ,∴n c =2n b =2⋅13n -, (2)n ≥∴n c =13,123,2n n n -=⎧⎨⋅≥⎩∴123c c c +++2012c =3+2⋅3+2⋅23++2⋅20113=1+2⋅03+2⋅3+2⋅23++2⋅20113=1+2⋅20121313--=2012331.解:(1)在221n n a S -=中,令1=n ,2=n , 得⎪⎩⎪⎨⎧==,,322121S a S a 即⎪⎩⎪⎨⎧+=+=,33)(,121121d a d a a a解得11=a ,2=d ,21n a n ∴=- 又21n a n =-时,2n S n =满足221n n a S -=,21n a n ∴=- 111111()(21)(21)22121n n n b a a n n n n +===--+-+,111111(1)2335212121n n T n n n ∴=-+-++-=-++(2)①当n 为偶数时,要使不等式8(1)n n T n λ<+⋅-恒成立,即需不等式(8)(21)8217n n n n n λ++<=++恒成立828n n +≥,等号在2n =时取得.∴此时λ 需满足25λ<②当n 为奇数时,要使不等式8(1)n n T n λ<+⋅-恒成立,即需不等式(8)(21)8215n n n n nλ-+<=--恒成立 82n n -是随n 的增大而增大, 1n ∴=时82n n -取得最小值6-. ∴此时λ 需满足21λ<-.综合①、②可得λ的取值范围是21λ<-(3)11,,32121m n m n T T T m n ===++, 若1,,m n T T T 成等比数列,则21()()21321m n m n =++, 即2244163m n m m n =+++. 由2244163m n m m n =+++,可得2232410m m n m -++=>,即22410m m -++>,∴11m -<<+又m ∈N ,且1m >,所以2m =,此时12n =.因此,当且仅当2m =, 12n =时,数列{}n T 中的1,,m n T T T 成等比数列[另解] 因为1136366n n n =<++,故2214416m m m <++,即22410m m --<,∴11m -<<+以下同上 ).32.33.34.解:(1)设11a b ==,a ,由题意⎪⎩⎪⎨⎧+=+=d a aq d a aq 6242 即⎪⎩⎪⎨⎧=-=-da aq da aq 62420,d ≠∴1q =±不合题意故311142=--q q ,解得22=q 2±=∴q (2)答:不存在正整数,,λμω(其中λμω<<)使得,,λμω和,,c c c λμωλμω+++均构成等差数列 证明:假设存在正整数,,λμω满足题意 设11a b ==,a 且m n b a =,故 1)1(-=-+m aqd n a ,又a a aq d =-=22 2a d =∴- 1)2(211-±=-+∴m n 即2112)1(1+-±=+m m n*1N n ∈+ 1(1)0m -∴±> 1221-=∴+m n m 为奇数,且令)(12*N k k m ∈-=,则2111(2k k m b a a ---=⋅=⋅a c n n 12-=∴若存在正整数,,λμω满足题意,则11122(2)(2)(2)a a a μλωμλωμλω---=+⎧⎨⋅+=⋅++⋅+⎩11222μλω--∴=+,又112222("")λωλωλω+--+≥===当且仅当时取又λμ≠,1122222λωμλω+--∴=+>又xy 2=在R 上为增函数,2λωμ+∴>,与题设2λωμ+=矛盾,∴假设不成立故不存在,,λμω满足题意35.解:(1)设数列}{n a 的公比为(0),q q >数列{}n b 的公差为d ,依题意得:421221(1')1413(2')d q d q ⎧++=⎪⎨++=⎪⎩(1')2(2')⨯-得422280q q --=22(4)(27)0q q ⇒-+=∵0q > ∴2q =,将2q =代入(1')得2d = ∴12,2 1.n n n a b n -==- (2)由题意得1122n n n T S b S b S b =+++11122123312()()()n n a b a a b a a a b a a a b =++++++++++1212121212(21)(21)(21)222()n n n n n b b b b b b b b b =-+-++-=⋅+⋅++⋅-+++令1212222,n n S b b b =⋅+⋅++⋅ -------------------------------------① 则231122222n n S b b b +=⋅+⋅++⋅------------------------------------②①-②得:12312222222(21)2,n n S n +-=+⋅+⋅+⋅--⋅2312(1222)(21)2n n S n +-=++++--2112[12(21)](21)2n n n -+=+---⋅ ∴1(23)26,n S n +=-⋅+又212(121)2n n n b b b n +-+++==,∴12(23)26n n T n n +=-⋅+- 36.解:(1)证明:∵11b =,∴11S =∴点(1,1),(4,10)都在二次函数2y ax bx =+的图像上,1,16410a b a b ∴+=+=,解得:11,22a b == ∴21122n S n n =+ 则2n ≥时,2111(1)(1)22n S n n -=-+- ∴2211111(1)(1)2222n n n b S S n n n n n -⎡⎤=-=+--+-=⎢⎥⎣⎦; 又11b =也适合,所以()n b n n N *=∈,则11n n b b --=∴数列{}n b 是首项为1,公差为1的等差数列 又2n n n b a =,∴2n n n a = (2)11211(1),112n n n n n n c n a n c +=-⋅=∴=++∴2312311112341+=+++,2222n n n n R c c c c +=+++……+①∴234+112341+++,22222n n n R +=…+② 两式相减,得:23111111122222n n n n R ++=++++-……,∴322n n nR +=- ∵30,,3,32n nn n N R m *+>∴∀∈<∴= 37. (1)证明:1,n n a a +是方程220()nn x x b n N *-+=∈两根,112nn n n n n a a b a a +-⎧+=∴⎨=⎩111111222(2)3331111222333n n n n n n n n n nn n n a a a a a a +++-⨯--⨯--⨯===--⨯-⨯-⨯ 故数列123n n a ⎧⎫-⨯⎨⎬⎩⎭是等比数列,首项121,33a -=公比为-1的等比数列 (2)由(1)得1112(1)33n n n a --⨯=⨯-,即12(1)3n nn a ⎡⎤=--⎣⎦ 123n n S a a a a =++++ {}1231231(2222)(1)(1)(1)(1)3n n ⎡⎤=+++--+-+-++-⎣⎦=12(12)1[1(1)]3121(1)n n ⎡⎤-----⎢⎥---⎣⎦ =11(1)12232n n +⎡⎤----⎢⎥⎣⎦(3)11211112(1)2(1)2(2)199n n n n n nn n n b a a ++++⎡⎤⎡⎤⎡⎤==--⨯--=---⎣⎦⎣⎦⎣⎦ 要使0n n b S λ->对任意n N *∈都成立,即2111(1)12(2)1220932n n n n λ++⎡⎤--⎡⎤------>⎢⎥⎣⎦⎣⎦(*)对任意n N *∈都成立 ①当n 为正奇数时,由(*)得2111(221)(21)093n n n λ+++---> 即111(21)(21)(21)093n n n λ++-+--> 1210,n +->1(21)3n λ∴<+对任意正奇数n 都成立.当且仅当1n =时,1(21)3n+有最小值1,1λ∴<②当n 为正偶数时,由(*)得2111(221)(22)093n n n λ++---->即2112(21)(21)(21)093n n n λ++---> 1210,n +-> 11(21)6n λ+∴<+对任意正偶数n 都成立.当且仅当2n =时,11(21)6n ++有最小值32,32λ∴<综上所述,存在常数λ,使得使得0n n b S λ->对任意n N *∈都成立,λ的取值范围是(,1)-∞38. (本小题主要考查等差数列、等比数列、数列求和等知识,考查分类与整合、化归与转化的数学思想方法,以及抽象概括能力、运算求解能力和创新意识)(1) 解:∵当2n ≥时,1145n n n S S S +-+=, ∴()114n n n n S S S S +--=- ∴14n n a a += ∵12a =,28a =, ∴214a a =∴数列{}n a 是以12a =为首项,公比为4的等比数列. ∴121242n n n a --=⋅=(2) 解:由(1)得:2122221n n a n log log -==-, ∴21222n n T a a a log log log =+++()1321n =+++-()1212n n +-=2n =(3)解: 23111111n T T T ⎛⎫⎛⎫⎛⎫--⋅⋅- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 22211111123n ⎛⎫⎛⎫⎛⎫=--⋅⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭222222222131411234n n ----=⋅⋅⋅⋅()()2222132********n n n ⋅⋅⋅⋅⋅⋅⋅-+=⋅⋅⋅⋅12n n+=令12n n +10102013>,解得:42877n < 故满足条件的最大正整数n 的值为287 39.解析:(1)∵22n n S a =-,∴当1n =时,1122a a =-,解得12a =;当2n =时,212222S a a a =+=-,解得24a =; 当3n =时,3123322S a a a a =++=-,解得38a =(2)当2n ≥时,111(22)(22)22n n n n n n n a S S a a a a ---=-=---=-,得12n n a a -=又11122a S a ==-,12a =,∴数列{n a }是以2为首项,公比为2的等比数列,所以数列{n a }的通项公式为2nn a =112b a ==,设公差为d ,则由1311,,b b b 成等比数列,得2(22)2(210)d d +=⨯+, 解得0d =(舍去)或3d =,所以数列}{n b 的通项公式为31n b n =- (3)令312123n n n b b b b T a a a a =++++123258312222nn -=++++, 121583122222n n n T --=++++, 两式式相减得1213333122222n n n n T --=++++-, ∴131(1)3135222512212n n n n n n T ---+=+-=--,又3502n n +>,故5n T <.-- 40. (1)证明:11232,n n n n a a a a +++=+∴2231++=+n n n a a a22222321+-=-++=-+n n n n n a a a a a ① ,2)1(4122311++=+++=++n n n n n a a a a a , ∴12411211+-⋅=+-++n n n n a a a a 即n n b b 411=+,且4112111=+-=a a b∴数列{}n b 是首项为41,公比为41的等比数列. (2)由(1)可知1241)41(411+-===-n n n n n a a b ∴14421-⋅+=n n n a由n n t a 4⋅≤得144124)14(421-+=-⋅+≥n n n n nt 易得14412-+n n 是关于n 的减函数. ∴431441214412=-+≤-+n n,∴43≥t . (3)2413322.41414n n n n na ⋅+==+>+-- 1222333333(2)(2)(2)2()444444n n n a a a n ∴++⋅⋅⋅+>++++⋅⋅⋅++=+++⋅⋅⋅+=11()3134221()2.144414n n n n n -+⋅=+-≥+-12332.4na a a a n ∴+++⋅⋅⋅+>+。
2013佛山一模(文数)【含答案--全WORD--精心排版】

