2015-2016学年重庆市部分区县高一(上)期末数学试卷(解析版)

合集下载

重庆市巴蜀中学高2015级高一上期末考试(数学)

重庆市巴蜀中学高2015级高一上期末考试(数学)

重庆市巴蜀中学高2015级高一上期末考试数学试题一、 选择题( 本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知{}6,5,4,3,2=U ,{}5,4,3=M ,{}6,5,4,2=N ,则 ( ) A .{}6,4=N M B .U N M = C .()U M N C U = D .()N N M C U =2、半径为cm 3的圆中,有一条弧AB 长度为cm 2π,则此弧AB 所对的圆心角为 ( )A.30 B .15 C .40 D .203、三个实数︒=23sin a ,3.0log 2=b ,3.02=c 之间的大小关系是( )A.a c b << B .a b c << C .b a c << D .b c a << 4、若角α的终边上有一点())0(,2,>m m m P ,则a sin 的值是( )A . 2B .552-C .552±D .552 5、给定映射f :(x ,y )→(x +2y ,2x -y ),在映射f 下(4,3)的原象为( ) A. (2,1)B. (4,3)C. (3,4)D. (10,5)6、“α=π6+2k π(k ∈Z)”是“cos2α=12”的( )A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条7、已知函数()x x x f ωωcos sin +=,如果存在实数1x ,且对任意实数x ,都有()()()201311+≤≤x f x f x f 成立,则正数ω的最小值为 ()A .2013πB .20131 C .40261 D .4026π8、不等式2313x x a a +--≤-对任意实数x 恒成立,则实数a 的取值范围为( )A. [1,2]B.(,2][5,)-∞-+∞C.(,1][4,)-∞-+∞D.(,1][2,)-∞+∞9、在ABC ∆中,已知C BA sin 2tan =+,给出以下四个结论: ①1tan tan =BA②2sin sin 1≤+<B A ③1cos sin 22=+B A ④C B A 222sin cos cos =+ 其中正确的是 ()A . ①③B .②③C .①④D .②④10、函数()x f 的定义域为D ,若满足:①()x f 在D 内是单调函数;②存在[]D b a ⊆,使得()x f 在[]b a ,的值域为⎥⎦⎤⎢⎣⎡2,2b a ,则称函数()x f 为成功函数,若函数()()t c x f xc +=log ,()1,0≠>c c 是成功函数,则t 的取值范围是()A .()+∞,0B .⎪⎭⎫ ⎝⎛∞-41,C .⎪⎭⎫ ⎝⎛41,0D .⎪⎭⎫⎝⎛+∞,41二、填空题( 本大题共5小题,每小题5分,共25分.把答案写在答题卷相应的位置上) 11、sin 600︒=_____________ 12、函数12--=x xy 的定义域是13、若cos()6πα-=25cos()sin ()66ππαα+--=_____________ 14、定义在R 上的奇函数()x f ,当()+∞∈,0x 时,()x f 为减函数,且()02=f ,则不等式()()01>-x f x 的解集为 ;15、设a 为实数,则函数()()a x a x x x f -⋅-+=22的最小值是三、 解答题 ( 本大题共6小题,共75分。

重庆市部分区县2014-2015学年高一下学期期末联考数学试题word版 含答案

重庆市部分区县2014-2015学年高一下学期期末联考数学试题word版 含答案

2014-2015学年度下期期末联考(本卷共4页,满分150分,考试时间120分钟)1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题的答案标号涂黑。

若需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答非选择题时,必须用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束,将试题卷和答题卡一并交回。

