2019届中考数学二轮复习专题一选填重难点题型突破题型五图形折叠及动点问题的相关计算试题
2019河南中考数学专题训练—几何图形的折叠与动点问题

几何图形的折叠与动点问题1.如图,在矩形ABCD 中,AB =4,AD =9,点E 在BC 上,CE =4,点F 是AD 上的一个动点,若把△BEF 沿EF 折叠,点B 落在点B ′处,当点B ′恰好落在矩形ABCD 的一边上,则AF 的长为________.第1题图3或 113 【解析】如解图①,当点B ′落在边AD 上时,则易证四边形BEB ′F 为菱形,∴BF =BE =9-4=5,由勾股定理易求AF =3;如解图②,当点B ′落在边CD 上时,BE =B ′E =9-4=5.由勾股定理易求B ′C =3,∴B ′D =4-3=1.设AF =x ,则FD =9-x .根据折叠的性质得BF =B ′F ,∴x 2+42=(9-x )2+12,解得x =113,∴AF =3或 113.第1题解图2.如图,矩形纸片ABCD 中,AB =4,AD =6,点P 是边BC 上的动点,现将纸片折叠,使点A 与点P 重合,折痕与矩形边的交点分别为E 、F ,要使折痕始终与边AB 、AD 有交点,则BP 的取值范围是________.第2题图6-25≤BP≤4【解析】①如解图①,当F、D重合时,BP的值最小,根据折叠的性质可知:AF=PF=6,在Rt△PFC中,PF=6,FC=4,则PC=25,∴BP min=6-25;②如解图②,当E、B重合时,BP的值最大,根据折叠的性质即可得到AB=BP=4,即BP的最大值为4;故BP的取值范围是6-25≤BP≤4.第2题解图3.如图,在矩形ABCD中,AB=2,AD=6,E,F分别是线段AD、BC上的点,连接EF,使四边形ABFE为正方形,若点G是AD上的动点,连接FG,将矩形沿FG折叠使得点C落在正方形ABFE的对角线所在的直线上,对应点为P,则线段AP的长为__________.第3题图4或4-22【解析】当C落在BE的延长线上时,对应点为P1,如解图①,连接FP1,AP1,过P1点作P1H⊥FC,垂足为点H,交AD于点N,设FH=x,∵∠P1BH=45°,∴P1H=BH=x+2,由折叠性质可得P1F=FC=6-2=4,在Rt△P1HF中,x2+(x+2)2=42,解得x=7-1或x=-7-1(舍去),∴P1H=2+7-1=7+1,P1N=7+1-2=7-1,在Rt△P1NA 中,AP1=AN2+P1N2=(7+1)2+(7-1)2=4;当点C落在F A的延长线上时,对应点为P 2,如解图②,易知P 2F =CF =4,AF =22+22=22,∴AP 2=P 2F -AF =4-2 2 .第3题解图4.如图,在四边形ABCD 中,AD ∥BC (AD <BC ),AB 与CD 不平行,AB =CD =5,BC =12,点E 是BC 上的动点,将∠B 沿着AE 折叠,使点B 落在直线AD 上的点B ′处,DB ′=1,直线BB ′与直线DC 交于点H ,则DH =________.第4题图511或513 【解析】如解图①所示,∵AD ∥BC ,∴△HB ′D ∽△HBC ,∴HD HC =DB ′CB ,∵AB =CD =5,BC =12,DB ′=1,∴HD 5+HD =112,解得:HD =511;如解图②所示,∵AD ∥BC ,∴△HB ′D ∽△HBC ,∴HD HC =DB ′BC ,∵AB =CD =5,BC =12,DB ′=1,∴HD 5-HD =112,解得:DH =513.故DH 的长度为511或513.5.如图,已知AD∥BC,AB⊥BC,AB=8,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′分线段MN为3∶5的两部分时,EN的长为________.第5题图355 11或53913【解析】由翻折的性质,得AB=AB′,BE=B′E.①当MB′=3,B′N=5时,设EN=x,得B′E=x2+25.由题意得△B′EN∽△AB′M,∴ENB′M=B′EAB′,即x3=x2+258,解得x2=4511,∴EN=x=35511;②当MB′=5,B′N=3时,设EN=x,得B′E=x2+9,由题意得△B′EN∽△AB′M,∴ENB′M=B′EAB′,即x5=x2+98,解得x2=7513,∴EN=x=53913,故EN的长为35511或53913.6.如图,在矩形纸片ABCD中,AB=6,BC=8,点P是对角线BD上一动点,将纸片折叠,使点C与点P重合,折痕为EF,折痕EF的两端分别在BC、DC边上(含端点),当△PDF为直角三角形时,FC的长为________.第6题图24 7或83【解析】在矩形ABCD中,AB=CD=6,BC=AD=8,在Rt△BCD中,由勾股定理得BD=10.由折叠得PE=EC,PF=CF,∠EPF=∠FCE =90°.∵∠PDF<90°,∴△PDF为直角三角形有以下两种情况:(Ⅰ)如解图1,当∠PFD=90°时,∵∠FCE=∠FPE=∠PFC=90°,∴四边形PECF 是矩形.∵PF=FC,∴四边形PECF是正方形,∴PF∥BC,∴△DPF∽△DBC,∴PFBC=DFDC.设FC=PF=x,则DF=6-x,∴x8=6-x6,解得:x=247,即FC=247;(Ⅱ)如解图2,当∠DPF=90°时,∵∠FPE=∠FCB=90°,∴此时点E与点B重合,∴BP=BC=8,∴PD=10-8=2.∵∠PDF公用,∠DPF=∠DCB=90°,∴△DPF∽△DCB,∴PFBC=PDDC,即:PF8=26,解得:PF=83,∴FC=83.综上所述,FC的长为247或83.第6题解图7.如图,正方形的边长为4,E是BC的中点,点P是射线AD上一动点,过P 作PF ⊥AE 于F .若以P 、F 、E 为顶点的三角形与△ABE 相似,则P A =________.第7题图2或5 【解析】分两种情况:如解图①,当△EFP ∽△ABE 时,则有∠PEF =∠EAB ,∴PE ∥AB ,∴四边形ABEP 为矩形,∴P A =EB =2;如解图②,当△PFE ∽△ABE 时,则有∠PEF =∠AEB ,又∵∠P AF =∠AEB ,∴∠PEF =∠P AF ,∴PE =P A ,∵PF ⊥AE ,∴点F 为AE 的中点,∵AE =42+22=25,PE AE =EF EB ,即PE 25=52,得PE =5,∴P A =5,∴当P A =2或P A =5时,以P 、F 、E 为顶点的三角形与△ABE 相似.第7题解图8.如图,矩形ABCD 中,AB =1,AD =2,E 是AD 中点,点P 在射线BD 上运动,若△BEP 为等腰三角形,则线段BP 的长度等于____________.第8题图 2或53或655 【解析】∵在矩形ABCD 中,AB =1,AD =2,E 是AD 的中点,∴∠BAD =90°,AE =DE =1,∴△ABE 是等腰直角三角形,∴BE =2AB = 2.若△BEP 为等腰三角形,则分三种情况:①当BP =BE 时,显然BP =2;②当PB =PE 时,如解图①,连接AP .∵PB =PE ,AB =AE ,∴AP 垂直平分BE ,∵△ABE 是等腰直角三角形,∴∠BAP =∠EAP =45°,作PM ⊥AB 于点M ,设PM =x ,∵S △ABD =S △ABP +S △APD ,∴12×1×2=12×1×x +12×2×x ,解得x =23,∴PM =23,∴BP =PM sin ∠ABD=2325=53;③当EB =EP 时,如解图②,过点A 作AF ⊥BD 于点F ,过点E 作EG ⊥BD 于点G ,在Rt △ABF 中,AF =AB ·sin ∠ABF =1×25=255,∵AE =ED ,EG ∥AF ,∴EG =12AF =55,在Rt △BEG 中,∵BE =2,EG =55,∴BG =BE 2-EG 2=355,∵EB =EP ,EG ⊥BP ,∴BP =2BG =655.综上所述,线段BP 的长度等于2或53或655.第8题解图①第8题解图②9.