2013年佛山市普通高中高三教学质量检测(一)数 学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生要务必填写答题卷上密封线内的有关项目.2.选择题每小题选出答案后,用铅笔把答案代号填在答题卷对应的空格内.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷和答题卡交回. 参考公式:棱锥的体积公式:13V Sh =. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 为虚数单位,则复数i2i+等于( ) A .12i 55+ B . 12i 55-+ C .12i 55- D .12i 55--2.命题“2,11x x ∀∈+≥R ”的否定是( )A .2,11x x ∀∈+<RB .2,11x x ∃∈+≤RC .2,11x x ∃∈+<RD .2,11x x ∃∈+≥R 3.某程序框图如图所示,该程序运行后,输出s 的值是( ) A .10 B .15 C .20 D .304.已知(1,2)=a ,(0,1)=b ,(,2)k =-c ,若(2)+⊥a b c ,则k =( ) A .2 B . 2- C .8 D .8-5.已知实数,x y 满足11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =-的最大值为( )A .3-B .12C .5D .66.已知集合{}2log (1)2M x x =-<,{}6N x a x =<< ,且()2,M N b =,则a b +=(A .4B .5C .6D .7 7.函数2()2xf x e x =+-在区间()2,1-内零点的个数为A .1B .2C .3D .48.已知双曲线的顶点与焦点分别是椭圆的22221y x a b+=(0a b >>)焦点与顶点,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为( ) A .13 B .12 C D .29.一长方体被一平面截去一部分后所剩几何体的正视图和俯视图如图所示,则侧视图可以为( )10.设二次函数2()4()f x ax x c x =-+∈R 的值域为[0,)+∞,则19c a+的最小值为( ) A .3 B .92C .5D .7 二、填空题:本大共5小题.考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市个数分别为4、12、8.若用分层抽样的方法抽取6个城市,则丙组中应抽取的城市数为 . 12.函数sin sin 3y x x π⎛⎫=+-⎪⎝⎭ 的最小正周期为 ,最大值是 . 13.1<<<;…则第5个不等式为 .(二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程)在极坐标系中,直线l 过点(1,0)且与直线3πθ=(ρ∈R )垂直,则直线l 极坐标方程为 . 15.(几何证明选讲)如图,M 是平行四边形ABCD 的边AB 的中点,直线l过点M 分别交,AD AC 于点,E F .若3AD AE =,则:AF FC = . 三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本题满分12分)如图,在△ABC 中,45C ∠=,D 为BC 中点,2BC =.记锐角ADB α∠=.且满足7cos 225α=-.(1)求cos α;(2)求BC 边上高的值.17.(本题满分12分)城市公交车数量太多容易造成资源的浪费,太少又难以满足乘客需求,为此,某市公交公司在某站台的60名候车乘客中随机抽取5组,如下表所示(单位:min ):(1)求这15名乘客的平均候车时间;(2)估计这60名乘客中候车时间少于10分钟的人数;(3)若从上表第三、四组的6人中选2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.18.(本题满分14分)如图所示,已知圆O 的直径AB 长度为4,点D 为线段AB 上一点,且13AD DB =,点C 为圆O 上一点,且BC =.点P 在圆O 所在平面上的正投影为点D ,PD BD =.F A B C D E MlB D A(1)求证:CD ⊥平面PAB ; (2)求点D 到平面PBC 的距离. 19.(本题满分14分)数列{}n a 的前n 项和为22n n S a =-,数列{}n b 是首项为1a ,公差不为零的等差数列,且1311,,b b b 成等比数列.(1)求123,,a a a 的值;(2)求数列{}n a 与{}n b 的通项公式; (3)求证:3121235nnb b b b a a a a ++++<.20.(本题满分14分)已知(2,0)A -,(2,0)B ,(,)Cm n . (1)若1m =,n =ABC ∆的外接圆的方程;(2)若以线段AB 为直径的圆O 过点C (异于点,A B ),直线2x =交直线AC 于点R ,线段BR 的中点为D ,试判断直线CD 与圆O 的位置关系,并证明你的结论.21.(本题满分14分)设函数1()x e f x x-=,0x ≠.(1)判断函数()f x 在()0,+∞上的单调性;(2)证明:对任意正数a ,存在正数x ,使不等式()1f x a -<成立.2013年佛山市普通高中高三教学质量检测(一)数学试题(文科)参考答案和评分标准二、填空题:本大共11.2 12.2π(2分)(3分) 13++< 14.2sin()16πρθ+=(或2cos()13πρθ-=、cos sin 1ρθθ=) 15.1:4三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.解析:(1)∵27cos 22cos 125αα=-=-,∴29cos 25α=,∵(0,)2πα∈,∴3cos 5α=. ----------5分 (2)方法一、由(1)得4sin 5α==,∵45CAD ADB C α∠=∠-∠=-,∴sin sin()sin coscos sin44410CAD πππααα∠=-=-=, -----------------9分 在ACD ∆中,由正弦定理得:sin sin CD ADCAD C =∠∠,∴1sin 5sin CD C AD CAD⋅∠===∠, ------------11分 则高4sin 545h AD ADB =⋅∠=⨯=. ---------12分 方法二、如图,作BC 边上的高为AH 在直角△ADH 中,由(1)可得3cos 5DB AD α==,则不妨设5,AD m = 则3,4DH m AH m ==-------8分 注意到=45C ∠,则AHC ∆为等腰直角三角形,所以CD DH AH +=,则134m m +=---------10分 所以1m =,即4AH = ----------12分17.解:(1)1(2.527.5612.5417.5222.51)15⨯+⨯+⨯+⨯+⨯1157.5=10.515=⨯min .-----------------3分 (2)候车时间少于10分钟的概率为3681515+=,---4分,故候车时间少于10分钟的人数为8603215⨯=人.--6分 (3)将第三组乘客编号为1234,,,a a a a ,第四组乘客编号为12,b b .从6人中任选两人有包含以下基本事件:1213141112(,),(,),(,),(,),(,)a a a a a a a b a b ,23242122(,),(,),(,),(,)a a a a a b a b ,343132(,),(,),(,)a a a b a b , 4142(,),(,)a b a b ,12(,)b b , -----------10分其中两人恰好来自不同组包含8个基本事件,所以,所求概率为815. ------------12分 18.解:(Ⅰ)法1:连接CO ,由3AD DB =知,点D 为AO 的中点, 又∵AB 为圆O 的直径,∴AC CB ⊥BC =知,60CAB ∠=, ∴ACO ∆为等边三角形,从而CD AO ⊥.-------------3分∵点P 在圆O 所在平面上的正投影为点D ,∴PD ⊥平面ABC , 又CD ⊂平面ABC ,∴PD CD ⊥,-----------------5分 由PD AO D =得,CD ⊥平面PAB .-----------------6分法2:∵AB 为圆O 的直径,∴AC CB ⊥,∵在Rt ABC ∆中,4AB =, ∴由3AD DB =BC =得,3DB =,4AB =,BC =∴BD BC BC AB ==,则BDC BCA ∆∆∽,∴BCA BDC ∠=∠,即CD AO ⊥.-----------------3分 ∵点P 在圆O 所在平面上的正投影为点D ,∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥,-----------------5分,由PD AO D =得,CD ⊥平面PAB .-----------------6分法3:∵AB 为圆O 的直径,∴AC CB ⊥,在Rt ABC ∆BC =得,30ABC ∠=,∵4AB =,由3AD D B =得,3DB =,BC =由余弦定理得,2222cos303CD DB BC DB BC =+-⋅=, ∴222CD DB BC +=,即CD AO ⊥.----------3分,∵点P 在圆O 所在平面上的正投影为点D ,∴PD ⊥平面ABC ,又CD ⊂平面ABC ,∴PD CD ⊥,-----------------5分 由PD AO D =得,CD ⊥平面PAB .-----------------6分 (Ⅱ)法1:由(Ⅰ)可知CD ,3PD DB ==,--------7分∴1111133332322P BDC BDC V S PD DB DC PD -∆=⋅=⋅⋅⋅=⨯⨯=--------10分又PB =PC =BC ==∴PBC ∆为等腰三角形,则12PBC S ∆=⨯=.--------12分 设点D 到平面PBC 的距离为d ,由P BDC D PBC V V --=得,132PBC S d ∆⋅=,解得5d =.--------14分 法2:由(Ⅰ)可知CD =,3PD DB ==,过点D 作DE CB ⊥,垂足为连接PE ,再过点D 作DF PE ⊥,垂足为F .-----------------8分∵PD ⊥平面ABC ,又CB ⊂平面ABC ,∴PD CB ⊥,又PD DE D =, ∴CB ⊥平面PDE ,又DF ⊂平面PDE ,∴CB DF ⊥,又CBPE E =,∴DF ⊥平面PBC ,故DF 为点D 到平面PBC 的距离.--------10分在Rt DEB ∆中,3sin 302DE DB =⋅=,PE ==,在Rt PDE ∆中,33PD DE DF PE ⨯⋅===D 到平面PBC 的距离为519.解:(1)∵22n n S a =-,∴当1n =时,1122a a =-,解得12a =;当2n =时,212222S a a a =+=-,解得24a =;当3n =时,3123322S a a a a =++=-,解得38a =. -----------------3分 (2)当2n ≥时,111(22)(22)22n n n n n n n a S S a a a a ---=-=---=-, -----------------5分 得12n n a a -=又11122a S a ==-,12a =,∴数列{n a }是以2为首项,公比为2的等比数列,所以数列{n a }的通项公式为2nn a =. -------7分,112b a ==,设公差为d ,则由1311,,b b b 成等比数列,得2(22)2(210)d d +=⨯+, ------8分,解得0d =(舍去)或3d =, ---------9分所以数列}{n b 的通项公式为31n b n =-.-----------------10分P(3)令312123nn n b b b b T a a a a =++++123258312222n n -=++++,121583122222nn n T --=++++,-------11分 两式式相减得12133********n n n n T --=++++-, ∴131(1)3135222512212n n n n n n T ---+=+-=--, ----13分又3502nn +>,故5n T <.-----------------14分 20.解:(1)法1:设所求圆的方程为220x y Dx Ey F ++++=,由题意可得420420130D F D F D F ⎧-+=⎪++=⎨⎪+++=⎩,解得0,4D E F ===-,∴ABC ∆的外接圆方程为2240x y +-=,即224x y +=.-----------------6分法2:线段AC 的中点为1(2-,直线AC的斜率为1k =, ∴线段AC 的中垂线的方程为1)22y x -=+,线段AB 的中垂线方程为0x =, ∴ABC ∆的外接圆圆心为(0,0),半径为2r =,∴ABC∆的外接圆方程为224x y +=.