2019-2020年中考数学 试题研究 三、解答题重难点突破 题型二 实际应用问题

合集下载

北京市密云县2019-2020学年中考数学第三次调研试卷含解析

北京市密云县2019-2020学年中考数学第三次调研试卷含解析

北京市密云县2019-2020学年中考数学第三次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.二次函数y=ax2+bx+c(a≠0)和正比例函数y=﹣13x的图象如图所示,则方程ax2+(b+13)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定2.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元3.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°4.已知一元二次方程1–(x–3)(x+2)=0,有两个实数根x1和x2(x1<x2),则下列判断正确的是( ) A.–2<x1<x2<3 B.x1<–2<3<x2C.–2<x1<3<x2D.x1<–2<x2<35.某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A.5.035×10﹣6B.50.35×10﹣5C.5.035×106D.5.035×10﹣56.在一个口袋中有4个完全相同的小球,把它们分别标号为 1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为( )A .116B .18C .316 D .14 7.若ab <0,则正比例函数y=ax 与反比例函数y=bx在同一坐标系中的大致图象可能是( )A .B .C .D .8.二元一次方程组632x y x y +=⎧⎨-=-⎩的解是( )A .51x y =⎧⎨=⎩ B .42x y =⎧⎨=⎩C .51x y =-⎧⎨=-⎩D .42x y =-⎧⎨=-⎩9.小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是( ) 百合花 玫瑰花 小华 6支 5支 小红8支3支A .2支百合花比2支玫瑰花多8元B .2支百合花比2支玫瑰花少8元C .14支百合花比8支玫瑰花多8元D .14支百合花比8支玫瑰花少8元10.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m ﹣1;②1014043n n ++=;③1014043n n --=;④40m+10=43m+1,其中正确的是( ) A .①②B .②④C .②③D .③④11.二次函数y =ax 2+bx +c(a≠0)的图象如图,下列结论正确的是( )A .a<0B .b 2-4ac<0C .当-1<x<3时,y>0D .-2ba=1 12.在0,π,﹣3,0.62这5个实数中,无理数的个数为( )A .1个B .2个C .3个D .4个二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.化简:=_____.14.分解因式:3x 2-6x+3=__. 15.使得关于x 的分式方程111x k kx x +-=+-的解为负整数,且使得关于x 的不等式组322144x x x k+≥-⎧⎨-≤⎩有且仅有5个整数解的所有k 的和为_____.16.如图,小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得8CD =,20BC =米,CD 与地面成30°角,且此时测得1米的影长为2米,则电线杆的高度为=__________米.17.分解因式:(2a+b )2﹣(a+2b )2= .18.如图,在△ABC 中,BE 平分∠ABC ,DE ∥BC ,如果DE=2AD ,AE=3,那么EC=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE 的坡度i=1:1(即DB :EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC .(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)20.(6分)如图1,四边形ABCD 中,AB BC ⊥,//AD BC ,点P 为DC 上一点,且AP AB =,分别过点A 和点C 作直线BP 的垂线,垂足为点E 和点F .()1证明:ABE V ∽BCF V ;()2若34AB BC =,求BPCF的值; ()3如图2,若AB BC =,设DAP ∠的平分线AG 交直线BP 于.G 当1CF =,74PD PC=时,求线段AG的长.21.(6分)已知关于x 的一元二次方程x 2+2(m ﹣1)x+m 2﹣3=0有两个不相等的实数根. (1)求m 的取值范围;(2)若m 为非负整数,且该方程的根都是无理数,求m 的值. 22.(8分)计算:|﹣13|+(π﹣2017)0﹣2sin30°+3﹣1. 23.(8分)已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC .求证:BG=FG ;若AD=DC=2,求AB 的长.24.(10分)先化简,再求值:(12a +-1)÷212a a -+,其中a =31+ 25.(10分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:本次抽样调查了 个家庭;将图①中的条形图补充完整;学习时间在2~2.5小时的部分对应的扇形圆心角的度数是 度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?26.(12分)如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点C 距守门员多少米?(取437=)运动员乙要抢到第二个落点D ,他应再向前跑多少米? 27.(12分)x 取哪些整数值时,不等式5x +2>3(x -1)与12x≤2-32x 都成立? 参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】设20(0)ax bx c a ++=≠的两根为x 1,x 2,由二次函数的图象可知12x x 0+<,a >0;设方程210(0)3ax b x c a ⎛⎫+++=≠ ⎪⎝⎭的两根为m ,n ,再根据根与系数的关系即可得出结论.【详解】解:设20(0)ax bx c a ++=≠的两根为x 1,x 2,∵由二次函数的图象可知12x x 0+<,a >0, 0ba∴-<. 设方程210(0)3ax b x c a ⎛⎫+++=≠ ⎪⎝⎭的两根为m ,n ,则1133b b m n a a a++=-=--010300a ab am m >∴-<-<∴+<Q Q .故选C . 【点睛】本题考查的是抛物线与x 轴的交点,熟知抛物线与x 轴的交点与一元二次方程根的关系是解答此题的关键. 2.D 【解析】 【分析】A 、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A 选项正确;C 、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C 正确;B 、根据总价=200+超过10本的那部分书的数量×16即可求出a 值,B 正确;D ,求出一次性购买20本书的总价,将其与400相减即可得出D 错误.此题得解. 【详解】解:A 、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A 选项正确; C 、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8, ∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C 选项正确; B 、∵200+16×(30﹣10)=520(元), ∴a =520,B 选项正确;D 、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D 选项错误. 故选D . 【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键. 3.B 【解析】 【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC 各角的度数,再根据三角形内角和定理即可得出结论. 【详解】∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,∠BAC=180°-60°-∠1=120°-∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°-∠2)+(120°-∠1)=180°,∴∠1+∠2=120°.故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.4.B【解析】【分析】设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)根据二次函数的图像性质可知y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1个单位长度,根据图像的开口方向即可得出答案.【详解】设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)∵y=0时,x=-2或x=3,∴y=-(x﹣3)(x+2)的图像与x轴的交点为(-2,0)(3,0),∵1﹣(x﹣3)(x+2)=0,∴y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1,与x轴的交点的横坐标为x1、x2,∵-1<0,∴两个抛物线的开口向下,∴x1<﹣2<3<x2,故选B.【点睛】本题考查二次函数图像性质及平移的特点,根据开口方向确定函数的增减性是解题关键.5.A【解析】试题分析:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6,故选A.考点:科学记数法—表示较小的数.6.C【解析】列举出所有情况,看两次摸出的小球的标号的和等于6的情况数占总情况数的多少即可.共16种情况,和为6的情况数有3种,所以概率为.故选C.7.D【解析】【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.故选D【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.B【解析】【分析】利用加减消元法解二元一次方程组即可得出答案【详解】解:①﹣②得到y=2,把y=2代入①得到x=4,∴42 xy=⎧⎨=⎩,故选:B.【点睛】此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.【解析】【分析】设每支百合花x元,每支玫瑰花y元,根据总价=单价×购买数量结合小华一共花的钱比小红少8元,即可得出关于x、y的二元一次方程,整理后即可得出结论.【详解】设每支百合花x元,每支玫瑰花y元,根据题意得:8x+3y﹣(6x+5y)=8,整理得:2x﹣2y=8,∴2支百合花比2支玫瑰花多8元.故选:A.【点睛】考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.10.D【解析】试题分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④.故选D.考点:由实际问题抽象出一元一次方程.11.D【解析】试题分析:根据二次函数的图象和性质进行判断即可.解:∵抛物线开口向上,a>∴0∴A选项错误,∵抛物线与x轴有两个交点,∴240->b ac∴B选项错误,由图象可知,当-1<x<3时,y<0∴C选项错误,x=由抛物线的轴对称性及与x轴的两个交点分别为(-1,0)和(3,0)可知对称轴为1即-=1,∴D选项正确,故选D.12.B【解析】【分析】分别根据无理数、有理数的定义逐一判断即可得.【详解】解:在0,π,-3,0.6,2这5个实数中,无理数有π、2这2个,故选B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008…(每两个8之间依次多1个0)等形式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-6【解析】【分析】根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可:【详解】,故答案为-614.3(x-1)2【解析】【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【详解】()()222-+=-+=-.36332131x x x x x故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.12.1【分析】 依据分式方程11x k k x x +-+-=1的解为负整数,即可得到k >12,k≠1,再根据不等式组322144x x x k +≥-⎧⎨-≤⎩有1个整数解,即可得到0≤k <4,进而得出k 的值,从而可得符合题意的所有k 的和.【详解】 解分式方程11x k k x x +-+-=1,可得x=1-2k , ∵分式方程11x k k x x +-+-=1的解为负整数, ∴1-2k <0,∴k >12, 又∵x≠-1,∴1-2k≠-1,∴k≠1,解不等式组322144x x x k +≥-⎧⎨-≤⎩,可得344x k x ≥-⎧⎪⎨+≤⎪⎩, ∵不等式组322144x x x k +≥-⎧⎨-≤⎩有1个整数解, ∴1≤44k +<2, 解得0≤k <4, ∴12<k <4且k≠1, ∴k 的值为1.1或2或2.1或3或3.1,∴符合题意的所有k 的和为12.1,故答案为12.1.【点睛】本题考查了解一元一次不等式组、分式方程的解,解题时注意分式方程中的解要满足分母不为0的情况.16.(【解析】【分析】过D 作DE ⊥BC 的延长线于E ,连接AD 并延长交BC 的延长线于F ,根据直角三角形30°角所对的直角边等于斜边的一半求出DE ,再根据勾股定理求出CE ,然后根据同时同地物高与影长成正比列式求出EF ,再求出BF ,再次利用同时同地物高与影长成正比列式求解即可.如图,过D 作DE ⊥BC 的延长线于E ,连接AD 并延长交BC 的延长线于F .∵CD=8,CD 与地面成30°角,∴DE=12CD=12×8=4, 根据勾股定理得:CE=22CD DE -=2242-2284-=43. ∵1m 杆的影长为2m ,∴DE EF =12, ∴EF=2DE=2×4=8,∴BF=BC+CE+EF=20+43+8=(28+43).∵AB BF =12, ∴AB=12(28+43)=14+23. 故答案为(14+23).【点睛】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比的性质,作辅助线求出AB 的影长若全在水平地面上的长BF 是解题的关键.17.3(a+b )(a ﹣b ).【解析】(2a+b )2﹣(a+2b )2=4a 2+4ab+b 2-(a 2+4ab+4b 2)= 4a 2+4ab+b 2-a 2-4ab-4b 2=3a 2-3b 2=3(a 2-b 2)=3(a+b)(a-b) 18.1.【解析】【分析】由BE 平分∠ABC ,DE ∥BC ,易得△BDE 是等腰三角形,即可得BD=2AD ,又由平行线分线段成比例定理,即可求得答案.【详解】解:∵DE ∥BC ,∴∠DEB=∠CBE ,∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∴∠ABE=∠DEB ,∴BD=DE ,∵DE=2AD ,∴BD=2AD ,∵DE ∥BC ,∴AD :DB=AE :EC ,∴EC=2AE=2×3=1.故答案为:1.【点睛】此题考查了平行线分线段成比例定理以及等腰三角形的判定与性质.注意掌握线段的对应关系是解此题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.水坝原来的高度为12米【解析】试题分析:设BC=x 米,用x 表示出AB 的长,利用坡度的定义得到BD=BE ,进而列出x 的方程,求出x 的值即可.试题解析:设BC=x 米,在Rt △ABC 中,∠CAB=180°﹣∠EAC=50°,AB=≈=,在Rt △EBD 中,∵i=DB :EB=1:1,∴BD=BE ,∴CD+BC=AE+AB ,即2+x=4+,解得x=12,即BC=12, 答:水坝原来的高度为12米..考点:解直角三角形的应用,坡度.20.(1)证明见解析;(2)32BP CF =;(3)3AG =. 【解析】【分析】 ()1由余角的性质可得ABE BCF ∠∠=,即可证ABE V ∽BCF V ;()2由相似三角形的性质可得AB BE 3BC CF 4==,由等腰三角形的性质可得BP 2BE =,即可求BP CF 的值; ()3由题意可证DPH V ∽CPB V ,可得HP PD 7BP PC 4==,可求32AE 2=,由等腰三角形的性质可得AE平分BAP ∠,可证1EAG BAH 452∠∠==o ,可得AEG V 是等腰直角三角形,即可求AG 的长. 【详解】证明:()1AB BC ⊥Q , ABE FBC 90∠∠∴+=o又CF BF ⊥Q ,BCF FBC 90∠∠∴+=oABE BCF ∠∠∴=又AEB BFC 90∠∠==o Q ,ABE ∴V ∽BCF V()2ABE QV ∽BCF V ,AB BE 3BC CF 4∴== 又AP AB =Q ,AE BF ⊥,BP 2BE ∴=BP 2BE 3CF CF 2∴== ()3如图,延长AD 与BG 的延长线交于H 点AD //BC Q ,DPH ∴V ∽CPB V∴HP PD 7BP PC 4== AB BC =Q ,由()1可知ABE V ≌BCF VCF BE EP 1∴===,BP 2∴=,代入上式可得7HP 2=,79HE 122=+= ABE QV ∽HAE V ,BE AE AE HE ∴=,1AE 9AE 2=,∴AE 2= AP AB =Q ,AE BF ⊥,AE ∴平分BAP ∠又AG Q 平分DAP ∠,1EAG BAH 452∠∠∴==o , AEG ∴V 是等腰直角三角形.∴AG 3==.【点睛】本题考查的知识点是全等三角形的判定和性质,相似三角形的判定和性质,解题关键是添加恰当辅助线构造相似三角形.21.(1)m <2;(2)m=1.【解析】【分析】(1)利用方程有两个不相等的实数根,得△=[2(m-1)]2-4(m 2-3)=-8m+2>3,然后解不等式即可; (2)先利用m 的范围得到m=3或m=1,再分别求出m=3和m=1时方程的根,然后根据根的情况确定满足条件的m 的值.【详解】(1)△=[2(m ﹣1)]2﹣4(m2﹣3)=﹣8m+2.∵方程有两个不相等的实数根,∴△>3.即﹣8m+2>3.解得 m <2;(2)∵m <2,且 m 为非负整数,∴m=3 或 m=1,当 m=3 时,原方程为 x 2-2x-3=3,解得 x 1=3,x 2=﹣1(不符合题意舍去), 当 m=1 时,原方程为 x 2﹣2=3,解得 x 1=2,x 2=﹣2 ,综上所述,m=1.【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=3(a≠3)的根与△=b 2-4ac 有如下关系:当△>3时,方程有两个不相等的实数根;当△=3时,方程有两个相等的实数根;当△<3时,方程无实数根. 22.23【解析】分析:化简绝对值、0次幂和负指数幂,代入30°角的三角函数值,然后按照有理数的运算顺序和法则进行计算即可.详解:原式=13+1﹣2×12+13=23. 点睛:本题考查了实数的运算,用到的知识点主要有绝对值、零指数幂和负指数幂,以及特殊角的三角函数值,熟记相关法则和性质是解决此题的关键.23.(1)证明见解析;(2)AB=3【解析】【详解】(1)证明:∵90ABC ∠=o ,DE ⊥AC 于点F ,∴∠ABC=∠AFE .∵AC=AE,∠EAF=∠CAB ,∴△ABC ≌△AFE∴AB=AF .连接AG ,∵AG=AG ,AB=AF∴Rt △ABG ≌Rt △AFG∴BG=FG(2)解:∵AD=DC ,DF ⊥AC∴1122AF AC AE == ∴∠E=30°∴∠FAD=∠E=30°∴24.3- 【解析】分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a 的值代入化简后的式子得出答案.详解:原式=()()22111112211.11a a a a a a a a a a-----+÷===++--+-将1a =代入得:原式==点睛:本题主要考查的是分式的化简求值,属于简单题型.解决这个问题的关键就是就是将括号里面的分式进行化成同分母.25. (1)200;(2)见解析;(3)36;(4)该社区学习时间不少于1小时的家庭约有2100个.【解析】【分析】(1)根据1.5~2小时的圆心角度数求出1.5~2小时所占的百分比,再用1.5~2小时的人数除以所占的百分比,即可得出本次抽样调查的总家庭数;(2)用抽查的总人数乘以学习0.5-1小时的家庭所占的百分比求出学习0.5-1小时的家庭数,再用总人数减去其它家庭数,求出学习2-2.5小时的家庭数,从而补全统计图;(3)用360°乘以学习时间在2~2.5小时所占的百分比,即可求出学习时间在2~2.5小时的部分对应的扇形圆心角的度数;(4)用该社区所有家庭数乘以学习时间不少于1小时的家庭数所占的百分比即可得出答案.【详解】解:(1)本次抽样调查的家庭数是:30÷54360=200(个); 故答案为200;(2)学习0.5﹣1小时的家庭数有:200×108360=60(个), 学习2﹣2.5小时的家庭数有:200﹣60﹣90﹣30=20(个),补图如下:(3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是:360×20200=36°; 故答案为36;(4)根据题意得:3000×903020200++=2100(个). 答:该社区学习时间不少于1小时的家庭约有2100个.【点睛】本题考查条形统计图、扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.26.(1)21(6)412y x =--+.(或21112y x x =-++)(2)足球第一次落地距守门员约13米.(3)他应再向前跑17米.【解析】【分析】(1)依题意代入x 的值可得抛物线的表达式.(2)令y=0可求出x 的两个值,再按实际情况筛选.(3)本题有多种解法.如图可得第二次足球弹出后的距离为CD ,相当于将抛物线AEMFC 向下平移了2个单位可得解得x 的值即可知道CD 、BD .【详解】解:(1)如图,设第一次落地时,抛物线的表达式为2(6)4y a x =-+. 由已知:当0x =时1y =.即1136412a a =+∴=-,. ∴表达式为21(6)412y x =--+.(或21112y x x =-++)(2)令210(6)4012y x =--+=,. 212(6)48436134360x x x ∴-==≈=-<.,(舍去). ∴足球第一次落地距守门员约13米.(3)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位)212(6)412x ∴=--+解得12626626x x =-=+,. 124610CD x x ∴=-=≈.1361017BD ∴=-+=(米). 答:他应再向前跑17米.27.-2,-1,0,1【解析】【详解】解不等式5x +2>3(x -1)得:得x >-2.5; 解不等式12x≤2-32x 得x≤1.则这两个不等式解集的公共部分为 2.51x -≤< , 因为x 取整数,则x 取-2,-1,0,1.故答案为-2,-1,0,1【点睛】本题考查了求不等式组的整数解,先求出每个不等式的解集,再求出它们的公共部分,最后确定公共的整数解(包括正整数,0,负整数).。

