2019-2020学年七年级数学下册《8.3.2 用二元一次方程组解决实际问题》导学案(新版)新人教版.doc

合集下载

2019-2020学年七年级数学下册-8.3实际问题与二元一次方程组教案-新人教版

2019-2020学年七年级数学下册-8.3实际问题与二元一次方程组教案-新人教版

2019-2020学年七年级数学下册 8.3实际问题与二元一次方程组教案 新人教版 科目 数学 主备人 年级 七 时间课题 8.3实际问题与二元一次方程组(1)课时 教学目标 1、经历用方程组解决实际问题的过程,体会方程组是刻画现实世界中含有多个未知数的问题的有效数学模型; 2、能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;3、学会比较估算与精确计算以及检验方程组的解是否符合题意并正确作答;4、培养分析、解决问题的能力,体会二元一次方程组的应用价值,感受数学文化。

教材分析 教学重点:以方程组为工具分析,解决含有多个未知数的实际问题。

教学难点:确定解题策略,比较估算与精确计算。

教法提示辅导、练习教学过程设计(含作业安排) 创设情境:前面我们结合实际问题,讨论了用方程组表示问题中的条件以及如何解方程组.本节我们继续探究如何用方程组解决实际问题.(出示问题)养牛场原有30只母牛和15只小牛,一天约需用饲料675 kg;一周后又购进12只母牛和5只小牛,这时一天约需用饲料940 kg.饲养员李大叔估计平均每只母牛1天约需用饲料18~20 kg,每只小牛1天约需用饲料7~8 kg.你能否通过计算检验他的估计?探究问题:学生思考、讨论.一、先假设李大叔的估计正确,再根据问题中给定的数量关系来检验.二、根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确.学生在比较探究后发现用方法二较简便.设问1:如果选择方法二,如何计算平均每只母牛和每只小牛1天各约需用饲料量?列方程组求解.主要思路:知识应用:实际问题 数学问题 (二元一次方程组)组)设未知数 列方程组学生先独立思考,然后师生共同讨论解题过程.解:设平均每只母牛和每只小牛1天各约需用饲料xkg 和ykg.找出相等关系列方程组⎩⎨⎧=+=+94020426751530y x y x 解这个方程组,得 ⎩⎨⎧==520y x这就是说,平均每只母牛和每只小牛1天各约需用饲料20kg 和5kg.饲养员李大叔对母牛的食量估计正确,对小牛的食量估计不正确拓广探索:设问2:以上问题还能列出不同的方程组吗?结果是否一致?个别学生可能会列出如下方程组⎩⎨⎧=+=+2655126751530y x y x 但结果一致.课堂练习:《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食.树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的1/3;若从树上飞下去一只,则树上、树下的鸽子就一样多了.”你知道树上、树下各有多少只鸽子吗? 小结:提问:通过这节课的学习,你知道用方程组解决实际问题有哪些步骤? 布置作业:必做题:教科书108页习题8.3第1(1)3、5题。

8.3.2 二元一次方程组解百分率问题的应用

8.3.2  二元一次方程组解百分率问题的应用

件B商品一共比不打折少花1 960元,计算打了多
少折.
打折前A商品的单价为x元/件、B商品的单价为y元/ 解: 件,
ì 60 x+30 y=1 080, ï ï 根据题意得: í ï 50 x+10 y=840. ï î ì x=16, ï ï 解得: í ï ï î y=4. 9 800-1 960 500×16+450×4=9 800(元), =0.8. 9 800 答:打该农场去年计划生产小麦x吨,玉米y吨, 解: ì x+y=200, ï ï 根据题意可得: í ï ( 1+5%)y+(1+15%)x=225. ï î ì x=150, ï ï 解得: 则50×(1+5%)=52.5(吨) í ï ï î y=50. 150×(1+15%)=172.5(吨) 答:农场去年实际生产玉米52.5吨,小麦172.5吨.
5. 张文以两种方式分别储蓄了2 000元和1 000元,一
年后全部取出,所得利息为55元,已知当时这两种 储蓄方式年利率的和为3.75%.问这两种储蓄方式的 年利率各是百分之几?(不计利息税) 设这两种储蓄方式的年利率分别是x%,y%. 解: ì x+y=3.75, ï ï 由题意,得 í ï x%+1 000 y%=55. ï î 2 000 鬃 ì x=1.75, ï ï 解得 í ï ï î y=2. 答:这两种储蓄方式的年利率分别为1.75%,2%.
(1)设甲种商品每件的进价是x元,乙种商品每件的 解:
ì 2 x+3 y=270, ï ï 根据题意,列方程组得 í ï 3 x+2 y=230. ï î ì x=30, ï ï 解得 í ï ï î y=70. 答:甲种商品每件的进价是30元,乙种商品每件的
进价是70元.
进价是y元,