.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,.等比数列{}n a 中,44=a ,则35a a = A.20B. 16C.15D.10如果,,a b R ∈且a b >,那么下列不等式中不一定...成立的是 A .a b -<- B. 12a b ->- C. ab a >2D. a b b a ->-在ABC ∆中,若45A =°,60B =°,2a =.则b = A.6下列事件是随机事件的是1)连续两次掷一枚硬币,两次都出现正面向上. (2)异性电荷相互吸引 3)在标准大气压下,水在1℃时结冰 (4)任意掷一枚骰子朝上的点数是偶数 A.(1)(2) B. (2)(3) C.(3)(4) D. (1)(4) ABC ∆中,2,3,60,b c A ===︒则a =36. 变量y x ,满足⎪⎩⎪⎨⎧≤≥+≥+-,0,0,02x y x y x ,目标函数y x z +=2,则z 的最小值是A .21-B .0C .1D .1-7.已知等差数列{}n a 的公差为2,若134,,a a a 成等比数列,则2a = A .4- B. 6- C.8- D.10-8.执行如图所示的程序框图,若输出的S =88,则判断框内应填入的条件是 A .?7>k B .?6>k C .?5>kD .?4>k9.甲、乙两名选手参加歌手大赛时,5名评委打的分数用茎叶图表示(如下图),21,s s 分别表示甲、乙选手的标准差,则1s 与2s 的关系是 A. 21s s < B . 21s s = C. 21s s > D. 不能确定10.在数列{}n a 中,4,3211-==+n n a a a ,则数列{}n a 的前n 项和n s 的最大值是 A. 136 B. 140 C. 144 D. 148 11. 下列说法正确的是 A.函数x x y 2+=的最小值为 B.函数)0(sin 2sin π<<+=x xx y的最小值为 C.函数xx y 2+=的最小值为函数x x y lg 2lg +=的最小值为12.在钝角三角形ABC 中,若45B =°,a =c 的取值范围是A.(B.()()0,12,+∞ C.()1,2 D.),2()1,0(+∞二.填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡的相应位置上.13. 不等式()()120x x -+<的解集是 .14.程序:M=1 M=M+1 M=M+2 PRINT M END M 的最后输出值为甲 乙8 7 6 75 4 1 8 0 2 9 4 315. 课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8.若用分层抽样从中抽取6个城市,则丙组中应抽取的城市数为________.16. 函数)0,1(1)3(log >≠-+=a a x y a 的图象恒过定点A ,若点A 在直线01=++ny mx 上,其中0,0>>n m ,则nm 21+的最小值为 . 三.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分) 在等差数列{}n a 中,11760,12.a a =-=- (Ⅰ)求通项n a ;(Ⅱ)求此数列前30项的绝对值的和.18.(本小题满分12分)设ABC ∆的内角C B A ,,所对应的边长分别是,,,a b c 且3cos , 2.5B b == (Ⅰ)当︒=30A 时,求a 的值;(Ⅱ)当ABC ∆的面积为3时,求c a +的值.19. (本小题满分12分)某制造商3月生产了一批乒乓球,从中随机抽样100个进行检查,测得每个球的直径(单位:mm),将数据分组如下:(Ⅰ)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图; (Ⅱ)若以上述频率作为概率,已知标准乒乓球的直径为40.00 mm ,试求这批球的直径误差不超过[39.97,39.99)0.03 mm的概率;(Ⅲ)统计方法中,同一组数据经常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).20. (本小题满分12分)已知1)1()(2++-=x aa x x f . (Ⅰ)当21=a 时,解不等式()0f x ≥; (Ⅱ)若0>a ,解关于x 的不等式0)(≤x f .21. (本小题满分12分) 设ABC ∆的内角C B A ,,所对的边分别为,,,a b c 且c a C b 21cos -=. (Ⅰ)求角B 的大小;(Ⅱ)若1=b ,求ABC ∆的周长l 的取值范围.22. (本题满分10分)已知数列{}n a 和{}n b 中,数列{}n a 的前n 项和为,n s 若点),(n s n 在函数x x y 142+-=的图象上,点),(n b n 在函数x a y =的图象上.设数列{}=n c {}n n b a .(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n c 的前n 项和n T ; (Ⅲ)求数列{}n c 的最大值.重庆市部分区县2014—2015学年度下期期末联考 高一数学参考答案一、选择题:(每小题5分,共60分)。

XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案

XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案

XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。

1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。

$\{1\}$ B。

$\{3,5\}$ C。

$\{1,3,4,5\}$ D。

$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。

$22$ B。

$10$ C。

$8$ D。

$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。

$-\frac{3}{4}$ B。

$-\frac{4}{3}$ C。

$\frac{3}{4}$ D。

$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。

$\frac{\pi}{4}$ B。

$\frac{\pi}{3}$ C。

重庆市新课标人教版高一上期末数学试卷(含答案解析)

重庆市新课标人教版高一上期末数学试卷(含答案解析)

2016-2017学年重庆市高一(上)期末数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)sin(﹣690°)的值为()A.B.C.D.2.(5分)设集合,B={x|x<1},则A∪B=()A.B.(﹣1,1)∪(1,2)C.(﹣∞,2)D.3.(5分)已知向量=(3,1),=(x,﹣2),=(0,2),若⊥(﹣),则实数x的值为()A.B.C.D.4.(5分)已知a=sin153°,b=cos62°,,则()A.a>b>c B.c>a>b C.b>c>a D.c>b>a5.(5分)在△ABC中,点E满足,且,则m﹣n=()A.B.C.D.6.(5分)已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π),其部分图象如图,则函数f(x)的解析式为()A.B.C.D.7.(5分)函数的图象()A.关于x轴对称B.关于y轴对称C.关于y=x轴对称 D.关于原点轴对称8.(5分)为了得到函数y=sin(2x﹣)的图象,可以将函数y=cos2x的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度9.(5分)不等式|x﹣3|﹣|x+1|≤a2﹣3a对任意实数x恒成立,则实数a的取值范围是()A.(﹣∞,﹣1]∪[4,+∞)B.[﹣1,4]C.[﹣4,1]D.(﹣∞,﹣4]∪[1,+∞)10.(5分)将函数的图象向左平移1个单位,再向下平移1个单位得到函数f(x),则函数f(x)的图象与函数y=2sinπx(﹣2≤x≤4)的图象的所有交点的横坐标之和等于()A.2 B.4 C.6 D.811.(5分)设函数f(x)=e x﹣|ln(﹣x)|的两个零点为x1,x2,则()A.x1x2<0 B.x1x2=1 C.x1x2>1 D.0<x1x2<112.(5分)已知定义在R上的偶函数f(x)满足f(x+1)=﹣f(x),且当x∈[﹣1,0]时,,函数,则关于x的不等式f(x)<g(x)的解集为()A.(﹣2,﹣1)∪(﹣1,0)B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)tan210°=.14.(5分)已知向量,,则向量与的夹角为.15.(5分)某教室一天的温度(单位:℃)随时间(单位:h)变化近似地满足函数关系:,t∈[0,24],则该天教室的最大温差为℃.16.(5分)若函数f(x)=恰有2个零点,则实数a的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知0<α<π,sin(π﹣α)+cos(π+α)=m.(1)当m=1时,求α;(2)当时,求tanα的值.18.(12分)已知函数f(x)=的定义域为M.(1)求M;(2)当x∈M时,求+1的值域.19.(12分)已知函数f(x)=2sin(ωx+φ),的最小正周期为π,且图象关于x=对称.(1)求ω和φ的值;(2)将函数f(x)的图象上所有横坐标伸长到原来的4倍,再向右平移个单位得到函数g(x)的图象,求g(x)的单调递增区间以及g(x)≥1的x取值范围.20.(12分)已知f(x)=x|x﹣a|(a∈R).(1)若a=1,解不等式f(x)<2x;(2)若对任意的x∈[1,4],都有f(x)<4+x成立,求实数a的取值范围.21.(12分)已知函数f(x)为R上的偶函数,g(x)为R上的奇函数,且f(x)+g(x)=log4(4x+1).(1)求f(x),g(x)的解析式;(2)若函数h(x)=f(x)﹣在R上只有一个零点,求实数a的取值范围.22.(12分)已知f(x)=ax2﹣2(a+1)x+3(a∈R).(1)若函数f(x)在单调递减,求实数a的取值范围;(2)令h(x)=,若存在,使得|h(x1)﹣h(x2)|≥成立,求实数a的取值范围.2016-2017学年重庆市渝中区高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)sin(﹣690°)的值为()A.B.C.D.【解答】解:sin(﹣690°)=sin(﹣720°+30°)=sin30°=,故选:C.2.(5分)设集合,B={x|x<1},则A∪B=()A.B.(﹣1,1)∪(1,2)C.(﹣∞,2)D.【解答】解:={x|﹣≤x<2},B={x|x<1},则A∪B=(﹣∞,2),故选:C.3.(5分)已知向量=(3,1),=(x,﹣2),=(0,2),若⊥(﹣),则实数x的值为()A.B.C.D.【解答】解:∵⊥(﹣),∴•(﹣)=0,即,∵向量=(3,1),=(x,﹣2),=(0,2),∴3x﹣2﹣2=0,即3x=4,解得x=,故选:A.4.(5分)已知a=sin153°,b=cos62°,,则()A.a>b>c B.c>a>b C.b>c>a D.c>b>a【解答】解:a=sin153°=sin27°,b=cos62°=sin28°,>=1,∴c>b>a.故选:D.5.(5分)在△ABC中,点E满足,且,则m﹣n=()A.B.C.D.【解答】解:∵点E满足,∴=+=+=+(﹣)=+=m+n,∴m=,n=,∴m﹣n=﹣,故选:B6.(5分)已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π),其部分图象如图,则函数f(x)的解析式为()A.B.C.D.【解答】解:由图知,A=2,=﹣(﹣)=2π,又ω>0,∴T==4π,∴ω=;又y=f(x)的图象经过(﹣,2),∴×(﹣)+φ=2kπ+(k∈Z),∴φ=2kπ+(k∈Z),又0<φ<π,∴φ=.∴f(x)=2sin(x+).故选:B.7.(5分)函数的图象()A.关于x轴对称B.关于y轴对称C.关于y=x轴对称 D.关于原点轴对称【解答】解:由题意,f(x)=•tanx,∴f(﹣x)=•tan(﹣x)=f(x),∴函数f(x)是偶函数,图象关于y轴对称,故选:B.8.(5分)为了得到函数y=sin(2x﹣)的图象,可以将函数y=cos2x的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【解答】解:∵y=sin(2x﹣)=cos[﹣(2x﹣)]=cos(﹣2x)=cos。