2019-2020年黑龙江省哈尔滨市中考数学测试试卷(三) 解析版

2019-2020年黑龙江省哈尔滨市中考数学测试试卷(三)  解析版

2020年黑龙江省哈尔滨市中考数学测试试卷(三)一.选择题(共10小题)1.﹣3的相反数是()A.﹣3 B.3 C.D.2.下列运算中,不正确的是()A.a3+a3=2a3B.a2•a3=a5C.(﹣a3)2=a9D.2a3÷a2=2a3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.在每一象限内的双曲线y=上,y都随x的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2 C.m≥﹣2 D.m≤﹣25.如图所示几何体的左视图是()A.B.C.D.6.如图,点P在点A的北偏东60°方向上,点B在点A正东方向,点P在点B的北偏东30°方向上,若AB=50米,则点P到直线AB的距离为()A.50米B.25米C.50米D.25米7.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3 D.y=2(x+2)2﹣38.某种服装的成本在两年内从300元降到243元,那么平均每年降低成本的百分率为()A.5% B.10% C.15% D.20%9.已知在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E作AB 的平行线交BC于点F.则下列说法不正确的是()A.=B.=C.=D.=10.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.6二.填空题(共10小题)11.将9420000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.计算:=.14.把多项式9m2﹣36n2分解因式的结果是.15.以O为圆心,4cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则弦AC所对的劣弧长等于cm.16.不等式组的整数解是.17.如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则△AED的周长是.18.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.19.等腰△ABC中,AB=AC,AD⊥BC于D,点E在直线AC上,CE=AC,AD=18,BE=15,则△ABC的面积是.20.如图,已知平行四边形ABCD,DE⊥CD,CE⊥BC,CE=AD,F为BC上一点,连接DF,且点A在BF的垂直平分线上,若DE=1,DF=5,则AD的长为.三.解答题(共7小题)21.先化简,再求值:,其中x=4cos30°﹣2tan45°.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上.(1)请用两种不同的方法分别在图1中和图2中画出△ABD和△ACD,使得两个三角形都是轴对称图形;(2)请直接写出两个图形中线段BD的长度之和.23.为了解某学校学生的个性特长发展情况,学校决定围绕“音乐、体育、美术、书法、其它活动项目中,你参加哪一项活动(每人只限一项)的问题”,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如图所示的条形统计图,请根据图中提供的信息解答下列问题:(1)在这次调查中一共抽查了多少名学生?(2)求参加“音乐”活动项目的人数占抽查总人数的百分比.(3)若全校有2400名学生,请估计该校参加“美术”活动项目的人数.24.已知函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1 (I)求该二次函教的解析式;(Ⅱ)当﹣2≤x≤0时,求该二次函数的函数值y的取值范围.25.某水果商贩用了300元购进一批水果,上市后销售非常好,商贩又用了700元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能卖售,该商贩将两批水果按同一价格全部销售完毕后获利不低于400元,求每箱水果的售价至少是多少元.26.已知△ABD内接于⊙O中,DP为⊙O的切线.(1)如图1,求证:∠BAD=∠BDP;(2)如图2,连接PB并延长交⊙O于点C,连接AC、CD,CD交AB于点E,若CD⊥AB,∠CAB=2∠BAD,求证:BD+DE=CE;(3)如图3,在(2)的条件下,延长AB至点F,使得BF=BD,连接CF,若AC=10,S=20,求DE的长.△BCF27.在平面直角坐标系中,O为坐标原点,直线AB:y=2x+4与x轴交于B点,与y轴交于A点,D为BA延长线上一点,C为x轴上一点,连接CD,且DB=DC,BC=8.(1)如图1,求直线CD的解析式;(2)如图2,P为BD上一点,过点P作CD的垂线,垂足为H,设PH的长为d,点P的横坐标为t,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)如图3,点E为CD上一点,连接PE,PE=PB,在PE上取一点K,在AB上取一点F,使得PK=BF,在EK上取点N,连接FN交BK于点M,若∠PFN=2∠KMN,MN=NE,求点P 的坐标.参考答案与试题解析一.选择题(共10小题)1.﹣3的相反数是()A.﹣3 B.3 C.D.【分析】依据相反数的定义解答即可.【解答】解:﹣3的相反数是3.故选:B.2.下列运算中,不正确的是()A.a3+a3=2a3B.a2•a3=a5C.(﹣a3)2=a9D.2a3÷a2=2a 【分析】根据合并同类项法则和幂的运算性质,计算后利用排除法求解.【解答】解:A、a3+a3=2a3,正确;B、a2•a3=a5,正确;C、应为(﹣a3)2=a6,故本选项错误;D、2a3÷a2=2a,正确.故选:C.3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,不合题意;C、不是轴对称图形,是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:C.4.在每一象限内的双曲线y=上,y都随x的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2 C.m≥﹣2 D.m≤﹣2【分析】根据反比例函数的性质得到关于m的不等式,解不等式可以得到m的取值范围.【解答】解:∵在每一象限内的双曲线y=上,y都随x的增大而增大,∴m+2<0,解得,m<﹣2,故选:B.5.如图所示几何体的左视图是()A.B.C.D.【分析】根据左视图是从物体的左面看得到的图形解答.【解答】解:从左边看到的现状是A中图形,故选:A.6.如图,点P在点A的北偏东60°方向上,点B在点A正东方向,点P在点B的北偏东30°方向上,若AB=50米,则点P到直线AB的距离为()A.50米B.25米C.50米D.25米【分析】作PC⊥AB,根据正切的定义用PC分别表示出AC、BC,根据题意列式计算,得到答案.【解答】解:作PC⊥AB交AB的延长线于点C,由题意得,∠PAC=30°,∠PBC=60°,在Rt△ACP中,tan∠PAC=,∴AC==PC,在Rt△BCP中,tan∠PBC=,∴BC==PC,由题意得,PC﹣PC=50,解得,PC=25,即点P到直线AB的距离为25米,故选:D.7.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3 D.y=2(x+2)2﹣3【分析】根据“上加下减、左加右减”的原则进行解答即可.【解答】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为y=2(x﹣2)2+3,故选:B.8.某种服装的成本在两年内从300元降到243元,那么平均每年降低成本的百分率为()A.5% B.10% C.15% D.20%【分析】要求每次降价的百分率,应先设每次降价的百分率为x,则第一次降价后每件300(1﹣x)元,第二次降价后每件300(1﹣x)2元,又知经两次降价后每件243元,由两次降价后每件价钱相等为等量关系列出方程求解.【解答】解:设平均每次降价的百分率为x,则第一次降价后每件300(1﹣x)元,第二次降价后每件300(1﹣x)2元,由题意得:300(1﹣x)2=243解得:x1=0.1,x2=1.9(不符合题意舍去)所以平均每次降价的百分率为:10%.故选:B.9.已知在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E作AB 的平行线交BC于点F.则下列说法不正确的是()A.=B.=C.=D.=【分析】由平行线分线段成比例定理即可得出结论.【解答】解:∵DE∥BC,EF∥AB,∴=,A、B、D选项正确;∵四边形BDEF是平行四边形,∴DE=BF,∴,故C选项错误;故选:C.10.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.6【分析】根据平行线的性质和翻转变换的性质得到FD=FE,FA=FC,根据勾股定理计算即可.【解答】解:∵DC∥AB,∴∠FCA=∠CAB,又∠FAC=∠CAB,∴∠FAC=∠FCA,∴FA=FC=,∴FD=FE,∵DC=AB=8,AF=,∴FD=FE=8﹣=,∴AD=BC=EC==6,故选:D.二.填空题(共10小题)11.将9420000用科学记数法表示为9.42×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9420000=9.42×106.故答案为:9.42×106.12.在函数y=中,自变量x的取值范围是x≠2 .【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x﹣2≠0,求解可得自变量x的取值范围.【解答】解:根据题意,有x﹣2≠0,解得x≠2;故自变量x的取值范围是x≠2.故答案为x≠2.13.计算:=2.【分析】首先化简各二次根式,进而合并同类项得出即可.【解答】解:=﹣=.故答案为:2.14.把多项式9m2﹣36n2分解因式的结果是9(m﹣2n)(m+2n),.【分析】首先提公因式9,再利用平方差进行二次分解即可.【解答】解:原式=9(m2﹣4n2)=9(m﹣2n)(m+2n),故答案为:9(m﹣2n)(m+2n).15.以O为圆心,4cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则弦AC所对的劣弧长等于πcm.【分析】连接OB,如图,先利用菱形的性质可判断△OAB和△OBC都是等边三角形,则∠AOB=∠BOC=60°,于是可根据弧长公式计算出弦AC所对的劣弧的长.【解答】解:连接OB,如图,∵四边形OABC为菱形,∴OA=AB=BC=OC,∴△OAB和△OBC都是等边三角形,∴∠AOB=∠BOC=60°,∴弦AC所对的劣弧的长==π,故答案为π.16.不等式组的整数解是 2 .【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【解答】解:,由不等式①得x>1,由不等式②得x<3,其解集是1<x<3,所以整数解是2.故答案为:2.17.如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则△AED的周长是9 .【分析】先根据旋转的性质得BE=BD,AE=CD,∠DBE=60°,于是可判断△BDE为等边三角形,则有DE=BD=4,所以△AED的周长=DE+AC,再利用等边三角形的性质得AC=BC=5,则易得△AED的周长为9.【解答】解:∵△BCD绕点B逆时针旋转60°得到△BAE,∴BE=BD,AE=CD,∠DBE=60°,∴△BDE为等边三角形,∴DE=BD=4,∴△AED的周长=DE+AE+AD=DE+CD+AD=DE+AC,∵△ABC为等边三角形,∴AC=BC=5,∴△AED的周长=DE+AC=4+5=9.故答案为9°.18.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.【分析】根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.故答案为:.19.等腰△ABC中,AB=AC,AD⊥BC于D,点E在直线AC上,CE=AC,AD=18,BE=15,则△ABC的面积是144 .【分析】根据等腰三角形三线合一的性质可得到AD是底边BC的中线,从而得到点G为△ABC的重心,从而不难求得DG,BG的长,再根据勾股定理求得BD的长,最后根据三角形面积公式求解即可.【解答】解:如图,∵在等腰△ABC中,AB=AC,AD⊥BC于D,∴AD是底边BC的中线,∵CE=AC,∴G为△ABC的重心,∵AD=18,BE=15,∴DG=AD=6,BG=BE=10,∴在直角△BDG中,由勾股定理得到:BD==8,∴S△ABC=BC×AD=144.