如图,在▱ABCD 中,∠B =30°,AB =AC ,O 是两条对角线的交点,过点O 作AC 的垂线分别交边AD 、BC 于点E 、F ;点M 是边AB 的一个三等分点.则△AOE 与△BMF的面积比为__________.第9题图3∶4或3∶8 【解析】如解图,连接AF 、MF ,∵AB =AC ,∠B =30°,∴∠ACB =∠B =30°, ∵点O 是对角线的交点,EF ⊥AC ,∴AF =FC ,∴∠ACB =∠F AC =30°,∴∠F AB =90°,∴BF =2AF =2FC ,∵点M 为AB 的三等分点,如解图①,当BM =13AB 时,设S △BMF =a ,则S △AMF =2a ,S △ABF =3a ,∴S △AFC =3a 2,∴S △AOE =3a 4,∴S △AOE ∶S △BMF =3a 4∶a =3∶4.则△AOE 与△BMF 的面积比为3∶4;如解图②,当BM =23AB 时,S △AOE ∶S△BMF =3a 4∶2a =3∶8.综上所述:△AOE 与△BMF 的面积比为3∶4或3∶8.第9题解图①第9题解图②10.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AC =2,E 为斜边AB 的中点,点P 是射线BC 上的一个动点,连接AP 、PE ,将△AEP 沿着边PE 折叠,折叠后得到△EP A ′,若△EP A ′与△ABC 的另一个交点为F ,当EF =14AB 时,则BP 的长为________.第10题图 2或23 【解析】∵∠ACB =90°,∠B =30°,AC =2,E 为斜边AB 的中点,∴AB =4,AE =12AB =2,BC =2 3.①若P A ′与AB 交于点F ,连接A ′B ,如解图①,由折叠可得S △A ′EP =S △AEP ,A ′E =AE =2,∵点E 是AB 的中点,∴S △BEP =S △AEP =12S △ABP .∵EF =14AB ,∴S △EFP =12S △BEP =12S △AEP =12S △A ′EP ,∴EF =12BE =BF ,PF =12A ′P =A ′F .∴四边形A ′EPB 是平行四边形,∴BP =A ′E =2;②若EA ′与BC 交于点F ,连接AA ′,交EP 于H ,如解图②.同理可得FP =12BP =BF ,EF =12×2=1.∵BE =AE ,∴EF =12EA ′=12AP =1,∴AP =2=AC ,∴点P 与点C 重合,∴BP =BC =2 3.故BP 的长为2或2 3.第10题解图① 第10题解图②。
【中考二轮】2019年 中考数学 二轮专题复习 图形与变换(含答案)

2019年中考数学二轮专题复习图形与变换一、选择题1.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,将△BCD沿CD折叠,点B恰好落在AB中点E处,则∠A=()A.75° B.60° C.45° D.30°2.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6 C.2 D.33.如图,在矩形纸片ABCD中,将△BCD沿BD折叠,C点落在C′处,则图中共有全等三角形()A.2对B.3对C.4对D.5对4.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有()A.1个 B.2个C.3个 D.4个5.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°6.如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点 A逆时针旋转75°,得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D,若AC=6,则AD的长为()A.2B.3C.2D.37.如图是一块矩形ABCD的场地,AB=102m,AD=51m,从A、B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为()A.5050m2B.4900m2C.5000m2D.4998m28.如图,A(,1),B(1,).将△AOB绕点O旋转150°得到△A′OB′,则此时点A 的对应点A′的坐标为()A.(-,-1)B.(-2,0)C.(-1,-)或(﹣2,0)D.(-,-1)或(-2,0)9.如图①是一个直角三角形纸片,∠A=30°,将其折叠,使点C落在斜边上的点C处,折痕为BD,如图②,再将②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,若折痕DE的长是cm,则BC的长是()A.3cmB.4cmC.5cmD.6cm10.小明是我校手工社团的一员,他在做折纸手工,如图所示在矩形ABCD中,AB=6,BC=8,点E是BC的中点,点F是边CD上的任意一点,△AEF的周长最小时,则DF的长为()A.1B.2C.3D.411.如图,对折矩形纸片ABCD,使BC与AD重合,折痕为EF,把纸片展平;再一次折叠纸片,使BC与EF重合,折痕为GH,把纸片展平;再一次折叠纸片,使点A落在GH上的点N 处,并使折痕经过点B,折痕BM交GH于点I.若AB=4cm,则GI的长为()12.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点P是AB的中点,点D,E是AC,BC边上的动点,且AD=CE,连接DE. 有下列结论:①∠DPE=90°;②四边形PDCE面积为1;③点C到DE距离的最大值为.其中正确的个数是().A.0B.1C.2D.3二、填空题13.如图,把Rt△ABC绕点A逆时针旋转44°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′= .14.如图,矩形ABCD对角线AC=10,BC=6,则图中四个小矩形的周长和为15.如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50度.若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C= 度.16.把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是.17.如图,矩形ABCD中,AD=4,∠CAB=30o,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是18.如图,在平面直角坐标系中,边长为2的正方形ABCD斜靠在y轴上,点A的坐标为(1,0),反比例函数y=图象经过点C,将正方形ABCD绕点A顺时针旋转一定角度后,使得点B恰好落在x轴的正半轴上,此时边BC交反比例图象于点E,则点E的纵坐标是.三、作图题19.已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.20.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).四、解答题21.如图,点P的坐标为(4,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.(1)写出点Q的坐标是;(2)若把点Q向右平移m个单位长度,向下平移2m个单位长度后,得到的点Q′恰好落在第三象限,求m的取值范围.22.如图,四边形ABCD表示一张矩形纸片,AB=10,AD=8.E是BC上一点,将△ABE沿折痕AE向上翻折,点B恰好落在CD边上的点F处,⊙O内切于四边形ABEF.求:(1)折痕AE的长;(2)⊙O的半径.23.如图①,将矩形ABCD沿DE折叠使点A落在点A′处,然后将矩形展平,如图②沿EF折叠使点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE 上的点H处.(1)求证:EG=CH;(2)已知AF=错误!未找到引用源。