2020——2021学年人教版数学七年级下册第八章二元一次方程组8.3实际问题与二元一次方程(二)

2020——2021学年人教版数学七年级下册第八章二元一次方程组8.3实际问题与二元一次方程(二)

实际问题与二元一次方程(二)一.二元一次方程组的应用--看图列式1.根据图中所给出的信息,求出每个篮球的价格是______元,每个羽毛球的价格是______元。

2.元旦快到了,吴老师打算购买气球装扮教室,气球的种类有笑脸和爱心两种,两种气球的价格不同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为多少?3.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为多少?4.在学校组织的游艺晚会上,掷飞标游艺区游戏区规则如下,如图掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外部分(掷中一次记一个点)现统计小华、小明和小芳掷中与得分情况,如图所示,依此方法计算小芳的得分为______分5.如图,长方形ABCD中有6个形状、大小相同的小长方形,根据图中所标尺寸,则图中阴影部分的面积之和为______cm2。

二.二元一次方程组的应用--长方形周长面积问题1.如图,四个一样的长方形围成一个正方形,外面的大正方形周长是40、里面的小正方形周长是24,则小长方形的面积是多少?2.如图,四个一样的小长方形和一个大长方形围成一个正方形,正方形周长是32,则大长方形的面积是多少?3.四个一样的小长方形拼成一个大长方形、大长方形的周长是120,小长方形的面积是多少?4.如图,在长方形ABCD中,放入六个形状、大小相同的小长方形(即空白的长方形),若AB=16cm,EF=4cm,则一个小长方形的面积为多少?5.如图,长方形ABCD中放置9个形状大小都相同的小长方形,相关数据如图,则图中阴影部分面积为()三.二元一次方程组的应用--分段问题1.某旅游景点的门票价格如下表:某旅行社计划帶甲、乙两个旅行团共100多人计划去游览该景点,其中甲旅行团人数少于50人,乙旅行团人数有50多人但不足100人,如果两旅行团都以各自团体为单位单独购票,则一共支付7965元;如果两旅行团联合起来作为一个团体购票,则只管花费7210元.问两旅行团各有多少人?2.某市为了鼓励居民节约用水,决定实行两级收费制度,若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水22吨,交水费53元;4月份用水18吨,交水费36元.求每吨水的政府补贴优惠价m和市场价n分别是多少元?3.假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”那么小张乘出租车从市政府到娄底南站(高铁站)走了5.5千米,应付车费______元4.为建设资源节约型、环境友好型社会,切实做好节能减排工作,我市决定对居民家庭用电实行“阶梯电价”.电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度),实行“基本电价”;当居民家庭月用电量超过80千瓦时,超过部分实行“提高电价”小张家2017年2月份用电100千瓦时,上缴电费68元;3月份用电120千瓦时,上缴电费88元。

人教版数学七年级下册学案 8.3《 利用二元一次方程组解决实际问题》 (含答案)

人教版数学七年级下册学案 8.3《 利用二元一次方程组解决实际问题》 (含答案)

利用二元一次方程组解决实际问题【学习目标】1.会借助二元一次方程组解决简单的实际问题,再次体会二元一次方程组与现实生活的联系和作用;2.通过应用题学习进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性;3.体会列方程组比列一元一次方程容易。