故答案是:144.20.如图,已知平行四边形ABCD,DE⊥CD,CE⊥BC,CE=AD,F为BC上一点,连接DF,且点A在BF的垂直平分线上,若DE=1,DF=5,则AD的长为.【分析】连接AF,AC,过点A作AH⊥CD于H,AH交EC于O,设AD与CE交于G,根据全等三角形的性质得到DE=DH=1,AH=CD,根据线段垂直平分线的性质得到AB=AF,求得∠ABF=∠AFB,根据平行四边形的性质得到AB=CD,AB∥CD,求得∠BCD=∠AFC,根据全等三角形的性质得到DF=AC=5,根据勾股定理即可得到结论.【解答】解:连接AF,AC,过点A作AH⊥CD于H,AH交EC于O,设AD与CE交于G,∵∠AGC=∠AHC=90°,∠AOG=∠COH,∴∠DAH=∠ECD,∵∠AHD=∠EDC=90°,AD=CE,∴△ADH≌△CED(AAS),∴DE=DH=1,AH=CD,∵点A在BF的垂直平分线上,∴AB=AF,∴∠ABF=∠AFB,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABF+∠BCD=180°,∴∠BCD=∠AFC,∵CF=CF,∴△AFC≌△DCF(SAS),∴DF=AC=5,设CH=x,则AH=CD=x+1,∵AH2+CH2=AC2,∴(x+1)2+x2=52,解得:x=3(负值舍去),∴AH=4,∴AD==,故答案为:.三.解答题(共7小题)21.先化简,再求值:,其中x=4cos30°﹣2tan45°.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,再利用特殊角的三角函数值求出x的值,代入计算即可求出值.【解答】解:原式=[﹣]•,=•,=,当x=4×﹣2×1=2﹣2时,原式==.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上.(1)请用两种不同的方法分别在图1中和图2中画出△ABD和△ACD,使得两个三角形都是轴对称图形;(2)请直接写出两个图形中线段BD的长度之和.【分析】(1)根据△ABD和△ACD都是轴对称图形,即可得到格点D的位置;(2)依据勾股定理进行计算,即可得到线段BD的长度之和.【解答】解:(1)如图所示,△ABD和△ACD即为所求;(2)两个图形中线段BD的长度之和为+2=.23.为了解某学校学生的个性特长发展情况,学校决定围绕“音乐、体育、美术、书法、其它活动项目中,你参加哪一项活动(每人只限一项)的问题”,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如图所示的条形统计图,请根据图中提供的信息解答下列问题:(1)在这次调查中一共抽查了多少名学生?(2)求参加“音乐”活动项目的人数占抽查总人数的百分比.(3)若全校有2400名学生,请估计该校参加“美术”活动项目的人数.【分析】(1)根据条形统计图求得各类的人数的和即可;(2)利用(1)中所求总人数,再利用参加“音乐”活动项目的人数,求出所占百分比即可;(3)根据样本中美术所占的百分比估计总体.【解答】解:(1)12+16+6+10+4=48(人);(2)参加“音乐”活动项目的人数占抽查总人数的百分比为:12÷48×100%=25%;(3)6÷48×2400=300(名),估计该校参加“美术”活动项目的人数约为300人.24.已知函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1 (I)求该二次函教的解析式;(Ⅱ)当﹣2≤x≤0时,求该二次函数的函数值y的取值范围.【分析】(Ⅰ)根据对称轴方程,列式求出b的值,从而求得二次函数的解析式;(Ⅱ)先由y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2知函数有最大值﹣2,然后求出x=﹣2和x =0时y的值即可得答案.【解答】解:(Ⅰ)∵函数y=﹣x m﹣1+bx﹣3(m,b为常数)是二次函数其图象的对称轴为直线x=1,∴m﹣1=2,﹣=1,∴m=3,b=2.∴该二次函教的解析式为y=﹣x2+2x﹣3.(Ⅱ)∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴当x=1时,函数y有最大值﹣2,当x=﹣2时,y=﹣11;当x=0时,y=﹣3;∵﹣2<0<1,∴当﹣2≤x≤0时,求该二次函数的函数值y的取值范围为﹣11≤y≤﹣3.25.某水果商贩用了300元购进一批水果,上市后销售非常好,商贩又用了700元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能卖售,该商贩将两批水果按同一价格全部销售完毕后获利不低于400元,求每箱水果的售价至少是多少元.【分析】(1)设该商场第一批购进了这种水果x,则第二批购进这种水果2x,根据关键语句“每个进价多了5元”可得方程,解方程即可;(2)设水果的售价为y元,根据题意可得不等关系:水果的总售价﹣成本﹣损耗≥利润,由不等关系列出不等式即可.【解答】解:(1)设该商场第一批购进了这种水果x,则第二批购进这种水果2x,可得:﹣=5,解得:x=10,经检验:x=10是原分式方程的解,=30,答:该商贩第一批购进水果每箱30元;(2)设水果的售价为y元,根据题意得:30y﹣(300+700)﹣20×10%y≥400,解得:y≥50,则水果的售价为50元.答:水果的售价至少为50元.26.已知△ABD内接于⊙O中,DP为⊙O的切线.(1)如图1,求证:∠BAD=∠BDP;(2)如图2,连接PB并延长交⊙O于点C,连接AC、CD,CD交AB于点E,若CD⊥AB,∠CAB=2∠BAD,求证:BD+DE=CE;(3)如图3,在(2)的条件下,延长AB至点F,使得BF=BD,连接CF,若AC=10,S=20,求DE的长.△BCF【分析】(1)如图1,连接OD,并延长DO交⊙O于H,由切线的性质和圆周角定理可得∠DBH=∠ODP=90°,可得∠ODB+∠BDP=90°,∠BDH+∠H=90°,可得∠H=∠BDP=∠BAD;(2)在CE上截取KE=DE,连接BK,由圆周角可得∠BAD=∠BDP=∠BCD,∠CAB=∠CDB =2∠BDP=2∠BCD,由线段垂直平分线的性质可得BK=BD,由等腰三角形的性质和外角的性质可得BK=CK=BD,即可得结论;(3)如图3,在CE上取点K,使DE=KE,连接BK,过点K作KR⊥BC于R,过点F作FH ⊥BP于点H,由“AAS”可知△CRK≌△FHB,可得FH=CR,由三角形面积公式可求BC的长,由角的数量关系可证AB=AC=10,由勾股定理可求AE,BE,CE的长,由锐角三角函数可求解.【解答】解:(1)如图1,连接OD,并延长DO交⊙O于H,∵DP为⊙O的切线.∴∠ODP=90°,∴∠ODB+∠BDP=90°,∵DH是直径,∴∠DBH=90°,∵∠BDH+∠H=90°,∴∠H=∠BDP,∵∠H=∠BAD,∴∠BAD=∠BDP;(2)如图2,在CE上截取KE=DE,连接BK,∵∠CAB=2∠BAD,∠BAD=∠BCD,∠BAD=∠BDP,∠CAB=∠CDB,∴∠BAD=∠BDP=∠BCD,∠CAB=∠CDB=2∠BDP=2∠BCD,∵KE=DE,AB⊥CD,∴BK=BD,∴∠BKD=∠BDK=2∠BCD,∵∠BKD=∠BCD+∠CBK,∴∠BCD=∠CBK,∴BK=CK,∴CE=KE+CK=DE+BK,∴CE=DE+BD(3)如图3,在CE上取点K,使DE=KE,连接BK,过点K作KR⊥BC于R,过点F作FH ⊥BP于点H,由(2)可知,CK=BK,∴CR=BR,∵BF=BD,CK=BK=BD,∴CK=BF=BD=BK,∵∠KRC=∠FPH=90°,∠CBE=∠FBH,∴∠BCE=∠BFH,且CK=BF,∠CRK=∠FHB,∴△CRK≌△FHB(AAS),∴FH=CR,设FH=CR=BR=x,∴BC=2x,∵S△BCF=20=×BC×FH,∴20=×2x×x∴x=2(负值舍去),∴FH=CR=BR=2,BC=4,∵∠BAD=∠BCD,∠BAC=2∠BAD,∴∠BAC=2∠BCD,∵∠CBA=90°﹣∠BCD,∠BAC+∠ACB+∠ABC=180°,∴∠ACB=90°﹣∠BCD,∴∠ACB=∠ABC,∴AC=AB=10,∵CE2=AC2﹣AE2,CE2=CB2﹣BE2,∴AC2﹣AE2=CB2﹣BE2,∴100﹣AE2=80﹣(10﹣AE)2,∴AE=6,∴BE=4,∴EC===8∵∠ECB=∠EAD,∴tan∠ECB=tan∠EAD,∴,∴,∴DE=3.27.在平面直角坐标系中,O为坐标原点,直线AB:y=2x+4与x轴交于B点,与y轴交于A点,D为BA延长线上一点,C为x轴上一点,连接CD,且DB=DC,BC=8.(1)如图1,求直线CD的解析式;(2)如图2,P为BD上一点,过点P作CD的垂线,垂足为H,设PH的长为d,点P的横坐标为t,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)如图3,点E为CD上一点,连接PE,PE=PB,在PE上取一点K,在AB上取一点F,使得PK=BF,在EK上取点N,连接FN交BK于点M,若∠PFN=2∠KMN,MN=NE,求点P 的坐标.【分析】(1)解方程得到OB=2,OA=﹣4,过D作DX⊥BC于X,根据平行线分线段成比例定理得到DX=8,求得D(2,8),解方程组即可得到结论;(2)过点P作PY∥BC交CD于Y,求得P(t,2t+4),Y(﹣t+4,2t+4)根据平行线的性质和解直角三角形即可得到结论;(3)如图3,延长FN到点T,使PN=NT,连接PT,于是得到MT=MN+NT=NE+PN=PE,过点T作TV⊥BK交BK的延长线于V,根据全等三角形的性质得到BQ=MV,PQ=YT,∴BM=VQ,设PT交MV于点R,∵∠由全等三角形的性质得到QR=VR=BM,过点F 作FL⊥BM于L,过点R作RZ∥FN交PQ于点Z,推出△FML≌△ZRQ(ASA),求得RZ=FM 根据全等三角形的性质得到∠PRQ=∠QPR,求得∠ZRQ=∠QPK,过点P作SW∥BC,过B 作BS⊥SB于S,过E作EW⊥SW于W根据余角的性质得到∠WPE=∠SBP,推出△SPB≌△WEP(AAS),得到BS=PW,SP=WE,设P(t,2t+4),求得E(3t+4,t+2),解方程即可得到结论.【解答】解:(1)在y=2x+4中,令y=0,则x=﹣2,令x=0,则y=4,∴B(﹣2,0),A(0,4),∴OB=2,OA=﹣4,过D作DX⊥BC于X,∵DB=DC,∴BX=XC=BC=4,∴OX=2,∵∠AOB=∠DXB=90°,∴OA∥DX,∴=,∴DX=8,∴D(2,8),∵OC=BC﹣OB=6,C(6,0),设直线CD的解析式为:y=kx+b,∴,解得:,∴直线CD的解析式为y=﹣2x+12;(2)过点P作PY∥BC交CD于Y,∵点P的横坐标为t,∴P(t,2t+4),∴Y(﹣t+4,2t+4),∴PY=﹣2t+4,∵PY∥BC,∴∠DCB=∠DYP,∵BD=CD,∴∠DBC=∠DCB,∴∠DCB=∠DYP,∴tan∠DBC=tan∠DYP,∵tan∠DBC==2,∴tan∠DYP=2,∴=2,∴PH=2HY,在Rt△PHY中,PY===HY,∴==,∴PH=(﹣2t+4)=﹣t+(﹣2≤t<2);(3)如图3,延长FN到点T,使PN=NT,连接PT,∴MT=MN+NT=NE+PN=PE,∵PE=PB,∴MT=PB,过点T作TV⊥BK交BK的延长线于V,∵∠PFN=2∠KMN=2∠FMB,∴∠FBM=∠FMB,∴∠PBM=∠VMT,∵∠PQB=∠V=90°,∴△PQB≌△TVM(AAS),∴BQ=MV,PQ=YT,∴BM=VQ,设PT交MV于点R,∵∠PRQ=∠TRV,∠PQR=∠V,PQ=VT,∴△PQR≌△TVR(AAS),∴QR=VR=BM,过点F作FL⊥BM于L,过点R作RZ∥FN交PQ于点Z,∵∠FBM=∠FMB,∴BF=FM,∴ML=BM,∴QR=ML,∵RZ∥FN,∴∠ZRQ=∠KMN,∴∠FML=∠ZRQ,∵∠FLM=∠ZQR=90°,∴△FML≌△ZRQ(ASA),∴RZ=FM,∴BF=RZ,∵BF=PK,∴RZ=PK,∵PN=NT,∴∠NPT=∠NTP,∵RZ∥FN,∴∠PRZ=∠NTP,∴∠NPT=∠PRZ,∵PR=PR,∴△PRK≌△RPZ(ASA),∴∠PRQ=∠QPR,∴∠ZRQ=∠QPK,∴∠PBM=∠ZRQ,∴∠PBM=∠QPK,∵∠PBM+∠BPM=90°,∴QPK+∠BPM=90°,∴∠BPE=90°,过点P作SW∥BC,过B作BS⊥SB于S,过E作EW⊥SW于W,∴∠SPB+∠WPE=90°,∵∠SPB+∠SBP=90°,∴∠WPE=∠SBP,∵∠S=∠W=90°,PB=PE,∴△SPB≌△WEP(AAS),∴BS=PW,SP=WE,设P(t,2t+4),∴E(3t+4,t+2),∵点E在直线CD上,∴t+2=﹣2(3t+4)+12,解得:t=,∴P(,).。