初中数学中考二轮复习重难突破专题04 折叠问题(含答案)

专题04 折叠问题重点分析在中考,这是必考内容,主要考查形式包括:单纯判断对称图形的识别;利用对称图形的性质求点坐标;利用折叠的对称性性质的相关计算与证明。
难点解读考点:轴对称图形与轴对称轴对称图形轴对称图形定义如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴对应线段相等AB=ACAB=A′B′,BC=B′C′,AC=A′C′对应角相等∠B=∠C∠A=∠A′,∠B=∠B′,∠C=∠C′性质对应点所连的线段被对称轴垂直平分区别(1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言;(2)对称轴不一定只有一条(1)轴对称是指两个图形的位置关系,必须涉及两个图形;(2)只有一条对称轴关系(1)沿对称轴对折,两部分重合;(2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称(1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形1.常见的轴对称图形: 等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.3.作某点关于某直线的对称点的一般步骤1)过已知点作已知直线(对称轴)的垂线,标出垂足;2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤1)作出图形的关键点关于这条直线的对称点;2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.真题演练1.如图,在矩形中,,将此矩形折叠,使点C与点A重合,点D落在点处,折痕为,则的长为____,的长为____.【答案】①. ②.【解析】由折叠得,,,设DF=x,则AF=8-x,,由勾股定理得DF=,,过作,过D作DM⊥于M,根据面积法可得,,再由勾股定理求出,根据线段的和差求出,最后由勾股定理求出;【详解】解:∵四边形ABCD是矩形,∴CD=AB=6,由折叠得,,设DF=x,则AF=8-x,又Rt中,,即解得,,即DF=∴过作,过D作DM⊥于M,∵∴,解得,∵∴,解得,∴∴∴;故答案为:6;.【点拨】此题主要考查了矩形的折叠问题,勾股定理等知识,正确作出辅助线构造直角三角形运用勾股定理是解答此题的关键.2.如图,在中.,点是边上一动点.连接,将沿折叠,点落在处,当点在内部(不含边界)时,长度的取值范围是___________.【答案】【解析】分别求出当落在AC和BC上时的长度即可.【详解】∵∠ABC=90°,AB=2,BC=4,∴,当点落在AC上时,如图,∵将△ABD沿BD折叠,点A落在处,∴∠ADB==90°,∵,∴,当点落在BC上时,如图,过点D作DH⊥AB于H,∵将△ABD沿BD折叠,点A落在处,∴∠ABD=∠DBC=45°,∵DH⊥AB,∴∠HDB=∠HBD=45°,∴BH=DH,∵,∴HD=2AH=BH,∵AB=AH+BH=2AH+AH=2,∴,,∴,∴当点在△ABC内部(不含边界)时,AD长度的取值范围为.【点拨】本题考查折叠问题,解题的关键是考虑两种极端情况.还可以利用相似来解题.3.如图,长方形ABCD中,AD=BC=8,AB=CD=17,∠DAB=∠B=∠C=∠D=90°.点E为射线DC上的一个动点,△ADE与△AD′E关于直线AE对称,当△AD′B为直角三角形时,DE的长为______.【答案】或【解析】分两种情况:点E在DC线段上,点E为DC延长线上的一点,进一步分析探讨得出答案即可.【详解】如图1,∵折叠,∴△AD′E≌△ADE,∴∠AD′E=∠D=90°,∵∠AD′B=90°,∴B.D′、E三点共线,又∵ABD′∽△BEC,AD′=BC,∴ABD′≌△BEC,∴BE=AB=17,∵BD′==15,∴DE=D′E=17﹣15=2;如图2,∵∠ABD″+∠CBE=∠ABD″+∠BAD″=90°,∴∠CBE=∠BAD″,在△ABD″和△BEC中,∠D″=∠BCE,AD″=BC,∠CBE=∠BAD″,∴△ABD″≌△BEC,∴BE=AB=17,∴DE=D″E=17+15=32.综上所知,DE=2或32.故答案为2或32.【点拨】本题考查翻折的性质,三角形全等的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.4.在菱形ABCD中,∠B=60°,BC=2 cm,M为AB的中点,N为BC上一动点(不与点B重合),将△BMN 沿直线MN折叠,使点B落在点E处,连接DE,CE,当△CDE为等腰三角形时,线段BN的长为_____.【答案】或2【解析】分两种情况:①如图1,当DE=DC时,连接DM,作DG⊥BC于G,由菱形的性质得出AB=CD=BC=2,AD ∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=120°,DE=AD=2,求出DG=,CG=,BG=BC+CG=3,由折叠的性质得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,证明△ADM≌△EDM,得出∠A=∠DEM=120°,证出D.E.N三点共线,设BN=EN=x,则GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得出方程,解方程即可;②如图2,当CE=CD上,CE=CD=AD,此时点E与A重合,N与点C重合,CE=CD=DE=DA,△CDE是等边三角形,BN=BC=2(含CE=DE这种情况).【详解】解:分两种情况,①如图1,当DE=DC时,连接DM,作DG⊥BC于G,∵四边形ABCD是菱形,∴AB=CD=BC=2,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=120°,∴DE=AD=2,∵DG⊥BC,∴∠CDG=90°-60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M为AB的中点,∴AM=BM=1,由折叠的性质得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,AD=ED,AM=EM,DM=DM,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=120°,∴∠MEN+∠DEM=180°,∴D.E.N三点共线,设BN=EN=x,则GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得:(3-x)²+()² =(x+2)²,解得:x=,即BN=;②当CE=CD时,CE=CD=AD,此时点E与A重合,N与点C重合,如图2所示:CE=CD=DE=DA,△CDE是等边三角形,BN=BC=2(符合题干要求);综上所述,当△CDE为等腰三角形时,线段BN的长为或2;故答案为或2.【点拨】本题考查了折叠变换的性质、菱形的性质、全等三角形的判定与性质、三点共线、勾股定理、直角三角形的性质、等腰三角形的性质等知识,熟练掌握并灵活运用是解题的关键.5.如图,在矩形ABCD中,AB=4,BC=3,点P是AB上(不含端点A,B)任意一点,把△PBC沿PC折叠,当点B′的对应点落在矩形ABCD的对角线上时,BP=__________________________.【答案】或.【解析】分两种情况探讨:①点B落在矩形对角线BD上,②点B落在矩形对角线AC上,由三角形相似得出比例式,即可得出结果.【详解】①点A落在矩形对角线BD上,如图1所示.∵矩形ABCD中,AB=4,BC=3∴∠ABC=90°,AC=BD,∴AC=BD==5.根据折叠的性质得:PC⊥BB′,∴∠PBD=∠BCP,∴△BCP∽△ABD,∴,即,解得:BP=.