【学习重点与难点】1.学习重点:正确找出问题中的两个等量关系,并根据题意列二元一次方程组。

2.学习难点:正确找出问题中的两个等量关系,并根据题意列二元一次方程组。

【学习过程】一、自主学习(认真学习课本探究1的内容,把找到解决问题的方法与同学交流)二、合作探究探究用二元一次方程组解决实际问题(先独立分析问题中的数量关系,列出方程组,得出问题的解答,然后再互相交流与评价)1.养牛场原有30只大牛和15只小牛,1天约用饲料675kg;一周后又购进12只大牛和5只小牛,这时1天约用饲料940kg.饲养员李大叔估计每只大牛1天约需饲料18~20kg,每只小牛1天约需饲料7~8kg.你能否通过计算检验他的估计?⑴题中有哪些已知量?哪些未知量?⑵题中等量关系有哪些?⑶如何解这个应用题?列方程组解应用题的基本思路:列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系,一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:⑴方程两边表示的是同类量;⑵同类量的单位是统一.列方程组解应用题的一般步骤:⑴设未知数(可直接设元,也可间接设元),⑵根据题中相等关系,列出方程组,⑶解所列方程组,并检验解的正确性,⑷写出答案.注意事项:⑴“设”、“答”两步,都要写出单位名称,⑵单位要统一.四、我的感悟这节课我的最大收获是: 我不能解决的问题是:五、课后反思课堂小练一、选择题1.植树节这天有20名同学种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x 人,女生有y 人,根据题意,下列方程组正确的是( )A.⎩⎪⎨⎪⎧x +y =523x +2y =20B.⎩⎪⎨⎪⎧x +y =522x +3y =20 C.⎩⎪⎨⎪⎧x +y =202x +3y =52 D.⎩⎪⎨⎪⎧x +y =203x +2y =522.端午节时,王老师用72元钱买了荷包和五彩绳共20个,其中荷包每个4元,五彩绳每个3元,设王老师购买荷包x 个,五彩绳y 个,根据题意,下列列出的方程组正确的是( ).A. B.C. D.3.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨,设一辆大货车一次可以运货x 吨,一辆小货车一次可以运货y 吨,根据题意所列方程组正确的是( )A.⎩⎪⎨⎪⎧2x +3y =15.55x +6y =35B.⎩⎪⎨⎪⎧2x +3y =355x +6y =15.5 C.⎩⎪⎨⎪⎧3x +2y =15.55x +6y =35 D.⎩⎪⎨⎪⎧2x +3y =15.56x +5y =354.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A. B. C. D.5.已知一个两位数,十位上的数字x 比个位上的数字y 大1,若互换个位与十位数字的位置,得到的新数比原数小9,求这个两位数所列出的方程组中,正确的是( )6.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有 ( )A .6种B .7种C .8种D .9种7.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有()A.2种B.3种C.4种D.5 种8.6张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足( )A.a=2bB.a=3bC.a=4bD.a=b二、填空题9.由10块相同的小长方形地砖拼成面积为1.6m2的长方形ABCD(如图),则长方形ABCD的周长为____________.10.某足协举办了一次足球比赛,记分规则为:胜一场积3分;平一场1分;输一场积0分.一支足球队在某个赛季比赛中共需比赛14场,现已比赛了8场,输了1场,得17分. 请问这只球队平了________场.11.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.12.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量是国画作品数量的2倍多7幅,则展出的油画作品有幅.13.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是__________g.三、解答题14.某商场购进甲、乙两种服装后,都加价40%标价出售,“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元.问这两种服装的进价和标价各是多少元?参考答案1.D2.B3.A4.D5.D6.A7.B8.A9.答案为:5.2m;10.答案为:211.答案为:.12.答案为:69;13.答案为:2014.解:。