2019-2020年中考数学试卷及解析.docx

2019-2020年中考数学试卷及解析.docx

2019-2020 年中考数学试卷及解析一、选择题(本题有8 小题,每小题 3 分,共 24 分)1.- 3 的是【】1A . 3B .- 3C.- 3D. 32.下列形中,既是称形,又是中心称形的是【】A .平行四形B .等三角形C.等腰梯形3.今年我市参加中考的人数大有41300 人,将 41300 用科学数法表示【D .正方形】A . 413× 102B. 41.3× 103C. 4.13× 1044.已知⊙ O1、⊙ O2的半径分3cm、 5cm,且它的心距系是【】8cm,⊙D. 0.413× 103O1与⊙ O2的位置关A .外切B.相交C.内切 D .内含5.如是由几个相同的小立方搭成的几何体的三,几个几何体的小立方的个数是【】A . 4 个B. 5 个C. 6 个D. 7 个6.将抛物 y= x2+ 1 先向左平移 2 个位,再向下平移 3 个位,那么所得抛物的函数关系式是【】A . y= ( x+ 2) 2+ 2B. y= ( x+ 2) 2- 2C. y= ( x-2) 2+ 2D. y= ( x- 2) 2- 27.某校在开展“ 心捐助”的活中,初三一班六名同学捐款的数分:8, 10,10, 4, 8,10( 位:元 ) ,数据的众数是【】A . 10B .9C. 8D. 43= 3+ 5, 33= 7+ 9+ 11,8.大于 1 的正整数 m 的三次可“分裂”成若干个奇数的和,如243= 13+ 15+ 17+ 19,⋯若 m3分裂后,其中有一个奇数是2013 , m 的是【】A . 43B .44C. 45 D .46二、填空题(本大题共10 小题,每小题 3 分,共 30 分)9.州市某天的最高气温是6℃,最低气温是- 2℃,那么当天的日温差是.10.一个角是 38 度,它的余角是度.11.已知 2a- 3b2= 5, 10- 2a+ 3b2的是.12.已知梯形的中位是4cm,下底是 5cm,它的上底是cm.13.在平面直角坐系中,点P( m, m- 2) 在第一象限内, m 的取范是.14.如, PA、 PB 是⊙ O 的切,切点分A、 B 两点,点 C 在⊙ O 上,如果∠ ACB= 70°,那么∠ P 的度数是.AB= 2,则 tan ∠DCF 的15.如图,将矩形 ABCD 沿 CE 折叠,点 B 恰好落在边 AD 的 F 处.若 BC3 值是 .16.如图,线段 AB 的长为等腰直角三角形△ ACD2,C 为 AB 上一个动点,分别以和△ BCE ,那么 DE 长的最小值是AC 、BC为斜边在.AB 的同侧作两个17 .已知一个圆锥的母线长为 10cm ,将侧面展开后所得扇形的圆心角是144 °,则这个圆锥的底面圆的半径是 cm .18k经过 Rt △ OMN 斜边上的点 A ,与直角边 MN 相交于点 B ,已知 OA = 2AN ,.如图, 双曲线 y = x△OAB 的面积为 5,则 k 的值是 .三、解答题(本大题共有10 小题,共 96 分)19 . ( 1) 计算:- ( - 1)2 + ( - 2012) 0;3( 2) 因式分 解: m n - 9mn .920 a - 1 ÷ a 2- 1a 值代入计算..先化简: 1-2 ,再选取一个合适的aa + 2a21.扬州市中小学全面开展“体艺 2+ 1”活动,某校根据学校实际,决定开设 A :篮球, B :乒乓球, C :声乐, D :健美操等四中活动项目,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制了两幅不完整的统计图.请回答下列问题:( 1)这次被调查的学生共有人.( 2)请你将统计图 1 补充完整.( 3)统计图 2 中 D 项目对应的扇形的圆心角是度.( 4)已知该校学生2400 人,请根据调查结果估计该校最喜欢乒乓球的学生人数.22.一个不透明的布袋里装有4 个大小,质地都相同的乒乓球,球面上分别标有数字1,- 2, 3,-4,小明先从布袋中随机摸出一个球 ( 不放回去 ) ,再从剩下的 3 个球中随机摸出第二个乒乓球.( 1)共有种可能的结果.( 2)请用画树状图或列表的方法求两次摸出的乒乓球的数字之积为偶数的概率.23.如图,在四边形ABCD 中, AB=BC ,∠ ABC=∠ CDA = 90°,BE ⊥AD ,垂足为 E.求证: BE= DE.24.为了改善生态环境,防止水土流失,某村计划在荒坡上种480 棵树,由于青年志愿者的支援,每日比原计划多种1,结果提前 4 天完成任务,原计划每天种多少棵树?325.如图,一艘巡逻艇航行至海面 B 处时,得知正北方向上距 B 处 20 海里的 C 处有一渔船发生故障,就立即指挥港口 A 处的救援艇前往 C 处营救.已知 C 处位于 A 处的北偏东45°的方向上,港口 A 位于 B 的北偏西30°的方向上.求A、 C 之间的距离 ( 结果精确到0.1 海里,参考数据:2≈ 1.41,3≈ 1.73) .26.如图, AB 是⊙ O 的直径, C 是⊙ O 上一点, AD 垂直于过点 C 的切线,垂足为 D .( 1) 求证: AC 平分 BAD ;( 2) 若 AC= 2 5, CD=2,求⊙ O 的直径.27.已知抛物线y= ax2+ bx+ c 经过 A( -1, 0) 、B( 3,0) 、C( 0,3) 三点,直线l 是抛物线的对称轴.( 1)求抛物线的函数关系式;( 2)设点 P 是直线 l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标;( 3)在直线 l 上是否存在点 M,使△ MAC 为等腰三角形?若存在,直接写出所有符合条件的点 M 的坐标;若不存在,请说明理由.28.如图 1,在平面直角坐标系中,矩形OABC 的顶点 O 在坐标原点,顶点A、 C 分别在 x 轴、 y 轴的正半轴上,且OA =2, OC= 1,矩形对角线AC、 OB 相交于 E,过点 E 的直线与边OA、BC 分别相交于点G、 H.( 1) ①直接写出点 E 的坐标:;②求证:AG=CH.( 2)如图 2,以 O 为圆心, OC 为半径的圆弧交OA 与 D,若直线 GH 与弧 CD 所在的圆相切于矩形内一点 F,求直线 GH 的函数关系式.( 3)在 ( 2 ) 的结论下,梯形 ABHG 的内部有一点P,当⊙ P 与 HG、 GA、 AB 都相切时,求⊙ P 的半径.一、选择题( 本题有8 小题,每小题参考答案3 分,共 24 分 )1. ( 2012?扬州 ) - 3 的绝对值是 ( A. 3B.- 3)C.-3D.考点:绝对值。