②点A落在矩形对角线AC上,如图2所示.根据折叠的性质得:BP=B′P,∠B=∠PB′C=90°,∴∠AB′A=90°,∴△APB′∽△ACB,∴,即,解得:BP=.故答案为或.【点拨】本题考查了折叠问题、勾股定理,矩形的性质以及三角形相似的判定与性质;熟练掌握矩形的性质,由三角形相似得出比例式是解决问题的关键.6.如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____.【答案】或10【解析】【详解】试题分析:根据题意,可分为E点在DC上和E在DC的延长线上,两种情况求解即可:如图①,当点E在DC上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=2,设FE=x,则FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=.(2)如图②,当,所以FQ=点E在DG的延长线上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=8,设DE=x,则FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,综上所述,DE=或10.7.如图,在矩形纸片中,,,点是的中点,点是边上的一个动点,将沿所在直线翻折,得到,连接,,则当是以为腰的等腰三角形时,的长是________.【答案】或【解析】存在两种情况:当=DC时,连接ED,根据勾股定理可得ED的长,可判断E,A´,D三点共线,根据勾股定理即可得出结论;当=时,证明AEA´F是正方形,于是得出结论.【详解】解:①当=DC时,如图1,连接ED,∵点是的中点,,,四边形是矩形,∴AD=BC=,∠A=90°,∴DE=,∵将沿所在直线翻折,得到,∴A´E=AE=2,A´D=DC=AB=4,∴DE=A´E+A´D=6,∴点E,A´,D三点共线,∵∠A=90°,∴∠FA´E=∠FA´D=90°,设AF=x,则A´F=x,FD=-x,在Rt△FA´D中,,解得x=,∴FD=3;②当=时,如图2,∵=,∴点A´在线段CD的垂直平分线上,∴点A´在线段AB的垂直平分线上,∵点是的中点,∴EA´是AB的垂直平分线,∴∠AEA´=90°,∵将沿所在直线翻折,得到,∴∠A=∠EA´F=90°,AF=FA´,∴四边形AEA´F是正方形,∴AF=AE=2,∴DF=.故答案为或.【点拨】本题考查了翻折变换,矩形的性质,等腰三角形的性质,正方形的判定与性质,勾股定理.分类讨论思想的运用是解题的关键.8.如图,在Rt△ABC中,∠C=90°,BC=2,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE 所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE的长为____或___【答案】3或【解析】△AB′F为直角三角形,应分两种情况进行讨论.当∠AFB′为直角时,利用勾股定理求出B′E,也就是BE的长,便求出AE.当∠AB′F为直角时,过A作AN⊥EB′,交EB′的延长线于N,构造Rt△B′EF,利用勾股定理便可求出AE.【详解】解:①当B′D⊥AE时,△AB′F为直角三角形,如下图:根据题意,BE=B′E,BD= B′D=BC=. ∠B=∠EB′F∵在Rt△ABC中,∠C=90°,BC=2,AC=2∴AB===4∴∠B=∠EB′F =30°.∵在Rt△BDF中,∠B=30°∴DF=BD=∴B′F=B′D-DF=-=∵在Rt△B′EF中,∠EB′F =30°∴EF=B′E,∵B′F===EF,即=EF,∴EF=,则BE=1,∴AE=AB-BE=4-1=3.②当D B′⊥A B′时,△AB′F为直角三角形,如下图:连接AD,过A作AN⊥EB′,交EB′的延长线于N.根据题意,BE=B′E,BD=CD=B′D=BC=. ∠B=∠EB′F ∵在Rt△ABC中,∠C=90°,BC=2,AC=2∴AB===4∴∠B=∠EB′F =30°.∵∠AB′F=90°∴∠AB′E=∠AB′F+∠EB′F=120°∴Rt△AB′N中,∠AB′N=60°,∠B′AN=30°在Rt△AB′D和Rt△ACD中∴Rt△AB′D≌Rt△ACD(H L)∴AB′=AC=2∴B′N=1,AN=设AE=x,则BE= B′E=4-x∵在Rt△AEN中,∴()2+(4-x+1)2=x2∴x=综上,AE的长为3或.【点拨】本题是一道综合题,涉及到直角三角形全等的判定,30°角的直角三角形的性质,勾股定理等知识.9.如图,在矩形中,,,将点绕点逆时针旋转,点的对应点为.的平分线交于,且.若点落在矩形的边上,则的值为______.【答案】或【解析】分两种情况:①点B′落在AD边上,根据矩形与折叠的性质易得AB=BE,即可求出a的值;②点B′落在CD 边上,证明△ADB′∽△B′CE,根据相似三角形对应边成比例即可求出a的值.【详解】解:分两种情况:①当点B′落在AD边上时,如图1.∵四边形ABCD是矩形,∴∠BAD=∠B=90°,∵将△ABE沿AE折叠,点B的对应点B′落在AD边上,∴∠BAE=∠B′AE=∠BAD=45°,∴AB=BE,∴a=;②当点B′落在CD边上时,如图2.∵四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°,AD=BC=a.∵将△ABE沿AE折叠,点B的对应点B′落在CD边上,∴∠B=∠AB′E=90°,AB=AB′=1,EB=EB′=a,∴DB′==,EC=BC−BE=a−a=a.∵∠B′AD=∠EB′C=90°−∠AB′D,∠D=∠C=90°,∴△ADB′∽△B′CE,∴,即,解得a1=,a2=−(舍去).综上,所求a的值为或.故答案为或.【点拨】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,勾股定理,相似三角形的判定与性质.进行分类讨论与数形结合是解题的关键。
2019年河南中考数学之选择、填空重难点题型:专题四 几何图形的折叠与动点问题

折叠后点位置的不确定
8.(2018· 达州)如图,Rt△ABC 中,∠C=90° ,AC=2,BC=5,点 D 是 BC 边上 一点,且 CD=1,点 P 是线段 DB 上一动点,连接 AP,以 AP 为斜边在 AP 的下方作等 腰直角三角形 AOP.在点 P 从点 D 运动至点 B 的过程中, 点 O 的运动路径长为 2 2 .
4.如图,在直角坐标系中,点 A(4,0),B(0,2),过点 A 的直线 l⊥AB,点 P 是 直线 l 上一动点,过点 P 作 PC⊥x 轴,垂足为点 C,把△ACP 沿 AP 翻折,使点 C 落在 点 D 处,且以点 A,D,P 为顶点的三角形与△ABP 相似,则所有满足条件的点 P 的坐 标是 (5,2)或(8,8)或(0,-8)或(3,-2) .
12.(2018· 安阳一模改编)在矩形 ABCD 中,AB=4,BC=9,点 E 是 AD 边上一动 点, 将△ABE 折叠, 点 A 的对应点为 A′, 若点 A′到矩形较长两对边的距离之比为 1∶3, 4 4 则线段 AE 的长为 5 15或7 7或 4 3 . 13.如图,在矩形 ABCD 中,AB=3,AD=6,点 E 为 AD 边上一点,将△ABE 沿 BE 折叠,点 A 落在点 A′处,取 BE 的中点 F,连接 A′F,当 A′F 平行于矩形的某条边 时,AE 的长为
折叠后特殊三角形的判定
1.(2018· 宜宾)如图,在矩形 ABCD 中,AB=3,CB=2,点 E 为线段 AB 上的动点, 将△CBE 沿 CE 折叠,使点 B 落在矩形内点 F 处,下列结论正确的是 ①②③ 所有正确结论的序号) .(写出
①当 E 为线段 AB 中点时,AF∥CE; 9 ②当 E 为线段 AB 中点时,AF= ; 5 13-2 13 ③当 A,F,C 三点共线时,AE= ; 3 ④当 A,F,C 三点共线时,△CEF≌△AEF.