七年级数学下册 第八章 二元一次方程组 8.3 实际问题与二元一次方程组(第1课时)教案 新人教版

七年级数学下册 第八章 二元一次方程组 8.3 实际问题与二元一次方程组(第1课时)教案 新人教版

8.3 实际问题与二元一次方程组第1课时【教学目标】知识技能目标1.能够找出实际问题中的已知数和未知数,分析它们之间的等量关系,列出方程组,并解决生活中一些实际问题.2.在列方程组的建模过程中,强化方程的模型思想.过程性目标让学生进一步经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界的有效数学模型,培养学生数学应用能力.情感态度目标通过列方程组解决实际问题,培养应用数学意识,提高学习数学的趣味性、现实性、科学性.【重点难点】重点:根据简单应用题的题意列出二元一次方程组.难点:将实际情景中的数量关系抽取出来,并用二元一次方程组表示.【教学过程】一、创设情境知识回顾:列二元一次方程组解决实际问题的一般步骤是什么?进一步提问:如何解二元一次方程组的应用问题?解决实际问题的基本思路:二、新知探究探究点1:和差倍分问题例题讲解例1 (教材P99【探究1】)请同学们讨论以下各题:(1)你有什么办法检验李大叔估计的值是否准确?(2)问题中有几个未知数?(3)能写出题目中的等量关系吗?(4)能用等式表示出来吗?引导学生独立思考,培养学生自主学习的能力.让学生自己动手解答问题,检验知识的掌握情况.【方法指导】解答“和、差、倍、分”问题要善于抓关键词,如“谁比谁大、小、多、少,谁是谁的几倍或几分之几.在谁的基础上增加或减少”等,分析题意,准确找出等量关系.探究点2:行程问题例2 1.(教材P101习题8.3 T2变形)一艘轮船顺流航行时,每小时行32 km;逆流航行时,每小时行28 km,则轮船在静水中的速度是每小时行_______km.(轮船在静水中的速度大于水流速度)2.甲乙两人在400 m的环形跑道上练习赛跑,如果两人同时同地反向跑,经过25秒第一次相遇;如果两人同时同地同向跑,经过250秒甲第一次追上乙.则甲、乙两人的平均速度分别是每秒_______m.要点归纳:环形问题的等量关系1.同时同地反向跑:(v甲+v乙)×t相遇=环长.2.同时同地同向跑:(v甲-v乙)×t追上=环长.解决顺逆流(风)行程问题常用的两个等量关系1.往返路程相等,即顺流(风)速度×顺流(风)时间=逆流(风)速度×逆流(风)时间.2.轮船(飞机)本身速度不变,即顺流(风)速度-水(风)速度=逆流(风)速度+水(风)速度.【方法技巧】行程问题中的两个重要相等关系(1)相遇问题:两人各自走的路程之和等于两地间的距离.(2)追及问题:两人同地不同时,同向而行,直至后者追上前者,两人所走路程相等;两人同时不同地,同向而行,直至后者追上前者,两人所走路程差等于两地的距离.例3 (教材P99探究2)问题1:本题研究的是长方形面积的分割问题,你能画出示意图帮助自己理解吗?问题2:长度涉及的数量关系?问题3:产量比与种植面积的比有什么关系?问题4:你能根据数量关系列出方程组,并解决这个问题吗?问题5:你还能设计其他种植方案吗?三、检测反馈1.甲、乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;如果乙先跑2秒,甲跑4秒就可以追上乙.设甲的速度为x米/秒,乙的速度为y米/秒,根据题意,下列选项中所列方程组正确的是( )A. B.C. D.2.某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1 225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是 ( )A. B.C. D.3.我校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y 组,则列方程组为( )A. B.C. D.4.如图,用12块相同的小长方形瓷砖拼成一个大的长方形,则每个小长方形瓷砖的面积是( )A.175 cm2B.300 cm2C.375 cm2D.336 cm25.某校去年有学生1000名,今年比去年增加5.4%,其中寄宿学生增加了6%,走读学生减少了2%.问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x名,走读学生y名,则可列出方程组为_______.6.一个两位数,个位上的数字比十位上的数字大4,交换位置后,所得的新两位数比原两位数的4倍少9,则原两位数是_______.7.为了保护生态平衡,绿化环境,国家大力鼓励“退耕还林、还草”,其补偿政策如表(一);某农户承包了一片山坡地种树种草,所得到国家的补偿如表(二),问:该农户种树、种草各多少亩?表(一)种树、种草每亩每年补粮补钱情况表表(二)该农户收到乡政府下发的种树种草亩数及年补偿通知单8.甲、乙两人从相距36 km的两地相向而行,如果甲比乙先动身2 h,那么他们在乙动身2.5 h后相遇;如果乙比甲先动身2 h,那么他们在甲动身3 h后相遇,问甲、乙两人每小时各走多少km?四、本课小结这节课学了什么知识?列二元一次方程组解决实际问题的一般步骤(1)审题.(2)设两个未知数,找两个等量关系.(3)根据等量关系列方程,联立方程组.(4)解方程组.(5)检验并作答.五、布置作业课本第101页第1,2,3题六、板书设计七、教学反思在这节课之前的学习中,学生已经掌握了用方程组表示问题中的条件及解方程组的相关知识,而且探究了用方程组解决具有现实意义的实际问题.(比如92页例2、95页例4).这一节安排了两个实际问题,这些问题比前面的问题更接近现实,数量关系相对比较隐蔽,因此这些问题的分析解决难度比以前的问题也要大些.这节课更为关注建立二元一次方程组数学模型的“探索”过程.它不仅为解决实际问题提供了重要的策略,而且为数学交流提供了有效的途径,它的模型化的方法,合理优化的思想意识为学生解决实际问题提供了理论上的科学依据.所以设计本节课的重点应该是使学生在探究如何用二元一次方程组解决实际问题的过程中,进一步提高分析问题中的数量关系、设未知数、列方程组并解方程组、检验结果的合理性等能力,感受建立数学模型的作用.教学中我应该根据学生的实际,选取学生熟悉的背景,让学生体会数学建模的思想.在教学中应发挥学生自主学习的积极性,引导学生先独立探究,再进行合作交流.如有侵权请联系告知删除,感谢你们的配合!如有侵权请联系告知删除,感谢你们的配合!。