2019年中考数学重点题型突破易错点:3-3-2《二次函数》试题及答案

2019年中考数学重点题型突破易错点:3-3-2《二次函数》试题及答案

二次函数易错清单1.二次函数与方程、不等式的联系.【例1】(2014·湖北孝感)抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:①b2-4ac<0;②a+b+c<0;③c-a=2;④方程ax2+bx+c-2=0有两个相等的实数根.其中正确结论的个数为().A. 1个B. 2个C. 3个D. 4个【解析】由抛物线与x轴有两个交点得到b2-4ac>0;由抛物线顶点坐标得到抛物线的对称轴为直线-1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(-1,2)得a-b+c=2,由抛物线的对称轴为直线=1,得b=2a,所以c-a=2;根据二次函数的最大值问题,当x=-1时,二次函数有最大值为2,即只有x=1时,ax2+bx+c=2,所以说方程ax2+bx+c-2=0有两个相等的实数根.【答案】∵抛物线与x轴有两个交点,∴b2-4ac>0,所以①错误.∵顶点为D(-1,2),∴抛物线的对称轴为直线x=-1.∵抛物线与x轴的一个交点A在点(-3,0)和(-2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间.∴当x=1时,y<0.∴a+b+c<0,所以②正确.∵抛物线的顶点为D(-1,2),∴a-b+c=2.∵抛物线的对称轴为直线=1,∴b=2a.∴a-2a+c=2,即c-a=2,所以③正确.∵当x=-1时,二次函数有最大值为2,即只有x=1时,ax2+bx+c=2,∴方程ax2+bx+c-2=0有两个相等的实数根,所以④正确.故选C.【误区纠错】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线-;抛物线与y轴的交点坐标为(0,c);当b2-4ac>0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac<0,抛物线与x轴没有交点.2.用二次函数解决实际问题.【例2】(2014·江苏泰州)某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A,B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A,B两组材料的温度分别为y A℃,y B℃,y A,y B与x的函数关系式分别为y A=kx+b, (部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求y A,y B关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?【解析】(1)首先求出y B函数关系式,进而得出交点坐标,即可得出y A函数关系式;(2)首先将y=120代入求出x的值,进而代入y B求出答案;(3)得出y A-y B的函数关系式,进而求出最值即可.解得m=100.∴y B=(x-60)2+100.解得y B=200.∴y A=-20x+1000.(2)当A组材料的温度降至120℃时,120=-20x+1000,解得x=44.∴B组材料的温度是164℃.∴当x=20时,两组材料温差最大为100℃.【误区纠错】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及二次函数最值求法等知识,得出两种材料的函数关系式是解题关键.3.二次函数存在性问题的讨论.(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A'的坐标,判定点A'是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA'于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【解析】(1)利用待定系数法求出抛物线的解析式;(2)首先求出对称点A'的坐标,然后代入抛物线解析式,即可判定点A'是否在抛物线上.本问关键在于求出A'的坐标.如答图所示,作辅助线,构造一对相似三角形Rt△A'EA∽Rt△OAC,利用相似关系、对称性质、勾股定理,求出对称点A'的坐标;(3)本问为存在型问题.解题要点是利用平行四边形的定义,列出代数关系式求解.如答图所示,平行四边形的对边平行且相等,因此PM=AC=10;利用含未知数的代数式表示出PM的长度,然后列方程求解.【误区纠错】本题是二次函数的综合题型,考查了二次函数的图象及性质、待定系数法、相似、平行四边形、勾股定理、对称等知识点,涉及考点较多,有一定的难度.第(2)问的要点是求对称点A'的坐标,第(3)问的要点是利用平行四边形的定义列方程求解.名师点拨1.能通过画二次函数图象求一元二次方程的近似解,能说明二次函数与一元二次方程的联系与区别.2.会借助函数思想及图象求不等式的解集.3.借助二次函数思想解决实际问题.提分策略1.抛物线对称性的应用.(1)二次函数的图象是抛物线,是轴对称图形,充分利用抛物线的轴对称性,是研究利用二次函数的性质解决问题的关键.(2)已知二次函数图象上几个点的坐标,一般用待定系数法直接列方程(组)求二次函数的解析式.(3)已知二次函数图象上的点(除顶点外)和对称轴,便能确定与此点关于对称轴对称的另一点的坐标.【例1】如图,抛物线y=-x2+bx+c与x轴交于A,B两点,与y轴交于点C,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.(1)求该抛物线所对应的函数关系式;(2)求△ABD的面积;(3)将三角形AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.【解析】(1)在矩形OCEF中,已知OF,EF的长,先表示出C,E的坐标,然后利用待定系数法确定该函数的关系式.(2)根据(1)的函数关系式求出A,B,D三点的坐标,以AB为底、点D纵坐标的绝对值为高,可求出△ABD的面积.(3)首先根据旋转条件求出点G的坐标,然后将点G的坐标代入抛物线对应的函数关系式中直接进行判断即可.∴抛物线所对应的函数解析式为y=-x2+2x+3.(2)∵y=-x2+2x+3=-(x-1)2+4,∴抛物线的顶点坐标为D(1,4).∴△ABD中边AB的高为4.令y=0,得-x2+2x+3=0,解得x1=-1,x2=3.所以AB=3-(-1)=4.(3)△AOC绕点C逆时针旋转90°,CO落在CE所在的直线上,由(2)可知OA=1,∴点A对应点G的坐标为(3,2).当x=3时,y=-32+2×3+3=0≠2,∴点G不在该抛物线上.2.利用二次函数解决抛物线形问题.利用二次函数解决抛物线形问题,一般是先根据实际问题的特点建立直角坐标系,设出合适的二次函数的解析式,把实际问题中已知条件转化为点的坐标,代入解析式求解,最后要把求出的结果转化为实际问题的答案.【例2】如图,排球运动员站在点O处练习发球,将球从点O正上方2 m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与点O 的水平距离为9 m,高度为2.43 m,球场的边界距点O的水平距离为18m.(1)当h=2.6时,求y与x的关系式;(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.3.二次函数的实际应用.【例3】某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其他费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?【解析】(1)根据待定系数法,可得函数解析式;(2)根据收入等于指出,可得一元一次方程,根据解一元一次方程,可得答案;(3)分类讨论40≤x≤58,或58≤x≤71,根据收入减去支出大于或等于债务,可得不等式,根据解不等式,可得答案.综合两种情形,得b≥380,即该店最早需要380天能还清所有债务,此时每件服装的价格应定为55元.4.二次函数在几何图形中的应用.二次函数在几何图形中的应用,实际上是数形结合思想的运用,将代数与几何融为一体,把代数问题与几何问题进行互相转化,充分运用三角函数解直角三角形,相似、全等、圆等来解决问题,充分运用几何知识求解析式是关键.二次函数与三角形、圆等几何知识结合时,往往涉及最大面积、最小距离等问题,解决的过程中需要建立函数关系,运用函数的性质求解.【例4】如图,在边长为24 cm的正方形纸片ABCD上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(A,C,D四个顶点正好重合于上底面上一点).已知E、F在边AB上,是被剪去的一个等腰直角三角形斜边的两个端点,设AE=BF=x(cm).(1)若折成的包装盒恰好是个正方体,试求这个包装盒的体积V;(2)某广告商要求包装盒的表面(不含下底面)面积S最大,试问x应取何值?(2)利用已知表示出包装盒的表面积,进而利用函数最值求出即可.∵0<x<12,∴当x=8时,S取得最大值384cm2.专项训练一、选择题1. (2014·山东聊城模拟)如图,抛物线y=x2与直线y=x交于点A,沿直线y=x平移抛物线,使得平移后的抛物线顶点恰好为A点,则平移后抛物线的解析式是().A. y=(x+1)2-1B. y=(x+1)2+1C. y=(x-1)2+1D. y=(x-1)2-1(第1题)(第2题)2.(2014·四川乐山模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标为(1,n),与y轴的交点在(0,2),(0,3)之间(包含端点).有下列结论:A. ①②B. ③④C. ①③D. ①③④(第3题)3.(2013·浙江宁波北仑区一模)如图,在四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是().二、填空题4.(2014·吉林四平育才中学模拟)点P在抛物线y=(x-2)2+1上,设点P的坐标为(x,y),当0≤x≤3时,y的取值范围为.5.(2014·江苏常州模拟)已知二次函数y=ax2+bc+c中,函数y与自变量y=(x>0)的部分对应值如下表:若A(m,y1),B(m+1,y2)两点都在该函数的图象上,当m= 时,y1=y2.6.(2013·辽宁葫芦岛一模)已知点A(m,0)是抛物线y=x2-2x-1与x轴的一个交点,则代数式2m2-4m+2 013的值是.三、解答题7. (2014·山东济南外国语学校模拟)如图,矩形OABC在平面直角坐标系xOy中,点A在x 轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在边BC上,且抛物线经过O,A两点,直线AC交抛物线于点D.(1)求抛物线的解析式;(2)求点D的坐标.(第7题)8. (2014·山东日照模拟)已知抛物线经过A(2,0).设顶点为点P,与x 轴的另一交点为点B.(1)求b的值,求出点P、点B的坐标;(2)如图,在直线上是否存在点D,使四边形OPBD为平行四边形?若存在,求出点D的坐标;若不存在,请说明理由;(3)在x轴下方的抛物线上是否存在点M,使△AMP≌△AMB?如果存在,试举例验证你的猜想;如果不存在,试说明理由.(第8题)(1)填空:点C的坐标是,b= ,c= ;(2)求线段QH的长(用含t的式子表示);(3)依点P的变化,是否存在t的值,使以P,H,Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.(第9题)参考答案与解析1. C[解析] 得出A点的坐标是(1,1),所以平移后以A点为顶点的解析式为y=(x-1)2+1.2.D[解析]①由抛物线的对称轴为直线x=1,一个交点A(-1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=-2a,将其代入(3a+b),并判定其符号;利用c的取值范围可以求得n的取值范围.4. 1≤y≤5[解析]将x=0,x=2分别代入y=(x-2)2+1求出y的取值范围为1≤y≤5,注意本题切忌直接将x=0,x=3代入,要考虑二次函数的对称轴二边增减性,5. 1.5[解析]二次函数的解析式为y=x2-4x+5,∵y1=y2,∴m2-4m=(m+1)2-4(m+1),解得m=1.5.6. 2015[解析]依题意知m2-2m-1=0,得m2-2m=1,所以2m2-4m+2013=2(m2-2m)+2013=2015.7. (1)设抛物线顶点为E,根据题意,得E(2,3),设抛物线解析式为y=a(x-2)2+3,(3)符合条件的点M存在.证明如下:过点P作x轴的垂线,垂足为C,则PC=2,AC=2,由勾股定理,可得AP=4,PB=4,又AB=4,所以△APB是等边三角形.只要作∠PAB的平分线交抛物线于M点,连接PM,BM,由于AM=AM,∠PAM=∠BAM,AB=AP,可得△AMP≌△AMB.因此存在这样的点M,使△AMP≌△AMB.由题意,得△BHP∽△BOC,∵OC∶OB∶BC=3∶4∶5,∴HP∶HB∶BP=3∶4∶5.∵PB=5t,∴HB=4t,HP=3t.∴OH=OB-HB=4-4t.∴OQ=4t.①当H在Q,B之间时,QH=OH-OQ=(4-4t)-4t=4-8t.②当H在O,Q之间时,QH=OQ-OH=4t-(4-4t)=8t-4.综合①②,得QH=|4-8t|.。