-----------------6分法3:||2OC ==,而||||2OA OB ==,∴ABC ∆的外接圆是以O 为圆心,2为半径的圆, ∴ABC ∆的外接圆方程为224x y +=.------6分法4:直线AC 的斜率为1k =BC 的斜率为2k =121k k ⋅=-,即AC BC ⊥, ∴ABC ∆的外接圆是以线段AB 为直径的圆,∴ABC ∆的外接圆方程为224x y +=.-----------------6分 (2)由题意可知以线段AB 为直径的圆的方程为224x y +=,设点R 的坐标为(2,)t ,∵,,A C R 三点共线,∴//AC AR ,----------------8分,而(2,)AC m n =+,(4,)AR t =,则4(2)n t m =+, ∴42n t m =+,∴点R 的坐标为4(2,)2n m +,点D 的坐标为2(2,)2nm +,-----------------10分 ∴直线CD 的斜率为222(2)22244nn m n n mn m k m m m -+-+===---,而224m n +=,∴224m n -=-, ∴2mn mk n n==--,-----------------12分,∴直线CD 的方程为()m y n x m n -=--,化简得40mx ny +-=,∴圆心O 到直线CD 的距离2d r ====,所以直线CD 与圆O 相切. ------------14分 21.解:(1)22(1)(1)1()x x x xe e x e f x x x---+'==, ------------2分 令()(1)1x h x x e =-+,则()(1)x x x h x e e x xe '=+-=,当0x >时,()0x h x xe '=>,∴()h x 是()0,+∞上的增函数,∴()(0)0h x h >=, 故2()()0h x f x x'=>,即函数()f x 是()0,+∞上的增函数. --------------6分 (2)11()11x x e e x f x x x----=-=,当0x >时,令()1x g x e x =--,则()10x g x e '=->,------8分 故()(0)0g x g >=,∴1()1x e x f x x ---=,原不等式化为1x e x a x--<,即(1)10x e a x -+-<, ----10分 令()(1)1x x e a x ϕ=-+-,则()(1)x x e a ϕ'=-+,由()0x ϕ'=得:1xe a =+,解得ln(1)x a =+, 当0ln(1)x a <<+时,()0x ϕ'<;当ln(1)x a >+时,()0x ϕ'>.故当ln(1)x a =+时,()x ϕ取最小值[ln(1)](1)ln(1)a a a a ϕ+=-++,-----------------12分令()ln(1),01a s a a a a =-+>+,则2211()0(1)1(1)as a a a a '=-=-<+++. 故()(0)0s a s <=,即[ln(1)](1)ln(1)0a a a a ϕ+=-++<. 因此,存在正数ln(1)x a =+,使原不等式成立.----------------14分。
2012-2013学年佛山市高二(上)期末文科数学试题(有答案)

2012-2013学年佛山市高二(上)期末文科数学试题考试时间:120分钟满分:150分一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知点A(1,2),B(﹣3,6),则过A,B两点的直线斜率为()A.﹣1 B.12C.2D.12.若直线l1:ax﹣4y+1=0,l2:ax+y+1=0,且l1⊥l2,则实数a的值为()A.2 B.±2 C.4 D.±43.若命题p:∃x>0,x2﹣3x+2>0,则命题¬p为()A.∃x>0,x2﹣3x+2≤0 B.∃x≤0,x2﹣3x+2≤0 C.∀x>0,x2﹣3x+2≤0 D.∀x≤0,x2﹣3x+2≤04.圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的位置关系是()A.相离 B.相交 C.外切D.内切5.若空间三条直线a、b、c满足a⊥b,b∥c,则直线a与c()A.一定平行 B.一定垂直 C.一定是异面直线D.一定相交6.若集合A{0,m2},B={1,2},则“m=1”是“A∪B={0,1,2}”的()A.充要条件 B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件7.某几何体的三视图如图所示,该几何体的体积是()A.8 B.83C.4 D.438.过双曲线22=1916x y-的右焦点,且平行于经过一、三象限的渐近线的直线方程是()A.3x+4y﹣15=0 B.3x﹣4y﹣15=0 C.4x﹣3y+20=0 D.4x﹣3y﹣20=09.已知命题p:y=sinx,x∈R是奇函数;命题q:已知a,b为实数,若a2=b2,则a=b.则下列判断正确的是()A.p∧q为真命题B.(¬p)∨q为真命题C.p∧(¬q)为真命题D.(¬p)∨(¬q)为假命题10.已知F1、F2分别是椭圆()2222=10x ya ba b+>>的左、右焦点,在直线x=﹣a上有一点P,使|PF1|=|F1F2|,且12120PF F∠=︒,则椭圆的离心率为()A.B.13C.23D.2二、填空题:本大题共4小题,每小题5分,满分20分.11.直径为3的球的表面积为_________.12.若抛物线y2=ax的焦点坐标为(2,0),则实数a的值为_________.13.若直线2x﹣y+1=0平分圆x2+y2+2x﹣my+1=0的面积,则m=_________.14.棱长为1的正方体ABCD﹣A1B1C1D1中,若E,F分别为AA1,C1D1的中点,G是正方形BCC1B1的中心,则空间四边形AEFG在该正方体的面上的正投影的面积最大值为_________.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.15.(12分)如图,已知四边形OABC是矩形,O是坐标原点,O、A、B、C按逆时针排列,A的坐标是()31,,|AB|=4.(Ⅰ)求点C的坐标;(Ⅱ)求BC所在直线的方程.16.(13分)如图,在四棱锥P﹣ABCD中,四边形ABCD为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=2,AB=BC=1,M为PD的中点.(Ⅰ)求证:CM∥平面PAB;(Ⅱ)求证:CD⊥平面PAC.17.(13分)已知圆C经过点A(0,3)和B(3,2),且圆心C在直线y=x上.(Ⅰ)求圆C的方程;(Ⅱ)若直线y=2x+m被圆C所截得的弦长为4,求实数m的值.18.(14分)已知曲线C上的任意一点到定点F(1,0)的距离与到定直线x=﹣1的距离相等.(Ⅰ)求曲线C的方程;(Ⅱ)若曲线C上有两个定点A、B分别在其对称轴的上、下两侧,且|FA|=2,|FB|=5,求原点O到直线AB的距离.19.(14分)如图,在底面为平行四边形的四棱柱ABCD﹣A1B1C1D1中,D1D⊥底面ABCD,AD=1,CD=2,∠DCB=60°.(Ⅰ)求证:平面A1BCD1⊥平面BDD1B1;(Ⅱ)若D1D=BD,求四棱锥D﹣A1BCD1的体积.20.(14分)已知椭圆C的中心在原点,焦点在坐标轴上,短轴的一个端点为B(0,4),离心率35 e.(Ⅰ)求椭圆C的方程;(Ⅱ)若O(0,0)、P(2,2),在椭圆上求一点Q使△OPQ的面积最大.2012-2013佛山市高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.解答:解:直线l的斜率k==﹣1故选A2.解答:解:若直线l1:ax﹣4y+1=0,l2:ax+y+1=0,且l1⊥l2,则有•(﹣a)=﹣1,解得a=±2,故选B.3.解答:解:命题P是一个存在性命题,说明存在使x2﹣3x+2>0的实数x,则它的否定是:不存在使x2﹣3x+2>0的实数x,即对任意的实数x2﹣3x+2>0都不能大于0由以上的分析,可得¬P为:∀x>0,x2﹣3x+2≤0.故选C.4.解答:解:圆O1:x2+y2﹣2x=0,即(x﹣1)2+y2=1,圆心是O1(1,0),半径是r1=1圆O2:x2+y2﹣4y=0,即x2+(y﹣2)2=4,圆心是O2(0,2),半径是r2=2∵|O1O2|=,故|r1﹣r2|<|O1O2|<|r1+r2|∴两圆的位置关系是相交.故选B5.解答:解:如图所示:a与c可以相交,异面直线,但是一定不平行.用反证法证明一定不平行.假设a∥c,又∵b∥c,∴a∥b,这与已知a⊥b相矛盾.因此假设不正确,故原结论正确.由于满足a⊥b,b∥c,所以a与c所成的角等于a与b所成的角,等于90°.故选B.6.解答:解:当m=1时,A={2,1}所以A∪B={0,1,2},即m=1能推出A∪B={0,1,2};反之当A∪B={0,1,2}时,所以m2=1,所以m=±1,所以A∪B={0,1,2}成立,推不出m=1故“m=1”是“A∪B={0,1,2}”的充分不必要条件故选B.7.解答:解:由三视图可知,几何体是对角线长为2的正方形,侧棱垂直于底面的四棱锥,侧棱长为2,则该几何体的体积是=故选D.8.解答:解:∵双曲线的右焦点为F(5,0),经过一、三象限的渐近线为y=x,∴所求直线方程为y=,整理,得4x﹣3y﹣20=0.故选D.9.解答:解:由题意可得p:y=sinx,x∈R是奇函数为真命题,命题q:若a2=b2,则a=b为假命题∴¬p为假命题,¬q为真命题∴p∧q为假命题,¬p∨q为假命题,p∧(¬q)为真命题,¬p)∨(¬q)为假命题故选C10.解答:解:设椭圆的左顶点为A(﹣a,0)∵直线x=﹣a上有一点P,使|PF1|=|F1F2|,且,∴Rt△APF1中,|PF1|=2c,∠AF1P=60°由此可得|AF1|=|PF1|=c,∵|AF1|=a﹣c,∴a﹣c=c,得a=2c,因此,可得离心率e==故选:A二、填空题:本大题共4小题,每小题5分,满分20分.11.解答:解:因为直径为的球的半径为:,所以球的表面积为:4π()2=3π.故答案为:3π.12.解答:解:抛物线y2=ax的焦点在x轴的负半轴上,且p=,∴=2,即=2∴a=8,故答案为:8.13.解答:解:圆x2+y2+2x﹣my+1=0 即(x+1)2+=,由题意可得,直线2x﹣y+1=0过圆心(﹣1,).故有﹣2﹣+1=0,解得m=﹣2,故答案为﹣2.14.解答:解:空间四边形AEFG在该正方体的下面上的投影是一个等腰三角形,腰长是,底边长是面的对角线的一半是,∴这个投影的面积是,空间四边形AEFG在该正方体的前后面上的投影是一个四边形,它的面积是1﹣2×﹣=,空间四边形AEFG在该正方体的左右面上的投影是一个平行四边形,它的面积是,综上所述面积最大的是,故答案为:.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.15.解答:解:(Ⅰ)因为四边形OABC是矩形,OA所在直线的斜率为:KOA=,所以OC的斜率为:﹣,OC所在直线方程为:y=﹣x,因为|OC|=|AB|=4,设点C的坐标(x,﹣x),|OC|=,解得x=2(舍)或x=﹣2;所以所求C的坐标(﹣2,2).(Ⅱ)因为OA∥BC,所以BC 所在直线的斜率为,又C(﹣2,2),所以BC所在直线的方程:y﹣2=(x+2).即BC所在直线的方程:x﹣y+8=0.16.解答:证明:(I)取PA的中点E,连接ME、BE,∵ME∥AD,ME=AD,∴ME∥BC,ME=BC,∴四边形BCME为平行四边形,∴BE∥CM,∵BE⊂平面PAB,CM⊄平面PAB,∴CM∥平面PAB;(II)在梯形ABCD中,AB=BC=1,AD=2,∠BAD=90°过C作CH⊥AD于H,∴AC=CD=∵AC2+CD2=AD2,∴CD⊥AC又∵PA⊥平面ABCD,CD⊂平面ABCD,∴CD⊥PA∵PA∩AC=A,∴CD⊥平面PAC17.解答:解:(Ⅰ)由于圆心在直线y=x上,故可设圆C的圆心坐标为C(a,a).再由圆C经过A (0,3)、B(3,2)两点,可得|CA|=|CB|,∴|CA|2=|CB|2,∴(a﹣0)2+(a﹣3)2=(a﹣3)2+(a﹣2)2.解得a=1,故圆心C(1,1),半径r==,故圆C的方程为(x﹣1)2+(y﹣1)2=5,(Ⅱ)圆心C(1,1),半径r==,圆心到直线y=2x+m的距离为:=直线被圆C所截得的弦长为4,所以半弦长为:2;所以()2=22+()2,所以实数m的值为﹣1.18.解答:解:(1)∵曲线C上任意一点到点F(1,0)的距离与到直线x=﹣1的距离相等.∴曲线C的轨迹是以F(1,0)为焦点的抛物线,且,∴曲线C的方程为y2=4x;(2)由抛物线的定义结合|FA|=2可得,A到准线x=﹣1的距离为2,即A的横坐标为1,代入抛物线方程可得y=2,即A(1,2),同理可得B(4,﹣4),故直线AB的斜率k==﹣2,故AB的方程为y﹣2=﹣2(x﹣1),即2x+y﹣4=0,由点到直线的距离公式可得:原点O到直线AB的距离为=19.解答:证明:(Ⅰ)因为底面ABCD,AD=1,CD=2,∠DCB=60°.所以BC=1,∠DBC=90°,可得AD⊥BD,因为几何体是四棱柱ABCD﹣A1B1C1D1,所以A1D1⊥B1D1,又D1D⊥底面ABCD,所以AD⊥D1D,可得A1B1⊥D1D,又B1D1∩D1D=D1,所以A1D1⊥平面BDD1B1,A1D1⊂平面A1BCD1,∴平面A1BCD1⊥平面BDD1B1;(Ⅱ)由(Ⅰ)中A1D1⊥平面BDD1B1,四棱锥D﹣A1BCD1的体积转化为三棱锥A1﹣DD1B与C﹣DD1B的体积的和,而且两个体积相等,∵AD=1,CD=2,∠DCB=60°.所以BD=,D1D=BD=,∴===.所以是棱锥的体积为2×=1.20.解答:解:(Ⅰ)由题意可知:椭圆C的焦点在x轴上,b=4,可设椭圆的方程为,又离心率,及a2=42+c2,解得,∴椭圆的方程为.(Ⅱ)∵,∴可设与直线OP平行且与椭圆相切的直线方程为y=x+t.联立,消去y得到关于x的方程41x2+50tx+25t2﹣400=0,(*)∴△=0,即2500t2﹣4×41×(25t2﹣400)=0,化为t2=41,解得.∴切线方程为.把代入(*)解得x=,代入y=x+t求得Q,或.上面这两个点的坐标都满足是得△OPQ的面积最大.。