8.3.2二元一次方程组解百分率问题的应用

8.3.2二元一次方程组解百分率问题的应用

3.【2016· 昆明】春节期间,某商场计划购进甲、乙 两种商品,已知购进甲商品2件和乙商品3件共需 270元;购进甲商品3件和乙商品2件共需230元.
(1)求甲、乙两种商品每件的进价分别是多少元;
(2)商场决定甲商品以每件40元出售,乙商品以每件 90元出售,为满足市场需求,需购进甲、乙两种 商品共100件,且甲种商品的数量不少于乙种商品 数量的4倍,请你求出获利最大的进货方案,并确
习题课
第八章 二元一次方程组
8.3 实际问题与二元一次方程组
第2课时 二元一次方程组解百分
率问题的应用
题型
1 增长率问题
基本关系式: 增 长 后 的 量 - 增 长 前 的 量 增长率= ×100%; 增 长 前 的 量 增长后的量=增长前的量×(1+增长率);
下降后的量=下降前的量×(1-亏损率).
定最大利润.
(1)设甲种商品每件的进价是x元,乙种商品每件的 解: 进价是y元,
根据题意,列方程组得 ìïï x = 3 0 , 解得 í ïïî y = 7 0 . 答:甲种商品每件的进价是30元,乙种商品每件的 进价是70元.
ì 2 x+3 y=270, ï ï í ï ï î 3 x+2 y=230.
题型
3 储蓄问题
基本关系式: (1)本息和=本金+利息;
(2)利息=本金×利率×期数.
4. 某公司向银行申请了甲、乙两种贷款,共计50万元, 每年需付出2.295万元利息,已知甲种贷款每年的 利率为4.35%,乙种贷款每年的利率为4.75%,则
20万元 、 该公司甲、乙两种贷款的数额分别为________
(2)设购进甲种商品a件,总利润为w元,
则购进乙种商品(100-a)件, 当a=4(100-a)时,解得a=80.因此a≥80.