【人教通用版】2019年 九年级数学中考二轮 图形的折叠与旋转 专题复习 20题(含答案)

2019年九年级数学中考二轮图形的折叠与旋转专题复习1.矩形ABCD中,AB=10,BC=6,点E在线段AB上.点F在线段AD上.(1)沿EF折叠,使A落在CD边上的G处(如图),若DG=3AF AE的长;(2)若按EF折叠后,点A落在矩形ABCD的CD边上,请直接写出AF的范围.2.如图1,分别以矩形OABC的两边OA和OC所在的直线为x轴、y轴建立平面直角坐标系,A点的坐标为(3,0),C点的坐标为(0,4),将矩形OABC绕O点逆时针旋转,使B点落在y轴的正半轴上,旋转后的矩形为OA1B1C1,BC、A1B1相交于点M.(1)求点B1的坐标与线段B1C的长;(2)将图1的矩形OA1B1C1沿y轴向上平移,如图2,矩形PA2B2C2是平移过程中的某一位置,BC,A2B2相交于点M1,点P运动到C点停止。
设点P运动的距离为x,矩形PA2B2C2与圆矩形OABC重叠部分的面积为y,求y关于x的函数关系式,并写出x的取值范围.3.在△ABC中,AB=AC,∠BAC=2∠DAE=2α.(1)如图1,若点D关于直线AE的对称点为F,求证:△ADF∽△ABC;(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;(3)如图3,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.4.在平面直角坐标系中,己知O为坐标原点,点A(3,0),B(0,4),以点A为旋转中心,把△ABO顺时针旋转,得△ACD.记旋转角为α.∠ABO为β.(Ⅰ)如图①,当旋转后点D恰好落在AB边上时,求点D的坐标;(Ⅱ)如图②,当旋转后满足BC∥x轴时,求α与β之间的数量关系:(Ⅲ)当旋转后满足∠AOD=β时,求直线CD的解析式(直接写出结果即可).5.如图,已知Rt△ABC中,AB=AC=,点D为直线BC上的动点(不与B、C重合),以A为直角顶点作等腰直角三角形ADE(点A,D,E按逆时针顺序排列),连结CE.(1)当点D在线段BC上时,①求证:BD=CE;②求CD+CE的值;(2)当点D在直线BC上运动时,直接写出CD与CE之间的数量关系.6.如图①,将矩形ABCD沿DE折叠使点A落在点A′处,然后将矩形展平,如图②沿EF折叠使点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.7.阅读材料,在平面直角坐标系中,已知x轴上两点A(x,0),B(x2,0)的距离记作AB=|x1﹣x2|;若A,B1是平面上任意两点,我们可以通过构造直角三角形来求AB间的距离,如图,过A,B分别向x轴、y轴作垂线AM1、AN1和BM2、BN2,垂足分别是M1、N1、M2、N2,直线AN1交BM2于点Q,在Rt△ABQ中,AQ=|x1﹣x2|,BQ=|y1﹣y2|,∴AB2=AQ2+BQ2=|x1﹣x2|+|y1﹣y2|2=(x1﹣x2)2+(y1﹣y2)2,由此得到平面直角坐标系内任意两点A(x1,y1),B(x2,y2)间的距离公式为:(1)AB= .(2)直接应用平面内两点间距离公式计算点A(1,﹣3),B(﹣2,1)之间的距离为;(3)根据阅读材料并利用平面内两点间的距离公式,求代数式+的最小值.8.在正方形ABCD中,E、F分别为BC、CD的中点,AE与BF相交于点G.(1)如图1,求证:AE⊥BF;(2)如图2,将△BCF沿BF折叠,得到△BPF,延长FP交BA的延长线于点Q,若AB=4,求QF的值.9.如图,已知矩形ABCD的一条边AB=10,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,折痕为AO.(1)求证:△OCP∽△PDA;(2)若△OCP与△PDA的面积比为1:4,求边AD的长.10.准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积.11.直角坐标系中,已知点P(﹣2,﹣1),点T(t,0)是x轴上的一个动点.(1)求点P关于原点的对称点P′的坐标;(2)当t取何值时,△P′TO是等腰三角形?12.阅读下面材料:小明遇到这样一个问题:如图1,△ABO和△CDO均为等腰直角三角形, ÐAOB=ÐCOD =90°.若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积.小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO到E, 使得OE=CO, 连接BE, 可证△OBE≌△OAD, 从而得到的△BCE即是以AD、BC、OC+OD的长度为三边长的三角形(如图2).请你回答:图2中△BCE的面积等于.请你尝试用平移、旋转、翻折的方法,解决下列问题:如图3,已知△ABC, 分别以AB、AC、BC为边向外作正方形ABDE、AGFC、BCHI, 连接EG、FH、ID.(1)在图3中利用图形变换画出并指明以EG、FH、ID的长度为三边长的一个三角形(保留画图痕迹);(2)若△ABC的面积为1,则以EG、FH、ID的长度为三边长的三角形的面积等于.13.已知,等腰Rt△ABC中,点O是斜边的中点,△MPN是直角三角形,固定△ABC,滑动△MPN,在滑动过程中始终保持点P在AC上,且PM⊥AB,PN⊥BC,垂足分别为E、F.(1)如图1,当点P与点O重合时,OE、OF的数量和位置关系分别是 __.(2)当△MPN移动到图2的位置时,(1)中的结论还成立吗?请说明理由.(3)如图3,等腰Rt△ABC的腰长为6,点P在AC的延长线上时,Rt△MPN的边 PM 与AB的延长线交于点E,直线B C与直线NP交于点F,OE交BC于点H,且 EH:HO=2:5,则BE的长是多少?14.(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.15.将两块全等的三角板如图①摆放,其中∠ACB=∠DCE=90°,∠A=∠D=45°,将图①中的△DCE顺时针旋转得图②,点P是AB与CE的交点,点Q是DE与BC的交点,在DC上取一点F,连接BE、FP,设BC=1,当BF ⊥AB时,求△PBF面积的最大值。
中考数学二轮复习专题一选填重难点题型五图形折叠及动点问题的相关计算试题

题型五 图形折叠及动点问题的相关计算1.如图,在△ABC 中,∠C =90°,BC =3,D ,E 分别在AB 、AC 上,将△ADE 沿DE 翻折后,点A 落在点A′处,若A′为CE 的中点,则折痕DE 的长为( ) A .12B .3C .2D .1 , 第1题图) , 第2题图)2.如图,在直角坐标系中,ABCD 的四个顶点的坐标分别为A(0,8),B(-6,8),C(-6,0),D(0,0),现有动点P 在线段CB 上运动,当△ADP 为等腰三角形时,P 点坐标为__________.3.如图,在Rt △ABC 中,∠C =90°,AC =8,BC =6,点D ,E 分别在边AB ,AC 上,将△ADE 沿直线DE 翻折,点A 的对应点在边AB 上,连接A′C,如果A′C=A′A,那么BD =__________., 第3题图) , 第4题图)4.如图,在矩形纸片ABCD 中,AB =5,AD =2,点P 在线段AB 上运动,设AP =x ,现将纸片折叠,使点D 与点P 重合,得折痕EF(点E 、F 为折痕与矩形边的交点),再将纸片还原,则四边形EPFD 为菱形时,x 的取值范围是__________.5.(2017·濮阳模拟)如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =6,点D 是边BC 的中点,点E 是边AB 上的任意一点(点E 不与点B 重合),沿DE 翻折△DBE 使点B 落在点F 处,连接AF ,则线段AF 的长取最小值时,BF 的长为__________., 第5题图) , 第6题图)6.