北京市宣武区2019-2020学年中考数学第三次调研试卷含解析

北京市宣武区2019-2020学年中考数学第三次调研试卷含解析

北京市宣武区2019-2020学年中考数学第三次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如果关于x 的不等式组2030x a x b -≥⎧⎨-≤⎩的整数解仅有2x =、3x =,那么适合这个不等式组的整数a 、b组成的有序数对(,)a b 共有() A .3个B .4个C .5个D .6个2.估算18的值是在( ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间3.4的平方根是( ) A .16 B .2C .±2D .±4.函数1y x =-的自变量x 的取值范围是( )A .1x >B .1x <C .1x ≤D .1x ≥5.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是( ) 用水量x (吨) 3 4 5 6 7 频数1254﹣xxA .平均数、中位数B .众数、中位数C .平均数、方差D .众数、方差 6.如图,数轴上的A 、B 、C 、D 四点中,与数﹣3表示的点最接近的是( )A .点AB .点BC .点CD .点D7.如图,Rt △AOB 中,∠AOB=90°,OA 在x 轴上,OB 在y 轴上,点A 、B 的坐标分别为(3,0),(0,1),把Rt △AOB 沿着AB 对折得到Rt △AO′B ,则点O′的坐标为( )A.35 22(,)B.33 22(,)C.235 32(,)D.433 32(,)8.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①12AFFD;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④B.①④C.②③④D.①②③9.某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.10.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-211.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°12.如图图形中,是中心对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=si nα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°=33112222⨯+⨯=1.类似地,可以求得sin15°的值是_______. 14.分解因式:22 x y -=_______________.15.如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.16.如图,AB 是⊙O 的直径,点E 是»BF的中点,连接AF 交过E 的切线于点D ,AB 的延长线交该切线于点C ,若∠C =30°,⊙O 的半径是2,则图形中阴影部分的面积是_____.17.如图,在每个小正方形的边长为1的网格中,A ,B 为格点 (Ⅰ)AB 的长等于__(Ⅱ)请用无刻度的直尺,在如图所示的网格中求作一点C ,使得CA=CB 且△ABC 的面积等于32,并简要说明点C 的位置是如何找到的__________________18.若关于x 的一元二次方程x 2+mx+2n =0有一个根是2,则m+n =_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,四边形ABCD 的四个顶点分别在反比例函数m y x =与ny x=(x >0,0<m <n)的图象上,对角线BD//y 轴,且BD ⊥AC 于点P .已知点B 的横坐标为1.当m=1,n=20时. ①若点P 的纵坐标为2,求直线AB 的函数表达式.②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由.四边形ABCD 能否成为正方形?若能,求此时m ,n 之间的数量关系;若不能,试说明理由.20.(6分)数学课上,李老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式,然后翻开纸片②是4x1+5x+6,翻开纸片③是3x1﹣x﹣1.解答下列问题求纸片①上的代数式;若x是方程1x=﹣x﹣9的解,求纸片①上代数式的值.21.(6分)如图,在平行四边形ABCD中,AB<BC.利用尺规作图,在AD边上确定点E,使点E到边AB,BC的距离相等(不写作法,保留作图痕迹);若BC=8,CD=5,则CE= .22.(8分)某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题:(1)这次知识竞赛共有多少名学生?(2)“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;(3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率.23.(8分)某同学报名参加学校秋季运动会,有以下5 个项目可供选择:径赛项目:100m、200m、1000m (分别用A1、A2、A3 表示);田赛项目:跳远,跳高(分别用T1、T2 表示).(1)该同学从5 个项目中任选一个,恰好是田赛项目的概率P 为;(2)该同学从5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P1,利用列表法或树状图加以说明;(3)该同学从5 个项目中任选两个,则两个项目都是径赛项目的概率P2 为.24.(10分)如图,∠MON的边OM上有两点A、B在∠MON的内部求作一点P,使得点P到∠MON 的两边的距离相等,且△PAB的周长最小.(保留作图痕迹,不写作法)25.(10分)近年来,共享单车服务的推出(如图1),极大的方便了城市公民绿色出行,图2是某品牌某型号单车的车架新投放时的示意图(车轮半径约为30cm),其中BC∥直线l,∠BCE=71°,CE=54cm.(1)求单车车座E到地面的高度;(结果精确到1cm)(2)根据经验,当车座E到CB的距离调整至等于人体胯高(腿长)的0.85时,坐骑比较舒适.小明的胯高为70cm,现将车座E调整至座椅舒适高度位置E′,求EE′的长.(结果精确到0.1cm)(参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)26.(12分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.这次调查的市民人数为________人,m=________,n=________;补全条形统计图;若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.27.(12分)如图①,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M ,则图中ADE V ≌DFC △,可知ED FC =,求得DMC ∠=______.如图②,在矩形()ABCD AB BC >的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M .()1求证:ED FC =.()2若20ADE ∠=o ,求DMC ∠的度数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】求出不等式组的解集,根据已知求出1<2a ≤2、3≤3b<4,求出2<a≤4、9≤b <12,即可得出答案. 【详解】解不等式2x−a≥0,得:x≥2a, 解不等式3x−b≤0,得:x ≤3b,∵不等式组的整数解仅有x =2、x =3, 则1<2a ≤2、3≤3b<4, 解得:2<a≤4、9≤b <12, 则a =3时,b =9、10、11; 当a =4时,b =9、10、11;所以适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有6个, 故选:D .【点睛】本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a、b的值.2.C【解析】【分析】,推出45,即可得出答案.【详解】,∴45,4和5之间.故选:C.【点睛】本题考查了估算无理数的大小和二次根式的性质,,题目比较好,难度不大.3.C【解析】试题解析:∵(±2)2=4,∴4的平方根是±2,故选C.考点:平方根.4.D【解析】【分析】根据二次根式的意义,被开方数是非负数.【详解】x-≥,根据题意得10x≥.解得1故选D.【点睛】本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.5.B【解析】【分析】由频数分布表可知后两组的频数和为4,即可得知频数之和,结合前两组的频数知第6、7个数据的平均数,可得答案.【详解】∵6吨和7吨的频数之和为4-x+x=4,∴频数之和为1+2+5+4=12,则这组数据的中位数为第6、7个数据的平均数,即=5,∴对于不同的正整数x,中位数不会发生改变,∵后两组频数和等于4,小于5,∴对于不同的正整数x,众数不会发生改变,众数依然是5吨.故选B.【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数的定义和计算方法是解题的关键.6.B【解析】【分析】≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.3 1.732【详解】≈-,3 1.732()---≈,1.7323 1.268()1.73220.268---≈,()---≈,1.73210.732因为0.268<0.732<1.268,-表示的点与点B最接近,所以3故选B.7.B【解析】【分析】连接OO′,作O′H⊥OA于H.只要证明△OO′A是等边三角形即可解决问题. 【详解】连接OO′,作O′H⊥OA于H,在Rt△AOB中,∵tan∠BAO=OBOA=32,∴∠BAO=30°,由翻折可知,∠BAO′=30°,∴∠OAO′=60°,∵AO=AO′,∴△AOO′是等边三角形,∵O′H⊥OA,∴3∴332,∴O′332),故选B.【点睛】本题考查翻折变换、坐标与图形的性质、等边三角形的判定和性质、锐角三角函数等知识,解题的关键是发现特殊三角形,利用特殊三角形解决问题.8.D【解析】【详解】∵在▱ABCD中,AO=12 AC,∵点E 是OA 的中点, ∴AE=13CE , ∵AD ∥BC , ∴△AFE ∽△CBE , ∴AF AE BC CE ==13, ∵AD=BC ,∴AF=13AD , ∴12AF FD =;故①正确; ∵S △AEF =4,AEF BCE S S V V =(AF BC )2=19, ∴S △BCE =36;故②正确; ∵EF AE BE CE = =13, ∴AEF ABE S S V V =13, ∴S △ABE =12,故③正确; ∵BF 不平行于CD ,∴△AEF 与△ADC 只有一个角相等,∴△AEF 与△ACD 不一定相似,故④错误,故选D . 9.D 【解析】 【分析】 【详解】解:几何体的左视图是从左面看几何体所得到的图形,选项A 、B 、C 的左视图均为从左往右正方形个数为2,1,符合题意,选项D 的左视图从左往右正方形个数为2,1,1, 故选D . 【点睛】本题考查几何体的三视图. 10.A 【解析】试题分析:原方程变形为:x (x-1)=0 x 1=0,x 1=1. 故选A .考点:解一元二次方程-因式分解法.11.C【解析】试题分析:∵DC ∥AB ,∴∠DCA=∠CAB=65°. ∵△ABC 绕点A 旋转到△AED 的位置,∴∠BAE=∠CAD ,AC=AD.∴∠ADC=∠DCA="65°." ∴∠CAD=180°﹣∠ADC ﹣∠DCA="50°." ∴∠BAE=50°.故选C .考点:1.面动旋转问题; 2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质.12.D【解析】【分析】根据中心对称图形的概念和识别.【详解】根据中心对称图形的概念和识别,可知D 是中心对称图形,A 、C 是轴对称图形,D 既不是中心对称图形,也不是轴对称图形.故选D .【点睛】本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形.二、填空题:(本大题共6个小题,每小题4分,共24分.)13. 【解析】试题分析:sin15°=sin (60°﹣45°)=sin60°•cos45°﹣12案为4. 考点:特殊角的三角函数值;新定义.14. (x+y)(x-y)【解析】直接利用平方差公式因式分解即可,即原式=(x+y)(x-y),故答案为(x+y)(x-y).15.4或8【解析】【分析】由平移的性质可知阴影部分为平行四边形,设A′D=x ,根据题意阴影部分的面积为(12−x)×x ,即x(12−x),当x(12−x)=32时,解得:x=4或x=8,所以AA′=8或AA′=4。

北京市海淀区2019-2020学年中考数学第三次调研试卷含解析

北京市海淀区2019-2020学年中考数学第三次调研试卷含解析

北京市海淀区2019-2020学年中考数学第三次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ).A .3229x x -=+B .3(2)29x x -=+C .2932x x +=- D .3(2)2(9)x x -=+ 2.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m ,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加16002m ,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A .x (x-60)=1600B .x (x+60)=1600C .60(x+60)=1600D .60(x-60)=16003.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y (km )与客车行驶时间x (h )间的函数关系如图,下列信息:(1)出租车的速度为100千米/时;(2)客车的速度为60千米/时;(3)两车相遇时,客车行驶了3.75小时;(4)相遇时,出租车离甲地的路程为225千米.其中正确的个数有( )A .1个B .2个C .3个D .4个4.安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是( ) A .3804.2×103 B .380.42×104 C .3.8042×106 D .3.8042×1055.关于x 的一元二次方程x 2﹣3有两个不相等的实数根,则实数m 的取值范围是( ) A .m <3 B .m >3 C .m≤3 D .m≥36.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.12x(x﹣1)=2107.下列运算正确的是()A.a2·a3﹦a6B.a3+ a3﹦a6C.|-a2|﹦a2D.(-a2)3﹦a68.已知a,b为两个连续的整数,且a<11<b,则a+b的值为()A.7 B.8 C.9 D.109.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.2410.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°11.一元二次方程3x2-6x+4=0根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.有两个实数根 D.没有实数根12.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A.2 B.﹣2 C.4 D.﹣4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知关于x,y的二元一次方程组2321x y kx y+=⎧⎨+=-⎩的解互为相反数,则k的值是_________.14.一组数据4,3,5,x,4,5的众数和中位数都是4,则x=_____.15.如图,点E是正方形ABCD的边CD上一点,以A为圆心,AB为半径的弧与BE交于点F,则∠EFD =_____°.16.已知抛物线y=x2上一点A,以A为顶点作抛物线C:y=x2+bx+c,点B(2,y B)为抛物线C上一点,当点A在抛物线y=x2上任意移动时,则y B的取值范围是_________.17.若点(a,b)在一次函数y=2x-3的图象上,则代数式4a-2b-3的值是__________18.关于x的一元二次方程260x x b-+=有两个不相等的实数根,则实数b的取值范围是________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解不等式组2(1)31122xxxx⎧-≥⎪⎪⎨+⎪-≤⎪⎩(1)(2)请结合题意填空,完成本题的解答.(I)解不等式(1),得;(II)解不等式(2),得;(III)把不等式①和②的解集在数轴上表示出来:(IV)原不等式组的解集为.20.(6分)如图,在平面直角坐标系中,抛物线y=﹣x2﹣2ax与x轴相交于O、A两点,OA=4,点D为抛物线的顶点,并且直线y=kx+b与该抛物线相交于A、B两点,与y轴相交于点C,B点的横坐标是﹣1.(1)求k,a,b的值;(2)若P是直线AB上方抛物线上的一点,设P点的横坐标是t,△PAB的面积是S,求S关于t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,当PB∥CD时,点Q是直线AB上一点,若∠BPQ+∠CBO=180°,求Q点坐标.21.(6分)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)22.(8分)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B 型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放8240aa辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.23.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)24.(10分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;(3)请估计该市中小学生一天中阳光体育运动的平均时间.25.(10分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.求反比例函数和一次函数的解析式;直接写出当x>0时,的解集.点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.26.(12分)在“打造青山绿山,建设美丽中国”的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具,下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A 30人/辆380元/辆B 20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式。