江门佛山两市普通高中高三教学质量检测

2013年江门佛山两市普通高中高三教学质量检测 数 学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生要务必填写答题卷上密封线内的有关项目.2.选择题每小题选出答案后,用铅笔把答案代号填在答题卷对应的空格内.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷交回. 参考公式:棱锥的体积公式:13V Sh =. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}N x x x A ∈≤<-=,21,集合{}3,2=B ,则AB 等于A .{}3,2,1 B .{}3,2,1,0 C .{}2 D .{}3,2,1,0,1- 2.已知复数z 的实部为1,且2z =,则复数z 的虚部是A. BC. D.3.已知命题p :1x ∃>,210x ->,那么p ⌝是A .1x ∀>,210x -> B .1x ∀>,210x -≤ C .1x ∃>,210x -≤D .1x ∃≤,210x -≤4.为了解一片速生林的生长情况,随机测量了其中100株树木的底部周长(单位:cm ).根据所得数据画出样本的频率分布直方图(如右),那么在这100株树木中,底部周长小于110cm 的株数是A .30B .60C .70D .805.函数()sin 2f x x ππ⎛⎫=+⎪⎝⎭,]11[,-∈x ,则 A .()f x 为偶函数,且在]10[,上单调递减; B .()f x 为偶函数,且在]10[,上单调递增; C .()f x 为奇函数,且在]01[,-上单调递增; D .()f x 为奇函数,且在]01[,-上单调递减.90 110 周长(cm)100 120第4题图6.设等比数列{}n a 的前n 项和为n S ,则“10a >”是“32S a >”的 A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 7.已知幂函数()f x x α=,当1x >时,恒有()f x x <,则α的取值范围是 A .01α<< B .1α<C .0α>D .0α<8.设m 、n 是不同的直线,α、β、γ是不同的平面,有以下四个命题:① 若//,//,αβαγ 则//βγ ②若αβ⊥,//m α,则m β⊥③ 若,//m m αβ⊥,则αβ⊥ ④若//,m n n α⊂,则//m α其中真命题的序号是A .①④B . ②③C .②④D . ①③9.直线0102=-+y x 与不等式组0024320x y x y x y ≥⎧⎪≥⎪⎨-≥-⎪⎪+≤⎩表示平面区域的公共点有A .0个B .1个C .2个D .无数个10.已知平面上的线段l 及点P ,在l 上任取一点Q ,线段PQ 长度的最小值称为点P 到线段l 的距离,记作(,)d P l .设l 是长为2的线段,点集{|(,)1}D P d P l =≤所表示图形的面积为A. πB. 2πC. 2π+D. 4π+ 二、填空题:本大共5小题.考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.已知向量,a b满足1,==a b ()-⊥a b a ,则向量a 与b 的夹角为 . 12.已知圆C 经过点(0,3)A 和(3,2)B ,且圆心C 在直线y x =上,则圆C 的方程为 . 13.将集合{22st+|0s t ≤<且,s t Z ∈}中的元素按上小下大, 左小右大的原则排成如图的三角形数表,将数表中位于 第i 行第j 列的数记为ij b (0i j ≥>),则43b = . (二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程)在极坐标系中,设曲线1:2sin C ρθ=与2:2cos C ρθ=的交点分别为A B 、,则线段AB 的垂直平分线的极坐标方程为 . 15.(几何证明选讲)如图,圆O 的直径9AB =,直线CE 与圆O 相切于点C , AD CE ⊥于D , 若1AD =,设ABC θ∠=,则sin θ=______.35691012第13题图PABCD 1A 1B 1C 1D 第18题图三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)在平面直角坐标系xOy 中,以Ox 为始边,角α的终边与单位圆O 的交点B 在第一象限, 已知(1,3)A -.(1)若OA OB ⊥,求tan α的值. (2)若B 点横坐标为45,求AOB S ∆.17.(本题满分12分)市民李生居住在甲地,工作在乙地,他的小孩就读的小学在丙地,三地之间的道路情况如图所示.假设工作日不走其它道路,只在图示的道路中往返,每次在路口选择道路是随机的.同一条道路去程与回程是否堵车互不影响.假设李生早上需要先开车送小孩去丙地小学,再返回经甲地赶去乙地上班,(1)写出李生可能走的所有路线;(比如DDA 表示走D 路从甲到丙,再走D 路回到甲,然后走A 路到达乙);(2)假设从甲到乙方向的道路B 和从丙到甲方向的 道路D 道路拥堵,其它方向均通畅,但李生不知道18.(本题满分14分)如图,在四棱柱1111ABCD A B C D -中, 已知底面ABCD 的正方形, 侧棱1D D 垂直于底面ABCD ,且13D D =.(1)点P 在侧棱1C C 上,若1CP =, 求证:1A P ⊥平面PBD ;(2)求三棱锥11A BDC -的体积V .19.(本题满分14分)已知椭圆1C 和抛物线2C 有公共焦点()1,0F , 1C 的中心和2C 的顶点都在坐标原点,直线l 过点(4,0)M .(1)写出抛物线2C 的标准方程;(2)若坐标原点O 关于直线l 的对称点P 在抛物线2C 上,直线l 与椭圆1C 有公共点,求椭圆1C 的长轴长的最小值.20.(本题满分14分)环保刻不容缓,或许人类最后一滴水将是自己的泪水.某地水资源极为紧张,且受工业污染严重,预计20年后该地将无洁净的水可用.当地决定重新选址建设新城区,同时对旧城区进行拆除.已知旧城区的住房总面积为64a 2m ,每年拆除的数量相同;新城区计划第一年建设住房面积a 2m ,前四年每年以100%的增长率建设新住房,从第五年开始,每年都比上一年增加a 2m .设第n (1,N n n ≥∈且)年新城区的住房总面积为n a 2m ,该地的住房总面积为n b 2m . (1)求{}n a 的通项公式;(2)若每年拆除4a 2m ,比较+1n a 与n b 的大小. 21.(本题满分14分)已知函数1()ln f x x x a =-+,ln ()xg x x a=+,a 是常数. (1)求)(x f 的单调区间;(2)若()g x 有极大值,求a 的取值范围.文科数学评分参考一、填空题 BDBCACBDBD二、填空题11.4π 12.()()22115x y -+-= 13.2014.sin()42πρθ+=(或1cos sin =+θρθρ) 15.13三、解答题16.⑴解法1、由题可知:(1,3)A -,(cos ,sin )B αα, ……1分(1,3)OA =-,(cos ,sin )OB αα= ……2分OA OB ⊥,得0OA OB ⋅= ……3分∴cos 3sin 0αα-+=,1tan 3α= ……4分解法2、由题可知:(1,3)A -,(cos ,sin )B αα ……1分 3OA k =-, tan OB k α= ……2分 ∵OA OB ⊥,∴1OA OB K K ⋅=- ……3分3tan 1α-=-, 得1tan 3α= ……4分解法3、 设) , (y x B ,(列关于x 、y 的方程组2分,解方程组求得x 、y 的值1分,求正切1分) ⑵解法1、由⑴OA == 记AOx β∠=, (,)2πβπ∈∴sin10β==,cos 10β==-(每式1分) ……6分∵1OB = 4cos 5α=,得3sin α==(列式计算各1分) ……8分43sin sin()10510510AOB βα∠=-=⨯+=(列式计算各1分) ……10分∴11sin 12210AOB S AO BO AOB ∆=∠=⨯32=(列式计算各1分) ……12分 解法2、由题意得:AO 的直线方程为30x y += ……6分则3sin 5α== 即43(,)55B (列式计算各1分) ……8分又OA==∴113222AOBS AO d∆=⨯==(每式1分)…12分解法3、3sin5α==即43(,)55B(每式1分)……6分即:(1,3)OA=-,43(,)55OB=, (7)分OA==1OB=,4313cosOA OBAOBOA OB-⨯+⨯⋅∠===9分(模长、角的余弦各1分)∴sin AOB∠==……10分则113sin1222AOBS AO BO AOB∆=∠==(列式计算各1分)……12分解法4、根据坐标的几何意义求面积(求B点的坐标2分,求三角形边长2分,求某个内角的余弦与正弦各1分,面积表达式1分,结果1分)17.⑴李生可能走的所有路线分别是:DDA,DDB,DDC,DEA,DEB,DEC,EEA,EEB,EEC,EDA,EDB,EDC(1-2个1分,3-5个2分,5-7个3分,7-11个4分,)……5分共12种情况……6分⑵从出发到回到上班地没有遇到过拥堵的走法有:DEA,DEC,EEA,EEC ……7分共4种情况,……8分所以从出发到回到上班地没有遇到过拥堵的概率41123P==(文字说明1分)……12分18.⑴解法1、依题意,1CP=,12C P=,在Rt BCP∆中,PB==……1分同理可知,1A P==1A B==(每式1分)……3分所以22211A P PB A B+=,……4分则1A P PB⊥,……5分同理可证,1A P PD⊥,……6分由于PB PD P=,PB⊂平面PBD,PD⊂平面PBD,……7分所以,1A P⊥平面PBD.……8分解法2、由1A P PB⊥(或1A P PD⊥)和BDPA⊥1证明1A P⊥平面PBD(证明任何一个线线垂直关系给5分,第二个线线垂直关系给1分)⑵解法1、如图1,易知三棱锥11A BDC-的体积等于四棱柱的体积减去四个体积相等的三棱锥的体积,即11111114A BDC ABCD ABCD A ABDV V V---=-(文字说明1分)……11分1C1D1CN()1111432AB AD A A AB AD A A⎛⎫=-⨯⨯ ⎪⎝⎭……13分1323== ……14分解法2、依题意知,三棱锥11A BDC -的各棱长分别是112AC BD ==,1111A B A D C B C D ====1分)……10分如图2,设BD 的中点为M ,连接11A M C M ,,则1A M BD ⊥,1C M BD ⊥,且11A M C M =于是BD ⊥平面11A C M ,……12分设11A C 的中点为N ,连接MN ,则11MN AC ⊥,且3MN ===, 则三角形11A C M 的面积为11111123322A C M S AC MN ∆==⨯⨯=, ……13分 所以,三棱锥11A BDC -的体积111132233A C M V S BD ∆==⨯⨯=. ……14分19.