如图,在△ABC 中,∠ACB =90°,AB =10 cm ,BC =8 cm ,动点P 从点A 出发,以2 cm /s 的速度沿射线AC 运动,当t =__________s 时,△ABP 为等腰三角形.7.如图,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B′处.当△CEB′为直角三角形时,CB ′的长为__________., 第7题图) , 第8题图)8.如图,在矩形ABCD 中,AB =8,AD =6,将矩形ABCD 折叠,使得点B 落在边AD 上,记为点G ,BC 的对应边GI 与边CD 交于点H ,折痕为EF ,则AE =__________时,△EGH 为等腰三角形.9.已知在△ABC 中,AB =AC =5,BC =6(如图所示),将△ABC 沿射线BC 方向平移m 个单位得到△DEF,顶点A 、B 、C 分别与D 、E 、F 对应.若以点A 、D 、E 为顶点的三角形是等腰三角形,且AE 为腰,则m 的值是__________., 第9题图) , 第10题图)10.(2017·南阳模拟)如图,矩形ABCD 中,AB =1,AD =2,点E 是边AD 上的一个动点,把△BAE 沿BE 折叠,点A 落在A′处,如果A′恰在矩形的对称轴上,则AE 的长为__________.11.(2016·金华)如图,Rt △ABC 纸片中,∠C =90°,AC =6,BC =8,点D 在边BC 上,以AD 为折痕将△ABD 折叠得到△AB′D,AB ′与边BC 交于点 E.若△DEB′为直角三角形,则BD 的长是__________.题型五 第15题图形折叠及动点问题的相关计算1.D 【解析】∵△A′DE 由△ADE 翻折而成,∴AE =A′E,∵A ′为CE 的中点,∴AE =A′E=12CE ,∴AE =13AC ,AE AC =13,∵∠C =90°,DE ⊥AC ,∴DE ∥BC ,∴△ADE ∽△ABC ,∴DE BC =AE AC =13,DE 3=13,解得DE =1.故选D .2.(-6,4),(-6,27),(-6,8-27) 【解析】如解图,当AP =PD 时,点P 在AD 的垂直平分线上,∴P(-6,4),当AP =AD =8时,BP =AP 2-AB 2=27,当DP =AD =8时,PC =27,∴P(-6,27),(-6,8-27),∴P 点坐标为(-6,4),(-6,27),(-6,8-27).3.152【解析】∵在Rt △ABC 中,∠C =90°,AC =8,BC =6,∴AB =10,∵A ′C =A′A,∴∠A =∠A′CA,∵∠ACB =90°,∴∠B +∠A =∠BCA′+∠A′CA=90°,∴∠B =∠BCA′,∴AA′=A′B =12AB =5,∵将△ADE 沿直线DE 翻折,∴A ′D =AD =52,∴BD =A′B+A′D=152. 4.2≤x ≤5 【解析】∵要使四边形EPFD 为菱形,则需DE =EP =FP =DF ,∴如解图①:当点E 与点A 重合时,AP =AD =2,此时AP 最小;如解图②:当点P 与B 重合时,AP =AB =5,此时AP 最大;∴四边形EPFD 为菱形的x 的取值范围是:2≤x ≤5.图① 图②5.1255【解析】由题意得:DF =DB ,∴点F 在以D 为圆心,BD 为半径的圆上,如解图,作⊙D ;连接AD 交⊙D 于点F ,此时AF 值最小,∵点D 是边BC 的中点,∴CD =BD =3;而AC =4,由勾股定理得:AD 2=AC 2+CD 2,∴AD =5,而FD =3,∴FA =5-3=2,即线段AF 长的最小值是2,如解图,连接BF ,过F 作FH ⊥BC 于H ,∵∠ACB =90°,∴FH ∥AC ,∴△DFH ∽△ACD ,∴DF AD =DH CD =HF AC ,∴HF =125,DH =95,∴BH =245,∴BF =BH 2+HF 2=1255. 6.5或6或255【解析】由题意可知AP =2t ,当AB =AP 时,有2t =10,解得t =5;当AB =BP 时,则可知AC =CP ,则AP =12,即2t =12,解得t =6;当AP =BP 时,CP =2t -6,BP =2t ,在Rt△BPC 中,由勾股定理可得BC 2+CP 2=BP 2,即64+(2t -6)2=4t 2,解得t =256;综上可知t 的值为5s 或6s 或256s . 7.2或10 【解析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如解图①,连接AC ,在Rt △ABC 中,AB =3,BC =4,∴AC =5,∵∠B 沿AE 折叠,使点B 落在点B′处,∴∠AB ′E =∠B =90°,当△CEB′为直角三角形时,能得到∠EB′C=90°,∴点A 、B′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B′处,∴EB =EB′,AB =AB′=3,∴CB′=5-3=2;②当点B′落在AD 边上时,如解图②,此时四边形ABEB′为正方形,∴B ′E =AB =3,∴CE=4-3=1,∴Rt △B ′CE 中,CB ′=12+32=10.综上所述,BE 的长为2或10.图① 图②8.42-2 【解析】∵在矩形ABCD 中,∠A =∠D =∠B =∠EGH =90°,∴∠AGE +∠AEG =∠AGE +∠DGH =90°,∴∠AEG =∠DGH ,∵△EGH 为等腰三角形,∴EG =GH ,在△AEG 与△DGH 中,⎩⎪⎨⎪⎧∠A =∠D ∠AEG =∠DGH EG =GH,∴△AEG ≌△DGH ,∴DG =AE ,∵AB =8,AD =6,将矩形ABCD 折叠,使得点B 落在边AD 上,∴BE =GE ,∴BE =8-AE ,∴AG =6-AE ,∵AG 2+AE 2=GE 2,∴(6-AE)2+AE 2=(8-AE)2,∴AE =42-2,∴AE =42-2时,△EGH 为等腰三角形.9.6或256【解析】分2种情况讨论:①当DE =AE 时,作EM ⊥AD ,垂足为M ,AN ⊥BC 于N ,则四边形ANEM 是矩形,∴AM =NE ,AM =12AD =12m ,CN =12BC =3,∴12m +12m =6-(3-12m),∴m =6,②当AD =AE =m 时,∵将△ABC 沿射线BC 方向平移m 个单位得到△DEF ,∴四边形ABED 是平行四边形,∴BE =AD =m ,∴NE =m -3,∵AN 2+NE 2=AE 2,∴42+(m -3)2=m 2,∴m =256.综上所述:当m =6或256时,△ADE 是等腰三角形.10.1或33【解析】分两种情况:①如解图①,过A′作MN ∥CD 交AD 于M ,交BC 于N ,则直线MN 是矩形ABCD 的对称轴,∴AM =BN =12AD =1,∵△ABE 沿BE 折叠得到△A′BE,∴A ′E =AE ,A ′B =AB =1,∴A ′N =A′B 2-BN 2=0,即A′与N 重合,∴A′M=1,∴A ′E 2=EM 2+A′M 2,∴A ′E 2=(1-A′E)2+12,解得:A′E=1,∴AE =1;②如解图②,过A′作PQ ∥AD 交AB 于P ,交CD 于Q ,则直线PQ 是矩形ABCD 的对称轴,∴PQ ⊥AB ,AP =12AB ,AD ∥PQ ∥BC ,∴A ′B =AB =2PB ,∴∠PA ′B =30°,∴∠A′BC=30°,∴∠EBA ′=30°,∴AE =A′E=A′B·tan 30°=1×33=33;综上所述:AE 的长为1或33.11.2或5 【解析】∵Rt △ABC 纸片中,∠C =90°,AC =6,BC =8,∴AB =10,∵以AD 为折痕将△ABD 折叠得到△AB′D,∴BD =DB′,AB ′=AB =10.如解图①所示:当∠B′DE=90°时,过点B′作B′F⊥AF ,垂足为F.设BD =DB′=x ,则AF =6+x ,FB ′=8-x.在Rt △AFB ′中,由勾股定理得:AB′2=AF 2+FB′2,即(6+x)2+(8-x)2=102.解得:x 1=2,x 2=0(舍去).∴BD =2;如解图②所示:当∠B′ED=90°时,C 与点E 重合.∵AB′=10,AC =6,∴B ′E =4.设BD =DB′=x ,则CD =8-x.在Rt △B ′DE 中,DB ′2=DE 2+B′E 2,即x 2=(8-x)2+42.解得:x =5.∴BD =5.综上所述,BD 的长为2或5.。