北京市西城区2019-2020学年中考数学第三次调研试卷含解析

北京市西城区2019-2020学年中考数学第三次调研试卷含解析

北京市西城区2019-2020学年中考数学第三次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p(p a)与它的体积v(m3)的乘积是一个常数k,即pv=k(k为常数,k>0),下列图象能正确反映p与v之间函数关系的是()A.B.C.D.2.下列计算结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x3)23.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2C.0.3 D.0.44.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:阅读时间(小时) 2 2.5 3 3.5 4学生人数(名) 1 2 8 6 3则关于这20名学生阅读小时数的说法正确的是()A.众数是8 B.中位数是3C.平均数是3 D.方差是0.345.下列运算正确的是()A.(a2)3 =a5B.23a a ag C.(3ab)2=6a2b2D.a6÷a3 =a26.如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.7.计算3a2-a2的结果是()A.4a2B.3a2C.2a2D.38.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x9.观察下列图形,则第n个图形中三角形的个数是()A.2n+2 B.4n+4 C.4n﹣4 D.4n10.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个11.定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( )A.12B.25C.35D.71812.实数a在数轴上的位置如图所示,则下列说法不正确的是()A.a的相反数大于2 B.a的相反数是2 C.|a|>2 D.2a<0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于_____.14.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.15.点A(x1,y1)、B(x1,y1)在二次函数y=x1﹣4x﹣1的图象上,若当1<x1<1,3<x1<4时,则y1与y1的大小关系是y1_____y1.(用“>”、“<”、“=”填空)16.如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=__________°.17.数学综合实践课,老师要求同学们利用直径为6cm的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计).若要求折出的盒子体积最大,则正方体的棱长等于________cm.18.若反比例函数2kyx-=的图象位于第二、四象限,则k的取值范围是__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.试判断PD与⊙O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CE•CP 的值.20.(6分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.21.(6分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE 上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.22.(8分)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.求证:AP=BQ;当BQ= 43,求»QD的长(结果保留);若△APO的外心在扇形COD的内部,求OC的取值范围.23.(8分)计算:﹣2212+|1﹣4sin60°|24.(10分)某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:LED灯泡普通白炽灯泡进价(元)45 25标价(元)60 30(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进这两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?25.(10分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE 的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.26.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).(Ⅰ)求二次函数的解析式及点A,B的坐标;(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.27.(12分)如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.(1)求证:ED为⊙O的切线;(2)若⊙O的半径为3,ED=4,EO的延长线交⊙O于F,连DF、AF,求△ADF的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据题意有:pv=k(k为常数,k>0),故p与v之间的函数图象为反比例函数,且根据实际意义p、v都大于0,由此即可得.【详解】∵pv=k(k为常数,k>0)∴p=kv(p>0,v>0,k>0),故选C.【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.2.C【解析】解:A.x10÷x2=x8,不符合题意;B.x6﹣x不能进一步计算,不符合题意;C.x2x3=x5,符合题意;D.(x3)2=x6,不符合题意.故选C.3.B【解析】∵在5.5~6.5组别的频数是8,总数是40,∴=0.1.4.B 【解析】 【分析】A 、根据众数的定义找出出现次数最多的数;B 、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C 、根据加权平均数公式代入计算可得;D 、根据方差公式计算即可. 【详解】解: A 、由统计表得:众数为3,不是8,所以此选项不正确;B 、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C 、平均数=122 2.5386 3.5433.3520⨯+⨯+⨯+⨯+⨯=,所以此选项不正确;D 、S 2=120×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]=5.6520=0.2825,所以此选项不正确; 故选B . 【点睛】本题考查方差;加权平均数;中位数;众数. 5.B 【解析】分析:本题考察幂的乘方,同底数幂的乘法,积的乘方和同底数幂的除法. 解析: ()326a a = ,故A 选项错误; a 3·a = a 4故B 选项正确;(3ab)2 = 9a 2b 2故C 选项错误; a 6÷a 3 = a 3故D 选项错误. 故选B. 6.B 【解析】 【分析】根据俯视图是从上往下看的图形解答即可. 【详解】从上往下看到的图形是:.故选B.本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线. 7.C【解析】【分析】根据合并同类项法则进行计算即可得.【详解】3a2-a2=(3-1)a2=2a2,故选C.【点睛】本题考查了合并同类项,熟记合并同类项的法则是解题的关键.合并同类项就是把同类项的系数相加减,字母和字母的指数不变.8.C【解析】【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.9.D【解析】试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选D.考点:规律型:图形的变化类.10.D【解析】由抛物线的开口向下知a<0,与y 轴的交点为在y 轴的正半轴上,得c>0, 对称轴为x=2ba-<1,∵a<0,∴2a+b<0, 而抛物线与x 轴有两个交点,∴2b −4ac>0, 当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2. ∵244ac b a- >2,∴4ac−2b <8a ,∴2b +8a>4ac ,∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a−b+c<0. 由①,③得到2a+2c<2,由①,②得到2a−c<−4,4a−2c<−8, 上面两个相加得到6a<−6,∴a<−1.故选D.点睛:本题考查了二次函数图象与系数的关系,二次函数2(0)y ax bx c a =++≠ 中,a 的符号由抛物线的开口方向决定;c 的符号由抛物线与y 轴交点的位置决定;b 的符号由对称轴位置与a 的符号决定;抛物线与x 轴的交点个数决定根的判别式的符号,注意二次函数图象上特殊点的特点. 11.A 【解析】分析:根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个; ②符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率. 详解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个, 概率为451=902. 故选A .点睛:此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn. 12.B 【解析】试题分析:由数轴可知,a <-2,A 、a 的相反数>2,故本选项正确,不符合题意;B 、a 的相反数≠2,故本选项错误,符合题意;C 、a 的绝对值>2,故本选项正确,不符合题意;D 、2a <0,故本选项正确,不符合题意. 故选B .考点:实数与数轴.二、填空题:(本大题共6个小题,每小题4分,共24分.)13..【解析】试题分析:要求重叠部分△AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代换后,可知AE=AF,问题转化为在Rt△ABE中求AE.因此设AE=x,由折叠可知,EC=x,BE=4﹣x,在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣x)2=x2,解得:x=,即AE=AF=,因此可求得=×AF×AB=××3=.考点:翻折变换(折叠问题)14.7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.【详解】根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,+=,∴527∴最多是7个,故答案为:7.【点睛】本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键.15.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【详解】由二次函数y=x1-4x-1=(x-1)1-5可知,其图象开口向上,且对称轴为x=1,∵1<x1<1,3<x1<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y1.故答案为<.16.1.【解析】【分析】连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=1°,然后再利用圆周角定理得到∠ACB的度数.【详解】连接BD,如图,∵AD为△ABC的外接圆⊙O的直径,∴∠ABD=90°,∴∠D=90°﹣∠BAD=90°﹣50°=1°,∴∠ACB=∠D=1°.故答案为1.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.17.310 5【解析】【分析】根据题意作图,可得AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理对称62=x2+(3x)2,解方程即可求得.【详解】解:如图示,根据题意可得AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理,AB 2=AC 2+BC 2,即()22263x x =+, 解得3105x = 故答案为:3105. 【点睛】本题考查了勾股定理的应用,正确理解题意是解题的关键.18.k>1【解析】【分析】根据图象在第二、四象限,利用反比例函数的性质可以确定1-k 的符号,即可解答.【详解】∵反比例函数y =2k x-的图象在第二、四象限, ∴1-k <0,∴k >1.故答案为:k >1.【点睛】此题主要考查了反比例函数的性质,熟练记忆当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限是解决问题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)PD 是⊙O 的切线.证明见解析.(2)1.【解析】试题分析:(1)连结OP ,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD 和∠D 的度数,进而可得∠OPD=90°,从而证明PD 是⊙O 的切线;(2)连结BC ,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC 长,再证明△CAE ∽△CPA ,进而可得,然后可得CE•CP 的值. 试题解析:(1)如图,PD 是⊙O 的切线.证明如下:连结OP ,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP ,∴∠OAP=∠OPA=30°,∵PA=PD ,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD 是⊙O 的切线.(2)连结BC ,∵AB 是⊙O 的直径,∴∠ACB=90°,又∵C 为弧AB 的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C ,∠CAB=∠APC ,∴△CAE ∽△CPA ,∴,∴CP•CE=CA 2=()2=1.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.20.证明见解析.【解析】【分析】利用三角形中位线定理判定OE∥BC,且OE=12BC.结合已知条件CF=12BC,则OE//CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论.【详解】∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=12 BC.又∵CF=12BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF,∴四边形OCFE是平行四边形.【点睛】本题考查了平行四边形的性质和三角形中位线定理.此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理.熟记相关定理并能应用是解题的关键. 21.(1)说明见解析;(2)当∠B=30°时,四边形ACEF是菱形.理由见解析.【解析】试题分析:(1)证明△AEC≌△EAF,即可得到EF=CA,根据两组对边分别相等的四边形是平行四边形即可判断;(2)当∠B=30°时,四边形ACEF是菱形.根据直角三角形的性质,即可证得AC=EC,根据菱形的定义即可判断.(1)证明:由题意知∠FDC=∠DCA=90°,∴EF∥CA,∴∠FEA=∠CAE,∵AF=CE=AE,∴∠F=∠FEA=∠CAE=∠ECA.在△AEC和△EAF中,∵∴△EAF≌△AEC(AAS),∴EF=CA,∴四边形ACEF是平行四边形.(2)解:当∠B=30°时,四边形ACEF是菱形.理由如下:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE垂直平分BC,∴∠BDE=90°∴∠BDE=∠ACB∴ED∥AC又∵BD=DC∴DE是△ABC的中位线,∴E是AB的中点,∴BE=CE=AE,又∵AE=CE,∴AE=CE=AB,又∵AC=AB,∴AC=CE,∴四边形ACEF是菱形.考点:菱形的判定;全等三角形的判定与性质;线段垂直平分线的性质;平行四边形的判定.22.(1)详见解析;(2)143;(3)4<OC<1.【解析】【分析】(1)连接OQ,由切线性质得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性质即可得证.(2)由(1)中全等三角形性质得∠AOP=∠BOQ,从而可得P、O、Q三点共线,在Rt△BOQ中,根据余弦定义可得cosB=QB OB, 由特殊角的三角函数值可得∠B=30°,∠BOQ=60° ,根据直角三角形的性质得 OQ=4, 结合题意可得 ∠QOD 度数,由弧长公式即可求得答案.(3)由直角三角形性质可得△APO 的外心是OA 的中点 ,结合题意可得OC 取值范围.【详解】(1)证明:连接OQ.∵AP 、BQ 是⊙O 的切线,∴OP ⊥AP ,OQ ⊥BQ ,∴∠APO=∠BQO=90∘,在Rt △APO 和Rt △BQO 中,OP OQ OA OB=⎧⎨=⎩, ∴Rt △APO ≌Rt △BQO ,∴AP=BQ.(2)∵Rt △APO ≌Rt △BQO ,∴∠AOP=∠BOQ ,∴P 、O 、Q 三点共线,∵在Rt △BOQ 中,cosB=433QB OB ==, ∴∠B=30∘,∠BOQ= 60° ,∴OQ=12OB=4, ∵∠COD=90°,∴∠QOD= 90°+ 60° = 150°,∴优弧QD 的长=2104141803ππ⋅⋅=, (3)解:设点M 为Rt △APO 的外心,则M 为OA 的中点,∵OA=1,∴OM=4,∴当△APO 的外心在扇形COD 的内部时,OM <OC ,∴OC 的取值范围为4<OC <1.【点睛】本题考查了三角形的外接圆与外心、弧长的计算、扇形面积的计算、旋转的性质以及全等三角形的判定与性质,解题的关键是:(1)利用全等三角形的判定定理HL 证出Rt △APO ≌Rt △BQO ;(2)通过解直角三角形求出圆的半径;(3)牢记直角三角形外心为斜边的中点是解题的关键.23.-1【解析】【分析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【详解】解:原式=4412--⨯-=41--=﹣1.【点睛】此题主要考查了实数运算以及特殊角的三角函数值,正确化简各数是解题关键.24.(1)LED 灯泡与普通白炽灯泡的数量分别为200个和100个;(2)1 350元.【解析】【分析】1)设该商场购进LED 灯泡x 个,普通白炽灯泡的数量为y 个,利用该商场购进了LED 灯泡与普通白炽灯泡共300个和销售完这批灯泡后可以获利3200元列方程组,然后解方程组即可;(2)设该商场购进LED 灯泡a 个,则购进普通白炽灯泡(120-a )个,这批灯泡的总利润为W 元,利用利润的意义得到W=(60-45)a+(30-25)(120-a )=10a+1,再根据销售完这批灯泡时获利最多且不超过进货价的30%可确定a 的范围,然后根据一次函数的性质解决问题.【详解】(1)设该商场购进LED 灯泡x 个,普通白炽灯泡的数量为y 个.根据题意,得300(6045)(0.93025)3200x y x y +=⎧⎨-+⨯-=⎩解得200100x y =⎧⎨=⎩答:该商场购进LED 灯泡与普通白炽灯泡的数量分别为200个和100个.(2)设该商场再次购进LED 灯泡a 个,这批灯泡的总利润为W 元.则购进普通白炽灯泡(120﹣a )个.根据题意得W=(60﹣45)a+(30﹣25)(120﹣a )=10a+1.∵10a+1≤[45a+25(120﹣a)]×30%,解得a≤75,∵k=10>0,∴W随a的增大而增大,∴a=75时,W最大,最大值为1350,此时购进普通白炽灯泡(120﹣75)=45个.答:该商场再次购进LED灯泡75个,购进普通白炽灯泡45个,这批灯泡的总利润为1 350元.【点睛】本题考查了二元一次方程组和一次函数的应用,根据实际问题找到等量关系列方程组和建立一次函数模型,利用一次函数的性质和自变量的取值范围解决最值问题是解题的关键.25.(1)见解析(2)见解析【解析】【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四边形ADCF是菱形,证明如下:∵AF∥BC,AF=DC,∴四边形ADCF是平行四边形.∵AC⊥AB,AD是斜边BC的中线,∴AD=DC.∴平行四边形ADCF是菱形26.(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q;(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).【解析】【分析】(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.【详解】(Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A(﹣1,0),B(5,0).(Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).把点Q′坐标代入y=﹣x2+4x+5,得到:m2﹣4m﹣5=﹣m2﹣4m+5,(舍弃),∴m=5或5∴Q(5,45).(Ⅲ)如图,作MK⊥对称轴x=2于K.①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.∵此时点M的横坐标为1,∴y=8,∴M(1,8),N(2,13),②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,此时M′的横坐标为3,可得M′(3,8),N′(2,3).【点睛】本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.27.(1)见解析;(2)△ADF的面积是108 25.【解析】试题分析:(1)连接OD,CD,求出∠BDC=90°,根据OE∥AB和OA=OC求出BE=CE,推出DE=CE,根据SSS证△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;(2)过O作OM⊥AB于M,过F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根据sin∠BAC =810BC OMAB OA==,求出OM,根据cos∠BAC=35AC AMAB OA==,求出AM,根据垂径定理求出AD,代入三角形的面积公式求出即可.试题解析:(1)证明:连接OD,CD,∵AC是⊙O的直径,∴∠CDA=90°=∠BDC,∵OE∥AB,CO=AO,∴BE=CE,∴DE=CE,∵在△ECO和△EDO中DE CEEO EOOC OD⎧⎪⎨⎪⎩===,∴△ECO≌△EDO,∴∠EDO=∠ACB=90°,即OD⊥DE,OD过圆心O,∴ED为⊙O的切线.(2)过O作OM⊥AB于M,过F作FN⊥AB于N,则OM∥FN,∠OMN=90°,∵OE∥AB,∴四边形OMFN是矩形,∴FN=OM,∵DE=4,OC=3,由勾股定理得:OE=5,∴AC=2OC=6,∵OE∥AB,∴△OEC∽△ABC,∴OC OE AC AB=,∴356AB =,∴AB=10,在Rt△BCA中,由勾股定理得:22106+=8,sin∠BAC=810 BC OMAB OA==,即435 OM=,OM=125=FN,∵cos∠BAC=35 AC AMAB OA==,∴AM=9 5由垂径定理得:AD=2AM=185,即△ADF的面积是12AD×FN=12×185×125=10825.答:△ADF的面积是108 25.【点睛】考查了切线的性质和判定,勾股定理,三角形的面积,垂径定理,直角三角形的斜边上中线性质,全等三角形的性质和判定等知识点的运用,通过做此题培养了学生的分析问题和解决问题的能力.。