人教版七年级数学下册8.3实际问题与二元一次方程组(2)导学案(集体备课)

人教版七年级数学下册8.3实际问题与二元一次方程组(2)导学案(集体备课)

集体备课导学案学段初中年级七年级学科数学单元第8单元课题8.3.1实际问题与二元一次方程组(2)课型新授主备学校初审人终审人主备人合作H日队课标依据掌握代入消元法和加减消元法,能解二元一次方程组。

教学目标1.会借助二元一次方程组解决简单的实际问题,再次体会二元一次方程组与现实生活的联系和作用;2.通过应用题学习进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性;3.体会列方程组比列一元一次方程容易。

教学重点通过实践与探索,运用二元一次方程组解决有关配套与设计的应用题教学难点通过实践与探索,运用二元一次方程组解决有关配套与设计的应用题导学环节课堂流程时间任务驱动问题导学学法指导知识链接呈现目标2分小黑板呈现目标自主学习温故知新5分1)长方形的面积公式?当宽相同时,面积比等于当长相同时,面积比等于----------------2)回顾列方程解决实际问题的基本思路?复习长方形面积公式和上节课所学知识。

方面公。

长形积式互助释疑3分鼓励学生提出问题小组内互相帮助解决.探究出招8分据统计资料,甲、乙两种作物的单位面积产量的比是1:2.现要把一块长200m,宽100m的长方形土地,分为两块小长方形土地,分别种植这两种作物.怎样划分这块土地,使甲、乙两种作物先独立分析问题中的数量关的总「( 2”是( 什么;(( 物的彳 设如的数二V解这,Vi 把这f种—(*量的比是3 : 4?1) "甲、乙两种作物的单位面积产量比是1 : -什么意思?2) “甲、乙两种作物的总产量比为3 : 4”是 思?3) 本题中有哪些等量关系?4) 如下图,一种种植方案为:甲、乙两种作冲植区域分别为长方形AEFD 和BCFE. 此时= ato , BE=ym,根据问题中涉及长度、产量 宣关系,列方程组D二C系,列出方程 组,得 出问题 的解 答,然 后再在 小组内 互相交 流与评 价。

个方程组,得丁 =——•史长方形土地的长边上离夬土地分为两块长方形土 一种作物,较小的一块土土5)你还能设计其他种植方EB:地——X —►一端约— 地.较大白 也种____案吗?试―处,一块吐 M 乍物.成看展示交流小组展示3分组长负责,组员在小组内展示。