⑴由题意,抛物线2C 的焦点()1,0F ,则1,22pp == ……2分 所以方程为:24y x =. ……3分 ⑵解法1、设(,)P m n ,则OP 中点为(,)22m n, ……4分因为O P 、两点关于直线(4)y k x =-对称,所以(4)221n m k n k m ⎧=-⎪⎪⎨⎪⋅=-⎪⎩(每方程1分)……6分即80km n k m nk -=⎧⎨+=⎩,解之得2228181k m k k n k ⎧=⎪⎪+⎨⎪=-⎪+⎩, ……7分将其代入抛物线方程,得:222288()411k k k k-=⋅++,所以21k =(列式计算各1分)……9分 联立 2222(4)1y k x x y ab =-⎧⎪⎨+=⎪⎩,消去y ,得:2222222()8160b a x a x a a b +-+-= ……11分由2222222(8)4()(16)0a b a a a b ∆=--+-≥,得2216a b +≥,……12分 注意到221b a=-,即2217a ≥,所以a ≥,即2a ……13分 因此,椭圆1C ……14分 解法2、设2,4m P m ⎛⎫ ⎪⎝⎭,因为O P 、两点关于直线l 对称,则=4OM MP =, ……5分即4=,解之得4m =± ……6分即(4,4)P ±,根据对称性,不妨设点P 在第四象限,且直线与抛物线交于,A B 如图.则11ABOPk k =-=,于是直线l 方程为4y x =-(讨论、斜率与方程各1分) ……9分联立 222241y x x y ab =-⎧⎪⎨+=⎪⎩,消去y ,得:2222222()8160b a x a x a a b +-+-= ……11分由2222222(8)4()(16)0a b a a a b ∆=--+-≥,得2216a b +≥, ……12分注意到221b a =-,即2217a ≥,所以a ≥,即2a ……13分 因此,椭圆1C……14分20.⑴设第n 年新城区的住房建设面积为n λ2m ,则当14n ≤≤时,12n n a λ-=;……1分当5n ≥时,(4)n n a λ=+. ……2分所以, 当14n ≤≤时,(21)n n a a =- ……3分当5n ≥时,2489(4)n a a a a a a n a =+++++++ (2922)2n n a +-=(列式1分)……5分 故2(21)(14),922(5).2n n a n a n n a n ⎧-≤≤⎪=⎨+-≥⎪⎩ ……6分⑵13n ≤≤时,11(21)n n a a ++=-,(21)644n n b a a na =-+-,显然有1n n a b +< ……7分 4n = 时,1524n a a a +==,463n b b a ==,此时1n n a b +<. ……8分 516n ≤≤ 时,2111122n n n a a ++-=,29226442n n n b a a na +-=+-(每式1分)……10分 1(559)n n a b n a +-=-. ……11分 所以,511n ≤≤时,1n n a b +<;1216n ≤≤时,1n n a b +>.17n ≥时,显然1n n a b +>……13分(对1-2种情况给1分,全对给2分)故当111n ≤≤时,1n n a b +<;当 12n ≥时,1n n a b +>. ……14分21.⑴222211(21)()()()x a x a f x x x a x x a +++'=+=++ ……1分设22()(21)h x x a x a =-++,其判别式22(21)441a a a ∆=+-=+ ……2分①当14a ≤-时,0,∆≤2()0,()0h x x x a ≥->,()0f x '∴≥,)(x f 在定义域()0,+∞上是增函数; ……3分当0∆>时,由22()(21)0h x x a x a =-++=解得:12212122a a x x +-+==(每个根1分)……5分②当104a -<<时,0∆>,210a +>;又22(21)(41)40a a a +-+=>,210a ∴+>,故210x x >>,即()h x 在定义域()0,+∞上有两个零点122121,22a a x x +++==在区间()10,x 上,()0h x >,2()0x x a ->,()0f x '∴>, )(x f 为()10,x 上的增函数在区间()12,x x 上,()0h x <,2()0x x a ->,()0f x '∴<,)(x f 为()12,x x 上的增函数 在区间()2,x +∞上,()0h x >,2()0x x a ->,()0f x '∴>,)(x f 为()2,x +∞上的增函数. ……6分③当0a =时,120,1x x ==,在区间()0,1上,()0h x <,2()0x x a ->,()0f x '∴<;在区间()1,+∞上,()0h x >,2()0x x a ->,()0f x '∴>, ……7分④当0a >时,函数)(x f 的定义域是()()0,,a a +∞,()0h a a =-<,()h x 在()0,a 上有零点1212a x +=在(),a +∞上有零点221,2a x +=;在区间()10,x 和()2,x +∞上,()0f x '>,)(x f 在()10,x 和()2,x +∞上为增函数;在区间()1,x a 和()2,a x 上,()0f x '<,)(x f 在()1,x a 和()2,a x 上位减函数. ……8分综上: 当14a ≤-时,函数)(x f 的递增区间是()0,+∞;当104a -<<时, )(x f 的递增区间是()10,x 和()2,x +∞,递减区间是()12,x x ;当0a =时,)(x f 的递减区间是()0,1;递增区间是()1,+∞;当0a >时,)(x f 的递减区间()1,x a 和()2,a x ,递增区间是()10,x 和()2,x +∞. ……9分⑵当0a ≤时,()g x 的定义域是()0,+∞,当0a >时,()g x 的定义域是()()0,,a a +∞,2(1ln )()()x x ag x x x a --'=-,令()(1ln )t x x x =-,则()ln t x x '=-(每个导数1分) ……11分 在区间()0,1上,()ln 0t x x '=->,()(1ln )t x x x =-是增函数且0()1t x <<;在区间()1,+∞上,()ln 0t x x '=-<,()(1ln )t x x x =-是减函数且()1t x <;当1x =时,(1)1t =. ……12分 故当1a ≥时,()0g x '≤,()g x 无极大值;当01a <<时,()0t a a -≠,方程()t x a =在区间()0,1和()1,+∞上分别有一解,x x ''',此时函数()g x 在x x ''=处取得极大值; ……13分当0a ≤时,方程()t x a =在区间[),e +∞上有一解x ''',此时函数()g x 在x x '''=处取得极大值.-∞. ……14分综上所述,若()g x有极大值,则a的取值范围是(),1。
解析版广东省佛山市2013年高考数学一模试卷文科

2013年广东省佛山市高考数学一模试卷(文科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•潮州二模)设i为虚数单位,则复数等于()A.B.C.D.考点:复数代数形式的乘除运算.专题:计算题.分析:把给出的复数分子分母同时乘以2﹣i,然后整理成a+bi(a,b∈R)的形式即可.解答:解:=.故选A.点评:本题考查了复数代数形式的乘除运算,复数的除法,采用分子分母同时乘以分母的共轭复数,是基础题.2.(5分)(2013•东莞二模)命题“∀x∈R,x2+1≥1”的否定是()A.∀x∈R,x2+1<1 B.∃x∈R,x2+1≤1 C.∃x∈R,x2+1<1 D.∃x∈R,x2+1≥1考点: Venn图表达集合的关系及运算;交、并、补集的混合运算.专题:规律型.分析:全称命题:“∀x∈A,P(x)”的否定是特称命题:“∃x∈A,非P(x)”,结合已知中原命题“∀x∈R,都有有x2+1≥1”,易得到答案.解答:解:∵原命题“∀x∈R,有x2+1≥1”∴命题“∀x∈R,有x2+1≥1”的否定是:∃x∈R,使x2+1<1.故选C.点评:本题考查的知识点是命题的否定,其中熟练掌握全称命题:“∀x∈A,P(x)”的否定是特称命题:“∃x∈A,非P(x)”,是解答此类问题的关键.3.(5分)(2013•佛山一模)程序框图如图所示,该程序运行后输出的i的值是()A.10 B.11 C.12 D.13考点:循环结构.专题:图表型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出S值.模拟程序的运行过程,用表格对程序运行过程中各变量的值进行分析,不难得到最终的输出结果.解答:解:程序在运行过程中各变量的值如下表示:是否继续循环 a b i循环前/4 2 1第一圈是2 1 2第二圈是1 3第三圈是 4第四圈是 5…第9圈是10第10圈是11第11圈是12第12圈是13第13圈否该程序运行后输出的i的值是13,故选D.点评:本题考查循环结构的程序框图,解决本题的关键是弄清开始和结束循环的条件.属于基础题.4.(5分)(2013•佛山一模)已知=(1,2),=(0,1),=(k,﹣2),若(+2)⊥,则k=()A.2B.﹣2 C.8D.﹣8考点:数量积判断两个平面向量的垂直关系.专题:平面向量及应用.分析:由向量的坐标运算易得的坐标,进而由可得它们的数量积为0,可得关于k 的方程,解之可得答案.解答:解:∵=(1,2),=(0,1),∴=(1,4),又因为,所以=k﹣8=0,解得k=8,故选C点评:本题考查平面向量数量积和向量的垂直关系,属基础题.5.(5分)(2013•潮州二模)已知实数x,y 满足,则目标函数z=2x﹣y的最大值为()A.﹣3 B.C.5D.6考点:简单线性规划.专题:计算题;不等式的解法及应用.分析:作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=2x﹣y对应的直线进行平移,可得当x=2,y=﹣1时,z取得最大值5.解答:解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(﹣1,﹣1),B(2,﹣1),C(0.5,0.5)3 / 16设z=F(x,y)=2x﹣y,将直线l:z=2x﹣y进行平移,当l经过点B时,目标函数z达到最大值∴z最大值=F(2,﹣1)=5故选:C点评:题给出二元一次不等式组,求目标函数z=2x﹣y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.6.(5分)(2013•佛山一模)已知集合M={x||x﹣4|+|x﹣1|<5},N={x|a<x<6},且M∩N={2,b},则a+b=()A.6B.7C.8D.9考点:交集及其运算.专题:计算题.分析:集合M中的不等式表示数轴上到1的距离与到4的距离之和小于5,求出x的范围,确定出M,由M与N的交集及N,确定出a与b的值,即可求出a+b的值.解答:解:由集合M中的不等式,解得:0<x<5,∴M={x|0<x<5},∵N={x|a<x<6},且M∩N=(2,b),∴a=2,b=5,则a+b=2+5=7.故选B点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.7.(5分)(2013•河东区二模)函数f(x)=e x+x2﹣2在区间(﹣2,1)内零点的个数为()A.1B.2C.3D.4考点:利用导数研究函数的单调性;根的存在性及根的个数判断.专题:函数的性质及应用;导数的概念及应用.分析:由已知中函数的解析式,求出导函数f'(x)的解析式,和导函数的导函数f''(x)的解析式,分析f''(x)的符号,求出f'(x)的单调性,进而分析f'(x)的符号,再分析函数f(x)在区间(﹣2,1)的单调性及极值,进而结合零点存在定理,得到答案.解答:解:∵f(x)=e x+x2﹣2得f'(x)=e x+2xf''(x)=e x+2>0从而f'(x)是增函数,f'(﹣2)=﹣4<0f'(0)=1>0从而f'(x)在(﹣2,1)内有唯一零点x0,满足则在区间(﹣2,x0)上,有f'(x)<0,f(x)是减函数,在区间(x0,1)上,f'(x)>0,f(x)是增函数.因为f(﹣2)=+2>0,f(x0)<f(0)=﹣1<0,f(1)=e﹣1>0从而f(x)在(﹣2,1)上有两个零点.故选B点评:本题考查的知识点是根的存在性及根的个数判断,使用导数法,判断函数的单调性是解答的关键,但需要二次求导,难度中档.8.(5分)(2013•佛山一模)已知双曲线的顶点与焦点分别是椭圆的焦点与顶点,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为()A.B.C.D.考点:双曲线的简单性质;椭圆的简单性质.专题:计算题.分析:先根据双曲线的顶点与焦点分别是椭圆的焦点与顶点,确定双曲线的顶点与焦点,再根据双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,确定双曲线的渐近线,从而求出椭圆的离心率.