2019-2020年中考数学真题试题(含答案)(III)

2019-2020年中考数学真题试题(含答案)(III)

2019-2020年中考数学真题试题(含答案)(III)一、填空题(每题3分,满分30分)1.在2017年的“双11”网上促销活动中,淘宝网的交易额突破了3200000000元,将数字3200000000用科学记数法表示 .2.在函数y =1x -1中,自变量x 的取值范围是 .3.如图,BC ∥EF ,AC ∥DF ,添加一个条件 ,使得△ABC ≌△DEF .4.在一个不透明的袋子中装有除颜色外完全相同的3个红球、3个黄球、2个绿球,任意摸出一球,摸到红球的概率是 .5.不等式组⎩⎪⎨⎪⎧x +1>0a - 13x <0的解集是x >-1,则a 的取值范围是 . 6.原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为 .7.如图,边长为4的正方形ABCD ,点P 是对角线BD 上一动点,点E 在边CD 上,EC =1,则PC +PE 的最小值是 .8.圆锥底面半径为3cm ,母线长32cm 则圆锥的侧面积为 cm 2. 9.△ABC 中,AB =12,AC =39,∠B =30°则△ABC 的面积是 .10.观察下列图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;…….则第2017个图形中有 个三角形.第1个 第2个 第3个 第2017个第10题 图二、选择题(每题3分,满分30分) 11.下列各运算中,计算正确的是( )A .(x -2)2=x 2-4B .(3a 2)3=9a 6C .x 6÷x 2=x 3D .x 3·x 2=x 512.下列图形中,既是轴对称图形又是中心对称图形的是 ( )A .B .C .D .13.几个相同的小正方体所搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小正方体的个数最多是( )俯视图 左视图 A .5个 B .7个 C .8个 D .9个14.一组从小到大排列的数据:a ,3,4,4,6(a 为正整数),唯一的众数是4,则该组数据的平均数是( )A .3.6B .3.8C .3.6或3.8D .4.2第3题图第7题图15.如图,某工厂有两个大小相同的蓄水池,且中间有管道连通。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年中考数学试题研究三、解答题重难点突破题型二实际应用问题针对演练类型一方程、不等式的实际应用1. (2015泰州10分)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?2. (2015福州9分)有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛,篮球、排球队各有多少支参赛?3. (2015崇左8分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度,2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?4. (2015丹东10分)从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?5. (2015贺州8分)某商场销售一批同型号的彩电,第一个月售出50台,为了减少库存,第二个月每台降价500元将这批彩电全部售出,已知第一个月9台的销售额与第二个月10台的销售额相等,这两个月销售总额超过40万元.(1)求第一个月每台彩电销售价格;(2)这批彩电最少有多少台?6. (2015抚顺12分)某中学组织学生去福利院慰问,在准备礼品时发现,购买1个甲礼品比购买1个乙礼品多花40元;并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等.(1)求甲、乙两种礼品的单价各为多少元?(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2000元,那么最多可购买多少个甲礼品?7. (2015宁夏6分)某校在开展“校园献爱心”活动中,准备向南部山区学校捐赠男、女两种款式的书包.已知男款书包的单价50元/个,女款书包的单价70元/个.(1)原计划募捐3400元,购买两种款式的书包共60个,那么这两种款式的书包各买多少个?(2)在捐款活动中,由于学生捐款的积极性高涨,实际共捐款4800元,如果至少购买两种款式的书包共80个,那么女款书包最多能买多少个?类型二函数的实际应用1. (2015邵阳8分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=-10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式;(利润=销售额-成本)(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?2. (2015新疆建设兵团9分)某超市预购进A、B两种品牌的T恤共200件,已知两种T恤的进价如下表所示,设购进A种T恤x件,且所购进的两种T恤能全部卖出,获得的总利润为W元.(1)求W关于x的函数关系式.(2)如果购进两种T恤的总费用不超过9500元,那么超市如何进货才能获得最大利润?并求出最大利润.(提示:利润=售价-进价)3. (2015衡阳8分)某药品研究所开发一种抗菌新药.经多年动物实验,首次用于临床人体试验.测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式;(2)问血液中药物浓度不低于4微克/毫升的持续时间为多少小时?第3题图4. (2015德州10分)某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)根据图象求y与x的函数关系式;(2)商店想在销售成本不超过3000元的情况下,使销售利润达到2400元,销售单价应定为多少?第4题图5. (2015威海9分)为绿化校园,某校计划购进A,B两种树苗,共21棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数关系式为:________________________________________;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.6. (2015辽阳12分)某宾馆准备购进一批换气扇,从电器商场了解到:一台A型换气扇和三台B型换气扇共需275元;三台A型换气扇和二台B型换气扇共需300元.(1)求一台A型换气扇和一台B型换气扇的售价各是多少元;(2)若该宾馆准备同时购进这两种型号的换气扇共40台,并且A型换气扇的数量不多于B 型换气扇数量的3倍,请设计出最省钱的购买方案,并说明理由.【答案】题型二实际应用问题类型一方程、不等式的实际应用1. 解:设每件衬衫降价x元,(2分)根据题意得400×120+(500-400)(120-x)=500×80×(1+45%),(6分)解得x=20,(9分)答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.(10分)2. 解:设有x支篮球队和y支排球队参赛,由题意得x+y=4810x+12y=520,(5分)解得x=28y=20.(8分)答:篮球队有28支参赛,排球队有20支参赛.(9分)3. 解:(1)设投资的增长率为x,根据题意得3(1+x)2=6.75,(3分)解得x1=0.5,x2=-2.5(不符合题意,舍去),答:每年市政府投资的增长率为50%;(5分)(2)根据题意得12×(1+0.5)2=18(万平方米),(6分)答:2015年建设了18万平方米廉租房.(8分)4. 解:设普通列车平均速度为每小时x千米,则高速列车平均速度为每小时3x千米,(1分)根据题意得2401803x x=2,(5分)解这个方程得x=90,(7分)经检验,x=90是所列方程的根且符合题意.(8分)∴3x=3×90=270.(9分)答:高速列车平均速度为每小时270千米.(10分)5. 解:(1)设第一月每台彩电的售价为x元,则第二个月每台彩电的售价为(x-500)元,(1分)由题意得9x=10(x-500),(2分)解得x=5000,(3分)答:第一个月每台彩电的销售价格为5000元.(4分)(2)设这批彩电有y台,由第(1)问可得x=5000,(5分)由题意得5000×50+(5000-500)(y-50)>400000,(6分)解得y>8313,(7分)∵y为整数,∴y≥84.答:这批彩电最少有84台.(8分)6. 解:(1)设乙礼品的单价为x元,则甲礼品的单价为(x+40)元.根据题意列方程得60036040x x=+,(3分)解得x=60,(5分)经检验x=60是原方程的根且符合题意.∴x+40=100,答:甲礼品的单价为100元,乙礼品的单价为60元.(8分)(2)设总费用不超过2000元,可购买m个甲礼品,则购买乙礼品(30-m)个. 根据题意得100m+60(30-m)≤2000,(10分)解得m≤5,答:最多可购买5个甲礼品.(12分)7. 解:(1)设原计划购买男款书包x个,则购买女款书包y个,根据题意x+y=6050x+70y=3400,(2分)解得x=40y=20,答:原计划购买男款书包40个,购买女款书包20个.(3分)(2)设最多能买女款书包x个,则可购买男款书包(80-x)个,由题意得70x+50(80-x)≤4800,(5分)解得x≤40,答:最多能买女款书包40个.(6分)类型二函数的实际应用1. 解:(1)∵每件成本40元,每件单价为x元,∴每件利润为(x-40)元, (2分)∴S=(x-40)y=(x-40)(-10x+1200)=-10x2+1600x-48000,即S=-10x2+1600x-48000(x>40).(4分)(2)∵a=-10<0,x>40,∴函数在对称轴x=1600220ba-=--=80有最大值,即售价定为80元时利润最大;(6分)∴当x=80时,S=16000元.答:当销售单价定为80元时,该公司每天获得利润最大,最大利润为16000元. (8分) 2. 解:(1)设购进A种T恤x件,则购进B种T恤(200-x)件,(2分)则所购进的两种T恤全部卖出时,获得的总利润为W=(80-50)x+(65-40)(200-x)=5x+5000(0<x<200);(4分)(2)∵购进两种T恤的总费用不超过9500元,∴50x+40(200-x)≤9500,∴x≤150,(6分)∵W=5x+5000,∴W随x的增大而增大,∴当x=150时,W取得最大值,且最大值为5×150+5000=5750.(8分)答:超市进A种T恤150件,B种T恤50件时,超市获得最大利润,且最大利润为5750元.(9分)3. 【思路分析】(1)根据图象可知上升阶段是正比例函数,下降阶段是反比例函数,分别设出对应的函数解析式,代入点(4,8)即可;(2)将y=4分别代入正比例函数解析式和反比例函数解析式,得到对应的x的值,两者相减即可得到结论.解:(1)根据题意,当0≤x≤4时,函数为正比例函数,设函数解析式为y=kx,将点(4,8)代入解得k=2,∴当0≤x≤4时,函数解析式为y=2x;当4<x≤10时,函数为反比例函数,设函数解析式为y=mx,将点(4,8)代入解得m=32,∴当4<x≤10时,函数解析式为y=32x,∴所求函数解析式为y= 2x,0≤x≤4 32x,4<x≤10. (4分)(2)对于函数y=2x,令y=4得x=2,对于函数y=32x,令y=4得x=8,∴当2≤x≤8时,血液中药物浓度不低于4微克/毫升,∴持续时间为8-2=6小时.答:血液中药物浓度不低于4微克/毫升的持续时间为6小时.(8分)4. 解:(1)设y与x的函数关系式为y=kx+b(k≠0),将点(40,160),(120,0)代入y=kx+b中,得 40k+b=160120k+b=0,(2分)解得k=-2b=240.(4分)∴y与x的函数关系式为y=-2x+240(40≤x≤120).(5分)(2)由题意,销售成本不超过3000元,则40(-2x+240)≤3000,解不等式得x≥82.5,∴82.5≤x≤120,(7分)根据销售利润达到2400元,列方程得(x-40)(-2x+240)=2400,(8分)即x2-160x+6000=0,解得x1=60,x2=100,(9分)∵60<82.5,故舍去,答:销售单价应该定为100元/千克.(10分)5. 解:(1)y=-20x+1890.(3分)【解法提示】由题意可表示出A种树苗为(21-x)棵,结合题意可得y=70x+90(21-x)=-20x+1890.(2)由题意知x<21-x,解得x<10.5,(5分)∵x≥1,∴x的取值范围是1≤x<10.5且x为整数,(6分)由(1)知,对于函数y=-20x+1890,y随x的增大而减小,∴当x=10时,y有最小值,y最小值=-20×10+1890=1690.(8分)∴21-x=21-10=11.因此,使费用最省的方案是购买B种树苗10棵,A种树苗11棵,所需费用为1690元.(9分)6. 解:(1)设一台A型换气扇的售价为x元,一台B型换气扇的售价为y元,根据题意得x+3y3x+2y=300,(2分)解得x=50y=75,(4分)答:一台A型换气扇的售价为50元,一台B型换气扇的售价为75元;(5分)(2)设购进A型换气扇z台,则购进B型换气扇(40-z)台,总费用为w元,则有z≤3(40-z),(7分)解得z≤30,∵z为A型换气扇的台数,∴z≤30且z为正整数,w=50z+75(40-z)=-25z+3000,(9分)∵-25<0,∴w随着z的增大而减小,∴当z=30时,w最小=-25×30+3000=2250,(10分)此时40-z=40-30=10,(11分)答:最省钱的方案是购进30台A型换气扇,10台B型换气扇.(12分)。

相关文档
最新文档