2019年 中考数学 图形折叠问题 专题复习(含答案)

2019年中考数学图形折叠问题专题复习1.如图,在△ACB中,∠ACB=100°,∠A=20°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25°B.30°C.35°D.40°2.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3B.4C.5D.63.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.1.8B.2.4C.3.2D.3.64.如图,在Rt △ABC中,AB⊥BC,AB=10,BC=8,点D是AB上一点,且AD = 4,点E为AC上一动点,将△ADE沿DE翻折得到△A/DE,连接A/C,则A/C的最小值为( )A. B.5 C.6 D.5.如图,矩形ABCD中,将四边形ABFE沿EF折叠得到四边形HGFE,已知∠CFG=400,则∠DEF= .6.如图,将矩形ABCD沿AE向上折叠,使点B落在DC边上的F处,若△AFD的周长为9,△ECF的周长为3,则矩形ABCD的周长为________.7.如图,将矩形纸片ABCD折叠,使边AB、CB均落在对角线BD上,折痕为BE,则∠EBF的大小为_______.8.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.9.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为10.如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.若AB=6,BE:EC=4:1,则线段DE的长为.11.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为 .12.如图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点.现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH.若HG的延长线恰好经过点D,则CD的长为 .13.如图,折叠矩形纸片ABCD,先折出折痕BD,再折叠使AD边与对角线BD重合,得折痕DG,若AB=4,BC=3,则AG的长是__________.14.如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC 沿OB折叠,使点A落在A/的位置上.若OB=,OC=2BC,则点A′的坐标 .15.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEO的度数是.16.如图,已知把长方形纸片ABCD沿EF折叠后,点D与点B重合,点C落在点C′的位置上,若∠1=60°,AE=2.(1)求∠2,∠3的度数.(2)求长方形ABCD的纸片的面积S.17.如图,在矩形ABCD中,沿EF将矩形折叠,使A、C重合,AC与EF交于点H.(1)求证:△ABE≌△AGF;(2)若AB=6,BC=8,求△ABE的面积.18.如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.(1)猜想线段GF与GC有何数量关系?并证明你的结论;(2)若AB=3,AD=4,求线段GC的长.19.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.20.已知矩形OABC在平面直角坐标系中,O为原点,A(8,0),C(0,4),如图所示.D在AB上(D可以与A、B重合),连接CD,将△BCD沿CD翻折得到△CDE.(1)如图1,若E点落在OA上,求D、E坐标;(2)如图2,F为CD中点,连接BF、EF、BE,若BEF为直角三角形,求E点坐标;(3)如图3,若F点始终为CD的中点,求F点运动路径长度.图1 图2 图3答案1.D2.B.3.D4.C;5.答案为:1106.答案为:127.答案为:45°8.答案为:75/16;9.答案为:(10,3).10.答案是:2.11.答案为:3.7512.答案为:;13.答案为:1.514.答案为:(-0.6,0.8)15.答案为:100°.16.17.18.解:(1)GF=GC.理由如下:连接GE,∵E是BC的中点,∴BE=EC,∵△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵在矩形ABCD中,∴∠C=90°,∴∠EFG=90°,∵在Rt△GFE和Rt△GCE中,∴Rt△GFE≌Rt△GCE(HL),∴GF=GC;(2)设GC=x,则AG=3+x,DG=3﹣x,在Rt△ADG中,42+(3﹣x)2=(3+x)2,解得x=4/3.19.解:(1)△AED≌△CEB′证明:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°,又∵∠B′EC=∠DEA,∴△AED≌△CEB′;(2)由折叠的性质可知,∠EAC=∠CAB,∵CD∥AB,∴∠CAB=∠ECA,∴∠EAC=∠ECA,∴AE=EC=8﹣3=5.在△ADE中,AD=4,延长HP交AB于M,则PM⊥AB,∴PG=PM.∴PG+PH=PM+PH=HM=AD=4.20.解:(1)D(8,),E(,0);(2)E();(3)F点运动路径长度为2.。
二、解答重难题型突破+题型5 圆的综合++++课件+2025年中考数学总复习人教版(山东)

P在半圆弧AB上运动(不与A,B两点重合),过点C作直线PB的垂线CD交PB于点D.
(1)如图1,求证:△PCD∽△ABC.
(2)当点P运动到什么位置时,△PCD≌△ABC?请在图2中画出△PCD并说明理由.
(3)如图3,当点P运动到CP⊥AB时,求∠BCD的度数.
28
【解析】(1)∵AB是☉O的直径,
∴∠BCD=30°.
31
本课结束
∴BF=BE=5.
∵∠ABE=∠AMF=90°,∠BAE=∠MAF,
∴△AMF∽△ABE,
∴ = ,即 = = =2.
设MF=x,则AM=2x,
∴BM=10-2x.
5
∵BM2+MF2=BF2,
∴(10-2x)2+x2=52,解得x=3,x=5(不符合题意,舍去),即MF=3.
∴∠PCD=60°.
∵四边形ABDC内接于☉O,
∴∠B=∠PCD=60°.
9
(2)∵点C为的中点,
∴∠CAD=∠CDA,∴AC=CD.
∵∠ADB=90°,
∴∠CDA+∠CDP=90°.
在Rt△ADP中,∠CAD+∠P=90°,
∴∠CDP=∠P,
∴CD=PC=2 ,
∴AC=CD=PC=2 ,
,对角线AC为☉O
【例2】(2024·济南三模)如图,四边形ABCD内接于☉O,=
的直径,延长BC交过点D的切线于点E.
(1)求证:DE⊥BE;
3
(2)若☉O的半径为5,tan∠DAC= ,求DE的长.