七年级数学下册8、3实际问题与二元一次方程组目标三用二元一次方程组解行程问题配套问题习题新版新人教版

七年级数学下册8、3实际问题与二元一次方程组目标三用二元一次方程组解行程问题配套问题习题新版新人教版

8 【2020·淮安】某停车场的收费标准如下:中型汽车的 停车费为15元/辆,小型汽车的停车费为8元/辆.现在 停车场内停有30辆中、小型汽车,这些车共缴纳停车 费324元,求中、小型汽车各有多少辆.
解:设中型汽车有 x 辆,小型汽车有 y 辆. 依题意,得x1+ 5x+y=83y=0,324, 解得xy==1182., 答:中型汽车有 12 辆,小型汽车有 18 辆.
解:设小王的平均速度为 x 米/秒,邓教练的平均速度
为 y 米/秒, 由题意得y2=0(2xx,+y)=400+7.5,解得yx==1112662433., 答:小王的平均速度为12643米/秒,邓教练2020·绍兴】同型号的甲、乙两辆车加满气体燃料后 均可行驶210 km,它们各自单独行驶并返回的最远距 离是105 km.现在它们都从A地出发,行驶途中停下来 从甲车的气体燃料桶抽一些气体燃料注入乙车的气体 燃料桶,然后甲车再行驶返回A地,而乙车继续行驶, 到B地后再行驶返回A地,则B地最远可距离A地( B ) A.120 km B.140 km C.160 km D.180 km
(2)小王紧靠第一圈边线逆时针跑步,邓教练紧 靠第三圈边线顺时针骑自行车(均以所靠边 线长计路程),在如图的起跑线同时出发, 经过20秒两人在直道第一次相遇.若邓教练 的平均速度是小王的平均速度的2倍,求他 们的平均速度各是多少. (注:在同侧直道,过两人所在点的直线与 跑道边线垂直时,称两人直道相遇)
6 【教材P102习题T9改编】【2021·大连】某校为实现垃 圾分类投放,准备在校园内摆放大、小两种垃圾 桶.购买2个大垃圾桶和4个小垃圾桶共需600元;购买 6个大垃圾桶和8个小垃圾桶共需1 560元. (1)求大、小两种垃圾桶的单价.
解:设大垃圾桶的单价为 x 元,小垃圾桶的单价为 y 元, 依题意得26xx+ +48yy= =610506,0,解得xy==6108.0, 答:大垃圾桶的单价为 180 元,小垃圾桶的单价为 60 元.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)先确定有两种方法分割长方形;再分别求出两个小长方形的面积;最后计算分割线的位置.
(2)先求两个小长方形的面积比,再计算分割线的位置.
(3)设未知数,列方程组求解.
如图,一种种植方案为:甲、乙两种作物的种植区域分别为长方形AEFD和BCFE.设 AE=xm,BE=ym,根据问题中涉及长度、产量的数量关系,列方程组得
重难点
1、能根据题意列二元一次方程组;根据题意找出等量关系;
2、正确发找出问题中的两个等量关系
一、自主学习
1.甲乙两人的年收入之比为4:3,支出之比为8:5,一年间两人各存了5000元(两人剩余的钱都存入了银行),则甲乙两人的年收入分别为()元和()元。
2.在一堆球中,篮球与排球之比为赞助单位又送来篮球队10个排球10个,这时篮球与排球的数量之比为27:40, 则原有篮球()个,排球()个。
解这个方程组得
答 过长方形土地的长边上离一端约( ) m处,把这块地分
为两个长方形.较大一块地种( )作物,较小一块地种( )作物.
你还能பைடு நூலகம்计别的种植 方案吗?请写出来
二、合作探究(师徒合作完成,解决不了的问题可以在四人小组中完成。)
1.学生在手工实践课中,遇到这样一个问题:要用20张白卡纸制作包装纸盒,每张白卡纸可以做盒身2个,或者做盒底盖3个,如果1个盒身和2个盒底盖可以做成一个包装纸盒,那么能否将这些白卡纸分成两部分,一部分做盒身,一部分做盒底盖,使做成的盒身和盒底盖正好配套?请你设计一种分 法.
教(学)后反 思
2019-2020学年七年级数学下册《8.3.2 用二元一次方程组解决实际问题》导学案(新版)新人教版
学习目标
1、经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;2、能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;3、学会开放性地寻求设计方案,培养分析问题,解决问题的能力
3.现在长为18米的钢材,要据成10段,每段长只能为1米或2米,则这个问题中的等量关系是(1)1米的段数+()=10(2)1米的钢材总长+()=18
新课探究
(出示问题)据以往的统计资料,甲、乙两种作物的单位面积产量的比是1:1 :5,现要在一块长200 m,宽100 m 的长方形土地上种植这两种作物,怎样把这块地分 为两个长方形,使甲、乙两种作物的总产量的比是3:4(结果取整数)?
三、达标检测
1.解方程组
2.小颖在拼图时,发现8个一样大小的矩形(如图1所 示),恰好可以拼成一个大的矩形.
小彬看见了,说:“我来试一试.”结果小彬七拼八凑,拼成如图2那样的正方形.咳,怎么中间还留下一个洞,恰好是边长2 mm的小正方形!
你 能帮他们解开其中的奥秘吗?
提示学生先动手实践,再分析讨论.
相关文档
最新文档