解答:解:∵双曲线的顶点与焦点分别是椭圆的焦点与顶点∴双曲线的顶点是,焦点是(±a,0)设双曲线方程为∴双曲线的渐近线方程为∵∴n=b∵双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形∴双曲线的渐近线方程为y=±x∴m=n∴a2﹣b2=b2∴c2=a2﹣c2∴a2=2c2∴∴故选D.点评:本题以椭圆方程为载体,考查双曲线的几何性质,考查椭圆的离心率,正确运用几何量的关系是关键.9.(5分)(2013•佛山一模)一个长方体被一个平面截去一部分后所剩几何体的正视图和俯视图如图所示,则该几何体的侧视图可以为()5 / 16A.B.C.D.考点:简单空间图形的三视图.专题:计算题.分析:通过正视图与俯视图,判断几何体的形状,然后推断侧视图的图形即可.解答:解:由题意可知,几何体是长方体被截去正面左上部一个角的图形,如图:因此它的侧视图是故选B.点评:本题考查三视图与几何体的关系,考查空间想象能力.10.(5分)(2013•济宁二模)设二次函数f(x)=ax2﹣4x+c(x∈R)的值域为[0,+∞),则的最小值为()A.3B.C.5D.7考点:基本不等式.专题:不等式的解法及应用.分析:先判断a、c是正数,且ac=4,把所求的式子变形使用基本不等式求最小值.解答:解:由题意知,a>0,△=1﹣4ac=0,∴ac=4,c>0,则则≥2×=3,当且仅当时取等号,则的最小值是3.故选A.点评:本题考查函数的值域及基本不等式的应用,求解的关键就是拆项,属于基础题.二、填空题:必做题(11~13题)每小题5分.11.(5分)(2011•上海)课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为2.考点:分层抽样方法.专题:计算题.分析:根据本市的甲、乙、丙三组的数目,做出全市共有组的数目,因为要抽取6个城市作为样本,得到每个个体被抽到的概率,用概率乘以丙组的数目,得到结果.解答:解:∵某城市有甲、乙、丙三组,对应的城市数分别为4,12,8.本市共有城市数24,∵用分层抽样的方法从中抽取一个容量为6的样本∴每个个体被抽到的概率是,∵丙组中对应的城市数8,∴则丙组中应抽取的城市数为×8=2,故答案为2.点评:本题考查分层抽样,是一个基础题,解题的关键是理解在抽样过程中每个个体被抽到的概率相等,做出一种情况的概率,问题可以解决.12.(5分)(2013•佛山一模)函数y=sinx+sin(x﹣)的最小正周期为2π,最大值是.考点:两角和与差的正弦函数;诱导公式的作用.专题:计算题;三角函数的图像与性质.分析:利用两角和与差的正弦函数化简函数我一个角的一个三角函数的形式,然后直接求出函数的周期与最大值.解答:解:因为函数y=sinx+sin(x﹣)=sinx+sinx﹣cosx=sin(x﹣).所以函数的周期为T==2π(2分);函数的最大值为:(3分)故答案为:2π;.点评:本题考查三角函数的化简求值,函数周期的求法,考查基本知识的应用.13.(5分)(2013•佛山一模)观察下列不等式:①<1;②+;③;…则第5个不等式为.考点:归纳推理;进行简单的合情推理.专题:压轴题;规律型.分析:前3个不等式有这样的特点,第一个不等式含1项,第二个不等式含2项,第三个不等式含3项,且每一项的分子都是1,分母都含有根式,根号内数字的规律是2;2,6;2,12;由此可知,第n 个不等式左边应含有n项,每一项分子都是1,分母中根号内的数的差构成等差数列,不等式的右7 / 16边应是根号内的序号数.解答:解:由①<1;②+;③;归纳可知第四个不等式应为;第五个不等式应为.故答案为.点评:本题考查了合情推理中的归纳推理,归纳推理是根据已有的事实,经过观察、分析、比较、联想,再进行归纳,然后提出猜想的推理.是基础题.三、选做题(14~15题,考生只能从中选做一题)每小题5分14.(5分)(2013•崇明县二模)在极坐标系中,直线过点(1,0)且与直线(ρ∈R)垂直,则直线的极坐标方程为.考点:简单曲线的极坐标方程.专题:计算题.分析:先将直线极坐标方程(ρ∈R)化成直角坐标方程,再利用直角坐标方程进行求解过点(1,0)且与直线(ρ∈R)垂直的直线方程,最后再化成极坐标方程即可.解答:解:由题意可知直线(ρ∈R)的直角坐标方程为:x﹣y=0,过点(1,0)且与直线x﹣y=0垂直的直线方程为:y=﹣(x﹣1),即所求直线普通方程为x+y﹣1=0,则其极坐标方程为.故答案为:.点评:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.15.(2013•佛山一模)(几何证明选讲)如图,M是平行四边形ABCD的边AB的中点,直线l过点M分别交AD,AC于点E,F.若AD=3AE,则AF:FC=1:4.考点:向量在几何中的应用.专题:压轴题.分析:利用平行四边形的性质和平行线分线段成比例定理即可得出.解答:解:如图所示,设直线l交CD的延长线于点N.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵M是边AB的中点,∴.∴,∴.故答案为1:4.点评:熟练掌握平行四边形的性质和平行线分线段成比例定理是解题的关键.四、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(12分)(2013•崇明县二模)如图,在△ABC中,∠C=45°,D为BC中点,BC=2.记锐角∠ADB=α.且满足cos2α=.(1)求cosα;(2)求BC边上高的值.考点:正弦定理;二倍角的余弦.专题:计算题;解三角形.分析:(1)由二倍角公式cos2α=2cos2α﹣1,可求cosα(2)方法一、由可求sinα,而∠CAD=∠ADB﹣∠C=α﹣45°,利用sin∠CAD=sin ()=sin,代入可求sin∠CAD,最后再由正弦定理,可求AD,从而可由h=ADsin∠ADB求解方法二、作BC 边上的高为AH,在直角△ADH中,由(1)可得,设出AD,则可表示DH,AH,结合△AHC为等腰直角三角形,可得CD+DH=AH,代入可求解答:解:(1)∵cos2α=2cos2α﹣1=,∴,9 / 16∵,∴cosα=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)方法一、由(1)得=,∵∠CAD=∠ADB﹣∠C=α﹣45°,∴sin∠CAD=sin()=sin==,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)在△ACD中,由正弦定理得:,∴AD==,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)则高h=ADsin∠ADB==4.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)方法二、如图,作BC 边上的高为AH在直角△△ADH中,由(1)可得=,则不妨设AD=5m则DH=3m,AH=4m﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)注意到C=45°,则△AHC为等腰直角三角形,所以CD+DH=AH,则1+3m=4m﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)所以m=1,即AH=4﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)点评:本题主要考查了同角平方关系、和差角公式及正弦定理在求解三角形中的应用,解题的关键是熟练应用基本公式17.(12分)(2013•佛山一模)组别候车时间人数一[0,5) 2二[5,10) 6三[10,15) 4四[15,20) 2五[20,25] 1城市公交车的数量太多容易造成资源的浪费,太少又难以满足乘客需求,为此,某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:min):(1)求这15名乘客的平均候车时间;(2)估计这60名乘客中候车时间少于10分钟的人数;(3)若从上表第三、四组的6人中选2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.考点:频率分布表;古典概型及其概率计算公式.专题:概率与统计.分析:(1)累积各组组中与频数的积,可得这15名乘客的这15名乘客的总和,除以15可得这15名乘客的平均候车时间;(2)根据15名乘客中候车时间少于10分钟频数和为8,可估计这60名乘客中候车时间少于10分钟的人数;(3)将两组乘客编号,进而列举出所有基本事件和抽到的两人恰好来自不同组的基本事件个数,代入古典概型概率公式可得答案.解答:解:(1)=min.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)(2)候车时间少于10分钟的概率为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以候车时间少于10分钟的人数为人.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(3)将第三组乘客编号为a1,a2,a3,a4,第四组乘客编号为b1,b2.从6人中任选两人有包含以下15个基本事件:(a1,a2),(a1,a3),(a1,a4),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,b1),(a2,b2),(a3,a4),(a3,b1),(a3,b2),(a4,b1),(a4,b2),(b1,b2),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)其中两人恰好来自不同组包含8个基本事件,所以,所求概率为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)点评:本题考查的知识点是频率分布直方表,古典概型概率公式,是统计与概率的简单综合应用,难度不大,属于基础题.18.(14分)(2013•佛山一模)如图,已知圆O的直径AB长度为4,点D为线段AB上一点,且,点C为圆O 上一点,且.点P在圆O所在平面上的正投影为点D,PD=BD.(1)求证:CD⊥平面PAB;(2)求点D到平面PBC的距离.考点:直线与平面垂直的判定;点、线、面间的距离计算.专题:计算题;证明题;空间位置关系与距离.分析:(1)由AB是圆的直径,得到AC⊥CB,结合BC=AC算出∠ABC=30°,进而得到.△BCD11 / 16中用余弦定理算出CD长,从而CD2+DB2=BC2,可得CD⊥AO.再根据PD⊥平面ABC,得到PD⊥CD,结合线面垂直的判定定理即可证出CD⊥平面PAB;(2)根据(1)中计算的结果,利用锥体体积公式算出,而V P﹣BDC=V D﹣PDC,由此设点D到平面PBC的距离为d,可得,结合△PBC的面积可算出点D到平面PBC的距离.解答:解:(1)∵AB为圆O的直径,∴AC⊥CB,∵Rt△ABC中,由,∴tan∠ABC==,∠ABC=30°,∵AB=4,3AD=DB,∴DB=3,,由余弦定理,得△BCD中,CD2=DB2+BC2﹣2DB•BCcos30°=3,∴CD2+DB2=12=BC2,可得CD⊥AO.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)∵点P在圆O所在平面上的正投影为点D,即PD⊥平面ABC,又∵CD⊂平面ABC,∴PD⊥CD,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)∵PD∩AO=D得,∴CD⊥平面PAB.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)由(1)可知,PD=DB=3,且Rt△BCD中,,﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴.﹣﹣﹣﹣﹣﹣﹣﹣(10分)又∵,,,∴△PBC为等腰三角形,可得.﹣﹣﹣﹣﹣﹣﹣﹣(12分)设点D到平面PBC的距离为d,由V P﹣BDC=V D﹣PBC,得,解之得.﹣﹣﹣﹣﹣﹣﹣﹣(14分)点评:本题给出底面△ABC在外接圆中的三棱锥,求证线面垂直并求点到平面的距离,着重考查了线面垂直的判定与性质、锥体体积公式和点面距离的求法等知识,属于中档题.19.(14分)(2013•佛山一模)数列{a n}的前n项和为S n=2a n﹣2,数列{b n}是首项为a1,公差不为零的等差数列,且b1,b3,b11成等比数列.(1)求a1,a2,a3的值;(2)求数列{a n}与{b n}的通项公式;(3)求证:<5.考点:数列的求和;等差数列的通项公式;等比数列的通项公式.专题:综合题;等差数列与等比数列.