4
12
【自主解答】(1)连接DO并延长交AB于F,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型五图形折叠及动点问题的相关计算1.如图,在△ABC中,∠C=90°,BC=3,D,E分别在AB、AC上,将△ADE沿DE翻折后,点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A.12B.3C.2D.1,第1题图),第2题图)2.如图,在直角坐标系中,ABCD的四个顶点的坐标分别为A(0,8),B(-6,8),C(-6,0),D(0,0),现有动点P 在线段CB 上运动,△当ADP为等腰三角形时,P点坐标为__________.3.如图,在△R t ABC中,∠C=90°,AC=8,BC=6,点D,E分别在边AB,AC上,将△ADE沿直线DE翻折,点A的对应点在边AB上,连接A′C,如果A′C=A′A,那么BD=__________.,第3题图),第4题图)4.如图,在矩形纸片ABCD中,AB=5,AD=2,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原,则四边形EPFD为菱形时,x的取值范围是__________.5.(2017·濮阳模拟)如图,在△R t ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB上的任意一点(点E不与点B重合),沿DE翻△折DBE使点B落在点F 处,连接AF,则线段AF的长取最小值时,BF的长为__________.,第5题图),第6题图) 6.如图,在△ABC中,∠ACB=90°,AB=10cm,BC=8cm,动点P从点A出发,以2cm/s的速度沿射线AC运动,当t=__________s时,△ABP为等腰三角形.7.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,CB′的长为__________.,第7题图),第8题图)8.如图,在矩形ABCD中,AB=8,AD=6,将矩形ABCD折叠,使得点B落在边AD上,记为点G,BC的对应边GI与边CD交于点H,折痕为EF,则AE=__________时△,EGH为等腰三角形.9.已知在△ABC中,AB=AC=5,BC=6(如图所示),△将ABC沿射线BC方向平移m个单位得到△DEF,顶点A、B、C分别与D、E、F对应.若以点A、D、E为顶点的三角形是等腰三角形,且AE为腰,则m的值是__________.,第9题图),第10题图) 10.(2017·南阳模拟)如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿B E折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为__________.11.(2016·金华)如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC上,以AD为折痕将△ABD折叠得到△A B△′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是__________.题型五 第 15 题图形折叠及动点问题的相关计算1.D 【解析】∵△A ′DE 由△ADE 翻折而成,∴AE =A ′E ,∵A′为 CE 的中点,∴AE 11 AE 1 =A ′E= CE ,∴AE = AC , = ,∵∠C =90°,DE ⊥AC ,∴DE ∥BC , △∴ADE ∽△ABC ,∴23 AC 3DE AE 1 DE 1 = = , = ,解得 DE =1.故选 D . BC AC 3 3 32.(-6,4),(-6,2 7),(-6,8-2 7) 【解析】如解图,当 AP =PD 时,点 P 在 AD 的垂直平分线上,∴P(-6,4),当 AP =AD =8 时,BP = AP 2-AB 2=2 7,当 DP =AD =8 时,PC =2 7,∴P(-6,2 7),(-6,8-2 7),∴P 点坐标为(-6,4),(-6,2 7), (-6,8-2 7).15 3. 【解析】∵在 △R t ABC 中,∠C =90°,AC =8,BC =6,∴AB =10,∵A ′C =A ′A, 2∴∠A =∠A ′CA ,∵∠ACB =90°,∴∠B +∠A =∠BCA ′+∠A ′CA =90°,∴∠B =∠BCA ′,1 5 ∴AA ′=A ′B= AB =5,∵将△ADE 沿直线 DE 翻折,∴A ′D =AD = ,∴BD =A ′B+A ′D=2 215 . 24.2≤x ≤5 【解析】∵要使四边形 EPFD 为菱形,则需 DE =EP =FP =DF ,∴如解图①: 当点 E 与点 A 重合时,AP =AD =2,此时 AP 最小;如解图②:当点 P 与 B 重合时,AP =AB =5,此时 AP 最大;∴四边形 EPFD 为菱形的 x 的取值范围是:2≤x ≤5.图①图②5. 12 5 5【解析】由题意得:DF =DB ,∴点 F 在以 D 为圆心,BD 为半径的圆上,如解 图,作⊙D ;连接 AD 交⊙D 于点 F ,此时 AF 值最小,∵点 D 是边 BC 的中点,∴CD =BD =3; 而 AC =4,由勾股定理得:AD 2=AC 2+CD 2,∴AD =5,而 FD =3,∴FA =5-3=2,即线段 AF 长的最小值是 2,如解图,连接 BF ,过 F 作 FH ⊥BC 于 H ,∵∠ACB =90°,∴FH ∥AC ,∴△DF DH HF 12 9 24 12 5 DFH ∽△ACD ,∴ = = ,∴HF = ,DH = ,∴BH = ,∴BF = BH 2+HF 2= . AD CD AC 5 5 5 5256.5或6或【解析】由题意可知AP=2t,当AB=AP时,有2t=10,解得t=5;5当AB=BP时,则可知AC=CP,则AP=12,即2t=12,解得t=6;当AP=BP时,CP=2t-6,BP=2t,在△R t BPC中,由勾股定理可得BC2+CP2=BP2,即64+(2t-6)2=4t2,解得2525t=;综上可知t的值为5s或6s或s.667.2或10【解析】△当CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如解图①,连接AC,在△R t ABC中,AB=3,BC=4,∴AC=5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,△当CEB′为直角三角形时,能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2;②当点B′落在AD边上时,如解图②,此时四边形ABEB′为正方形,∴B′E=AB=3,∴CE=4-3=1,∴△R t B′CE中,CB′=12+32 =10.综上所述,BE的长为2或10.图①图②8.42-2【解析】∵在矩形ABCD中,∠A=∠D=∠B=∠EGH=90°,∴∠AGE+∠AEG=∠AGE+∠DGH=90°,∴∠AEG=∠DGH,∵△EGH为等腰三角形,∴EG=GH,△在AEG ∠A=∠D与△DGH中,∠AEG=∠DGH,∴△AEG≌△DGH,∴DG=AE,∵AB=8,AD=6,将矩形ABCD EG=GH折叠,使得点B落在边AD上,∴BE=GE,∴BE=8-AE,∴AG=6-AE,∵AG2+AE2=GE2,∴(6-AE)2+AE2=(8-AE)2,∴AE=42-2,∴AE=42-2时△,EGH为等腰三角形.259.6或【解析】分2种情况讨论:①当DE=AE时,作EM⊥AD,垂足为M,AN⊥BC6111111于N,则四边形ANEM是矩形,∴AM=NE,AM=AD= m,CN=BC=3,∴m+ m=6-(3-222222 m),∴m=6,②当AD=AE=m时,∵将△ABC沿射线BC方向平移m个单位得到△DEF,∴四边形ABED是平行四边形,∴BE=AD=m,∴NE=m-3,∵AN2+NE2=AE2,∴42+(m-3)2=m2,2525∴m=.综上所述:当m=6或时,△ADE是等腰三角形.6610.1或33【解析】分两种情况:①如解图①,过A′作MN∥CD交AD于M,交BC1于N,则直线MN是矩形ABCD的对称轴,∴AM=BN=AD=1,∵△ABE沿BE折叠得△到A′BE,2∴A′E=AE,A′B=AB=1,∴A′N=A′B2-BN2=0,即A′与N重合,∴A′M=1,∴A′E2=EM2+A′M2,∴A′E2=(1-A′E)2+12,解得:A′E=1,∴AE=1;②如解图②,过A′作PQ∥AD1交AB于P,交CD于Q,则直线PQ是矩形ABCD的对称轴,∴PQ⊥AB,AP=AB,AD∥PQ∥2BC,∴A′B=AB=2PB,∴∠PA′B=30°,∴∠A′BC=30°,∴∠EBA′=30°,∴AE=A′E=A′B·tan30°=1×333=;综上所述:AE的长为1或. 33311.2或5 【解析】∵△R t ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=10,∵以AD为折痕将△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=10.如解图①所示:当∠B′DE =90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,则AF=6+x,FB′=8-x.在△R t AFB′中,由勾股定理得:AB′2=AF2+FB′2,即(6+x)2+(8-x)2=102.解得:x=2,1x=0(舍去).∴BD=2;如解图②所示:当∠B′ED=90°时,C与点E重合.∵AB′=10,2 AC=6,∴B′E=4.设BD=DB′=x,则CD=8-x.在△R t B′DE中,DB′2=DE2+B′E2,即x2=(8-x)2+42.解得:x=5.∴BD=5.综上所述,BD的长为2或5.。