分析:(1)由S n=2a n﹣2,分别令n=1,2,3可求a1,a2,a3(2)n≥2时,由a n=s n﹣s n﹣1可得a n=2a n﹣1,结合等比数列的通项公式可求a n,然后由b1=a1且b1,b3,b11成等比数列可求公差d,进而可求通项(3)令T n=,代入结合项的特点考虑利用错位相减求和先求出左边的式子的和,然后可证明解答:(本题满分14分)解:(1)∵S n=2a n﹣2,∴当=1时,a1=2a1﹣2,解得a1=2;当n=2时,S2=2+a2=2a2﹣2,解得a2=4;当n=3时,s3=a1+a2+a3=2a3﹣2,解得a3=8.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)(2)当n≥2时,a n=s n﹣s n﹣1=2a n﹣2﹣(2a n﹣1﹣2)=2a n﹣2a n﹣1,﹣﹣﹣﹣﹣(5分)得a n=2a n﹣1又,a1=2,∴数列{a n}是以2为首项,公比为2的等比数列,所以数列{a n}的通项公式为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)b1=a1=2,设公差为d,则由且b1,b3,b11成等比数列得(2+2d)2=2(2+10d),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)解得d=0(舍去)或d=3,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)∴b n=3n﹣1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)(3)令T n ==,∴2T n =,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)两式式相减得=2+=5﹣,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)又>0,故:<5..﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14)点评:本题主要考查了利用数列的递推公式构造等比数列,等比数列的通项公、性质及等差数列的通项公式的应用,数列的错位相减求和方法的应用,适用具有一定的计算量20.(14分)(2013•佛山一模)已知A(﹣2,0),B(2,0),C(m,n).(1)若m=1,n=,求△ABC的外接圆的方程;(2)若以线段AB为直径的圆O过点C(异于点A,B),直线x=2交直线AC于点R,线段BR的中点为D,试判断直线CD与圆O的位置关系,并证明你的结论.考点:圆的一般方程;直线与圆的位置关系.专题:计算题;综合题;直线与圆.分析:(1)法1:设所求圆的方程为x2+y2+Dx+Ey+F=0,依题意,求得D,E,F即可;法2:可求得线段AC的中点为(﹣,),直线AC的斜率为k1=及线段AC的中垂线的方程,从而可求△ABC的外接圆圆心及半径为r;13 / 16法3:可求得|OC|=2,而|OA|=|OB|=2,从而知△ABC的外接圆是以O为圆心,2为半径的圆;法4:直线AC的斜率为k1=,直线BC的斜率为k2=﹣,由k1•k2=﹣1⇒AC⊥BC,⇒△ABC 的外接圆是以线段AB为直径的圆;(2)设点R的坐标为(2,t),由A,C,R三点共线,而=(m+2,n),=(4,t),则4n=t (m+2)可求得t=,继而可求得直线CD的方程,于是可求得圆心O到直线CD的距离d=r,从而可判断直线CD与圆O相切.解答:解:(1)法1:设所求圆的方程为x2+y2+Dx+Ey+F=0,由题意可得,解得D=E=0,F=﹣4,∴△ABC的外接圆方程为x2+y2﹣4=0,即x2+y2=4.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)法2:线段AC的中点为(﹣,),直线AC的斜率为k1=,∴线段AC的中垂线的方程为y﹣=﹣(x+),线段AB的中垂线方程为x=0,∴△ABC的外接圆圆心为(0,0),半径为r=2,∴△ABC的外接圆方程为x2+y2=4.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)法3:∵|OC|==2,而|OA|=|OB|=2,∴△ABC的外接圆是以O为圆心,2为半径的圆,∴△ABC的外接圆方程为x2+y2=4.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)法4:直线AC的斜率为k1=,直线BC的斜率为k2=﹣,∴k1•k2=﹣1,即AC⊥BC,∴△ABC的外接圆是以线段AB为直径的圆,∴△ABC的外接圆方程为x2+y2=4.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)由题意可知以线段AB为直径的圆的方程为x2+y2=4,设点R的坐标为(2,t),∵A,C,R三点共线,∴∥,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)而=(m+2,n),=(4,t),则4n=t(m+2),∴t=,∴点R的坐标为(2,),点D的坐标为(2,),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)∴直线CD的斜率为k===,而m2+n2=4,∴m2﹣4=﹣n2,∴k==﹣,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)∴直线CD的方程为y﹣n=﹣(x﹣m),化简得mx+ny﹣4=0,∴圆心O到直线CD的距离d===2=r,所以直线CD与圆O相切.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)点评:本题考查圆的一般方程,考查圆的方程的确定,突出考查直线与圆的位置关系,考查圆心到直线的距离,考查推理分析与运算能力,属于难题.21.(14分)(2013•佛山一模)设函数f(x)=,x≠0.(1)判断函数f(x)在(0,+∞)上的单调性;(2)证明:对任意正数a,存在正数x,使不等式|f(x)﹣1|<a成立.考点:利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(1)利用导数的办法,通过导数大于或小于0判断函数的单调性.(2)先将|f(x)﹣1|化为|f(x)﹣1|=,从而原不等式化为<a,即e x﹣(1+a)x﹣1<0.令∅(x)=e x﹣(1+a)x﹣1,利用导数研究它的单调性和最值,最后得到存在正数x=ln (1+a),使原不等式成立.解答:解:(1)f′(x)==,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)令h(x)=(x﹣1)e x+1,则h′(x)=e x+e x(x﹣1)=xe x,当x>0时,h′(x)=xe x>0,∴h(x)是上的增函数,∴h(x)>h(0)=0故f′(x)=>0,即函数f(x)是(0,+∞)上的增函数.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)|f(x)﹣1|=||,当x>0时,令g(x)=e x﹣x﹣1,则g′(x)=e x﹣1>0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)故g(x)>g(0)=0,∴|f(x)﹣1|=,15 / 16。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年江门佛山两市高三教学质量检测数 学(文科) 2013.4本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生要务必填写答题卷上密封线内的有关项目.2.选择题每小题选出答案后,用铅笔把答案代号填在答题卷对应的空格内.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷交回. 参考公式:棱锥的体积公式:13V Sh =. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}N x x x A ∈≤<-=,21,集合{}3,2=B ,则A B 等于A .{}3,2,1B .{}3,2,1,0C .{}2D .{}3,2,1,0,1- 2.已知复数z 的实部为1,且2z =,则复数z 的虚部是A. BC. D.3.已知命题p :1x ∃>,210x ->,那么p ⌝是A .1x ∀>,210x -> B .1x ∀>,210x -≤ C .1x ∃>,210x -≤D .1x ∃≤,210x -≤4.为了解一片速生林的生长情况,随机测量了其中100株树木的底部周长(单位:cm ).根据所得数据画出样本的频率分布直方图(如右),那么在这100株树木中,底部周长小于110cm 的株数是A .30B .60C .70D .805.函数()sin 2f x x ππ⎛⎫=+⎪⎝⎭,]11[,-∈x ,则 A .()f x 为偶函数,且在]10[,上单调递减; B .()f x 为偶函数,且在]10[,上单调递增; C .()f x 为奇函数,且在]01[,-上单调递增; D .()f x 为奇函数,且在]01[,-上单调递减.90 110 周长(cm)100 120第4题图6.设等比数列{}n a 的前n 项和为n S ,则“10a >”是“32S a >”的 A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 7.已知幂函数()f x x α=,当1x >时,恒有()f x x <,则α的取值范围是 A .01α<< B .1α<C .0α>D .0α<8.设m 、n 是不同的直线,α、β、γ是不同的平面,有以下四个命题:① 若//,//,αβαγ 则//βγ ②若αβ⊥,//m α,则m β⊥③ 若,//m m αβ⊥,则αβ⊥ ④若//,m n n α⊂,则//m α其中真命题的序号是A .①④B . ②③C .②④D . ①③9.直线0102=-+y x 与不等式组0024320x y x y x y ≥⎧⎪≥⎪⎨-≥-⎪⎪+≤⎩表示平面区域的公共点有A .0个B .1个C .2个D .无数个10.已知平面上的线段l 及点P ,在l 上任取一点Q ,线段PQ 长度的最小值称为点P 到线段l 的距离,记作(,)d P l .设l 是长为2的线段,点集{|(,)1}D P d P l =≤所表示图形的面积为A.π B. 2π C. 2π+ D. 4π+二、填空题:本大共5小题.考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题) 11.已知向量,a b满足1,==a b ()-⊥a b a ,则向量a 与b 的夹角为 .12.已知圆C 经过点(0,3)A 和(3,2)B ,且圆心C 在直线y x =上,则圆C 的方程为 . 13.将集合{22st+|0s t ≤<且,s t Z ∈}中的元素按上小下大, 左小右大的原则排成如图的三角形数表,将数表中位于 第i 行第j 列的数记为ij b (0i j ≥>),则43b = . (二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程)在极坐标系中,设曲线1:2sin C ρθ=与2:C ρA B 、,则线段AB 的垂直平分线的极坐标方程为 . 15.(几何证明选讲)如图,圆O 的直径9AB =,直线CE 与圆O 相切于点C , AD CE ⊥于D , 若1AD =,设ABC θ∠=,则sin θ=______.35691012PABCD 1A 1B 1C 1D 第18题图三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)在平面直角坐标系xOy 中,以Ox 为始边,角α的终边与单位圆O 的交点B 在第一象限, 已知(1,3)A -.(1)若OA OB ⊥,求tan α的值. (2)若B 点横坐标为45,求AOB S ∆.17.(本题满分12分)市民李生居住在甲地,工作在乙地,他的小孩就读的小学在丙地,三地之间的道路情况如图所示.假设工作日不走其它道路,只在图示的道路中往返,每次在路口选择道路是随机的.同一条道路去程与回程是否堵车互不影响.假设李生早上需要先开车送小孩去丙地小学,再返回经甲地赶去乙地上班,(1)写出李生可能走的所有路线;(比如DDA 表示走D 路从甲到丙,再走D 路回到甲,然后走A 路到达乙);(2)假设从甲到乙方向的道路B 和从丙到甲方向的 道路D 道路拥堵,其它方向均通畅,但李生不知道相关信息,那么从出发到回到上班地没有遇到过拥堵的概率是多少? 18.(本题满分14分)如图,在四棱柱1111ABCD A B C D -中, 已知底面ABCD 的正方形, 侧棱1D D 垂直于底面ABCD ,且13D D =.(1)点P 在侧棱1C C 上,若1CP =, 求证:1A P ⊥平面PBD ;(2)求三棱锥11A BDC -的体积V .19.(本题满分14分)已知椭圆1C 和抛物线2C 有公共焦点()1,0F , 1C 的中心和2C 的顶点都在坐标原点,直线l 过点(4,0)M .(1)写出抛物线2C 的标准方程;(2)若坐标原点O 关于直线l 的对称点P 在抛物线2C 上,直线l 与椭圆1C 有公共点,求椭圆1C 的长轴长的最小值.20.(本题满分14分)环保刻不容缓,或许人类最后一滴水将是自己的泪水.某地水资源极为紧张,且受工业污染严重,预计20年后该地将无洁净的水可用.当地决定重新选址建设新城区,同时对旧城区进行拆除.已知旧城区的住房总面积为64a 2m ,每年拆除的数量相同;新城区计划第一年建设住房面积a 2m ,前四年每年以100%的增长率建设新住房,从第五年开始,每年都比上一年增加a 2m .设第n (1,N n n ≥∈且)年新城区的住房总面积为n a 2m ,该地的住房总面积为n b 2m . (1)求{}n a 的通项公式;(2)若每年拆除4a 2m ,比较+1n a 与n b 的大小. 21.(本题满分14分)已知函数1()ln f x x x a =+-,ln ()xg x x a=-,a 是常数. (1)求)(x f 的单调区间;(2)若()g x 有极大值,求a 的取值范围.文科数学评分参考一、填空题 BDBCACBDBD二、填空题11.4π 12.()()22115x y -+-= 13.2014.sin()42πρθ+=(或1cos sin =+θρθρ) 15.13三、解答题16.⑴解法1、由题可知:(1,3)A -,(cos ,sin )B αα, ……1分 (1,3)OA =- ,(cos ,sin )OB αα=……2分OA OB ⊥,得0OA OB ⋅=……3分∴cos 3sin 0αα-+=,1tan 3α= ……4分解法2、由题可知:(1,3)A -,(cos ,sin )B αα ……1分 3OA k =-, tan OB k α= ……2分∵OA OB ⊥,∴1OA OB K K ⋅=- ……3分3tan 1α-=-, 得1tan 3α= ……4分解法3、 设) , (y x B ,(列关于x 、y 的方程组2分,解方程组求得x 、y 的值1分,求正切1分) ⑵解法1、由⑴OA == 记AOx β∠=, (,)2πβπ∈∴sin β==,cos β==(每式1分) ……6分 ∵1OB = 4cos 5α=,得3sin 5α==(列式计算各1分) ……8分43sin sin()10510510AOB βα∠=-=⨯+=(列式计算各1分) ……10分∴11sin 12210AOB S AO BO AOB ∆=∠=⨯32=(列式计算各1分) ……12分解法2、由题意得:AO 的直线方程为30x y += ……6分则3sin 5α== 即43(,)55B (列式计算各1分) ……8分则点B 到直线AO的距离为d ==1分) ……10分又OA ==∴113222AOB S AO d ∆=⨯==(每式1分)…12分3sin5α==即43(,)55B(每式1分)……6分即:(1,3)OA=-,43(,)55OB=,……7分OA==1OB=,4313cos10OA OBAOBOA OB-⨯+⨯⋅∠===……9分(模长、角的余弦各1分)∴sin AOB∠==……10分则113sin1222AOBS AO BO AOB∆=∠==(列式计算各1分)……12分解法4、根据坐标的几何意义求面积(求B点的坐标2分,求三角形边长2分,求某个内角的余弦与正弦各1分,面积表达式1分,结果1分)17.⑴李生可能走的所有路线分别是:DDA,DDB,DDC,DEA,DEB,DEC,EEA,EEB,EEC,EDA,EDB,EDC(1-2个1分,3-5个2分,5-7个3分,7-11个4分,)……5分共12种情况……6分⑵从出发到回到上班地没有遇到过拥堵的走法有:DEA,DEC,EEA,EEC ……7分共4种情况,……8分所以从出发到回到上班地没有遇到过拥堵的概率41123P==(文字说明1分)……12分18.⑴解法1、依题意,1CP=,12C P=,在Rt BCP∆中,PB==……1分同理可知,1A P==1A B==(每式1分)……3分所以22211A P PB A B+=,……4分则1A P PB⊥,……5分同理可证,1A P PD⊥,……6分由于PB PD P=,PB⊂平面PBD,PD⊂平面PBD,……7分所以,1A P⊥平面PBD.……8分解法2、由1A P PB⊥(或1A P PD⊥)和BDPA⊥1证明1A P⊥平面PBD(证明任何一个线线垂直关系给5分,第二个线线垂直关系给1分)⑵解法1、如图1,易知三棱锥11A BDC-的体积等于四棱柱的体积减去四个体积相等的三棱锥的体积,即11111114A BDC ABCD ABCD A ABDV V V---=-(文字说明1分)……11分()1111432AB AD A A AB AD A A⎛⎫=-⨯⨯ ⎪⎝⎭……13分1323==……14分A BCD1A1B1C1DBD1AM1CN依题意知,三棱锥11A BDC -的各棱长分别是112AC BD ==,1111AB A DC B CD ====1分)……10分 如图2,设BD 的中点为M ,连接11A M C M ,, 则1A M BD ⊥,1C M BD ⊥,且11A M C M ==于是BD ⊥平面11AC M , ……12分设11A C 的中点为N ,连接MN ,则11MN AC ⊥,且3MN ===, 则三角形11AC M 的面积为11111123322A C M S AC MN ∆==⨯⨯= , ……13分 所以,三棱锥11A BDC -的体积111132233A C M V S BD ∆==⨯⨯= . ……14分19.⑴由题意,抛物线2C 的焦点()1,0F ,则1,22pp == ……2分 所以方程为:24y x =. ……3分 ⑵解法1、设(,)P m n ,则OP 中点为(,)22m n , ……4分因为O P 、两点关于直线(4)y k x =-对称,所以(4)221n m k n k m⎧=-⎪⎪⎨⎪⋅=-⎪⎩(每方程1分)……6分 即80km n k m nk -=⎧⎨+=⎩,解之得2228181k m k k n k ⎧=⎪⎪+⎨⎪=-⎪+⎩, ……7分将其代入抛物线方程,得:222288()411k k k k-=⋅++,所以21k =(列式计算各1分)……9分 联立 2222(4)1y k x x y ab =-⎧⎪⎨+=⎪⎩,消去y ,得:2222222()8160b a x a x a a b +-+-= ……11分由2222222(8)4()(16)0a b a a a b ∆=--+-≥,得2216a b +≥, ……12分注意到221b a =-,即2217a ≥,所以a ≥,即2a ≥ ……13分 因此,椭圆1C. ……14分 解法2、设2,4m P m ⎛⎫⎪⎝⎭,因为O P 、两点关于直线l 对称,则=4OM MP =, ……5分即4=,解之得4m =± ……6分即(4,4)P ±,根据对称性,不妨设点P 在第四象限,且直线与抛物线交于,A B 如图.则11ABOPk k =-=,于是直线l 方程为4y x =-(讨论、斜率与方程各1分) ……9分联立 222241y x x y ab =-⎧⎪⎨+=⎪⎩,消去y ,得:2222222()8160b a x a x a a b +-+-= ……11分 由2222222(8)4()(16)0a b a a a b ∆=--+-≥,得2216a b +≥, ……12分注意到221b a =-,即2217a ≥,所以a ≥,即2a ≥ ……13分 因此,椭圆1C. ……14分20.⑴设第n 年新城区的住房建设面积为n λ2m ,则当14n ≤≤时,12n n a λ-=;……1分当5n ≥时,(4)n n a λ=+. ……2分所以, 当14n ≤≤时,(21)n n a a =- ……3分当5n ≥时,2489(4)n a a a a a a n a =+++++++ (2922)2n n a +-=(列式1分)……5分故2(21)(14),922(5).2n n a n a n n a n ⎧-≤≤⎪=⎨+-≥⎪⎩ ……6分⑵13n ≤≤时,11(21)n n a a ++=-,(21)644n n b a a na =-+-,显然有1n n a b +< ……7分4n = 时,1524n a a a +==,463n b b a ==,此时1n n a b +<. ……8分 516n ≤≤ 时,2111122n n n a a ++-=,29226442n n n b a a na +-=+-(每式1分)……10分 1(559)n n a b n a +-=-. ……11分所以,511n ≤≤时,1n n a b +<;1216n ≤≤时,1n n a b +>.17n ≥时,显然1n n a b +>……13分 (对1-2种情况给1分,全对给2分)故当111n ≤≤时,1n n a b +<;当 12n ≥时,1n n a b +>. ……14分21.⑴222211(21)()()()x a x a f x x x a x x a -++'=-=-- ……1分 设22()(21)h x x a x a =-++,其判别式22(21)441a a a ∆=+-=+ ……2分①当14a ≤-时,0,∆≤2()0,()0h x x x a ≥->,()0f x '∴≥,)(x f 在定义域()0,+∞上是增函数; ……3分当0∆>时,由22()(21)0h x x a x a =-++=解得:12x x == (每个根1分)……5分②当104a -<<时,0∆>,210a +>;又22(21)(41)40a a a +-+=>,210a ∴+>,故210x x >>,即()h x 在定义域()0,+∞上有两个零点12212122a a x x ++==在区间()10,x 上,()0h x >,2()0x x a ->,()0f x '∴>, )(x f 为()10,x 上的增函数在区间()12,x x 上,()0h x <,2()0x x a ->,()0f x '∴<,)(x f 为()12,x x 上的增函数 在区间()2,x +∞上,()0h x >,2()0x x a ->,()0f x '∴>,)(x f 为()2,x +∞上的增函数. ……6分③当0a =时,120,1x x ==,在区间()0,1上,()0h x <,2()0x x a ->,()0f x '∴<;在区间()1,+∞上,()0h x >,2()0x x a ->,()0f x '∴>, ……7分④当0a >时,函数)(x f 的定义域是()()0,,a a +∞ ,()0h a a =-< ,()h x 在()0,a 上有零点1x =在(),a +∞上有零点221,2a x ++=;在区间()10,x 和()2,x +∞上,()0f x '>,)(x f 在()10,x 和()2,x +∞上为增函数;在区间()1,x a 和()2,a x 上,()0f x '<,)(x f 在()1,x a 和()2,a x 上位减函数. ……8分综上: 当14a ≤-时,函数)(x f 的递增区间是()0,+∞;当104a -<<时, )(x f 的递增区间是()10,x 和()2,x +∞,递减区间是()12,x x ;当0a =时,)(x f 的递减区间是()0,1;递增区间是()1,+∞;当0a >时,)(x f 的递减区间()1,x a 和()2,a x ,递增区间是()10,x 和()2,x +∞. ……9分⑵当0a ≤时,()g x 的定义域是()0,+∞,当0a >时,()g x 的定义域是()()0,,a a +∞ ,2(1ln )()()x x ag x x x a --'=-,令()(1ln )t x x x =-,则()ln t x x '=-(每个导数1分) ……11分 在区间()0,1上,()ln 0t x x '=->,()(1ln )t x x x =-是增函数且0()1t x <<;在区间()1,+∞上,()ln 0t x x '=-<,()(1ln )t x x x =-是减函数且()1t x <;当1x =时,(1)1t =. ……12分 故当1a ≥时,()0g x '≤,()g x 无极大值;当01a <<时,()0t a a -≠,方程()t x a =在区间()0,1和()1,+∞上分别有一解,x x ''',此时函数()g x 在x x ''=处取得极大值; ……13分当0a ≤时,方程()t x a =在区间[),e +∞上有一解x ''',此时函数()g x 在x x '''=处取得极大值.综上所述,若()g x 有极大值,则a 的取值范围是(),1-∞. ……14分。