2015-2016学年高一上学期期末考试数学试题(解析版)

2015-2016学年高一上学期期末考试数学试题(解析版)

高一上学期期末考试数学试题一、选择题1.如果集合=A {}0242=+-x mx x 中只有一个元素,则实数m 的值为( )A .0 错误!未找到引用源。

B .1 错误!未找到引用源。

C .错误!未找到引用源。

2D .0或2 【答案】D【解析】试题分析:集合A 只有一个元素,即方程2420mx x -+=只有一个根.0m =时, 方程变形为420x -+=,必有一个根;0m ≠时,要使方程2420mx x -+=只有一个根,则16420m ∆=-⨯⨯=,解得2m =.综上可得0m =或2m =.故D 正确. 【考点】1集合的元素;2方程的根.【易错点睛】本题重点考查方程根的个数问题,属容易题.但在做题时极容易将方程2420mx x -+=误看做一元二次方程,只注意到使其判别式等于0时此方程只有一个根,而忽视二次项系数m 是否为0.当0m =时此方程为一次方程,一次方程必有一个根.注意当二次项系数含参数时一定要讨论其是否为0,否则极易出错.2.已知全集{}4,3,2,1,0,1-=M ,且{}4321,,,=B A ,{}32,=A ,则=)(A C B U ( )A .{}41, B .{}1 C .{}4 D .φ 【答案】A【解析】试题分析:由题意分析可得1,4必在集合B 内,2,3可能在集合B 内.由已知可得{}1,0,1,4U C A =-,所以(){}1,4U B C A = .故A 正确. 【考点】集合的运算.3.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学不在同一个兴趣小组的概率为( )A .31B .21C .32D .43【答案】C【解析】试题分析:甲乙同学各自在一个小组时共有6种可能,甲乙同学在同一组时共有3种可能,则这两位同学不在同一个兴趣小组的概率为62633P ==+.故C 正确.试卷第2页,总14页【考点】古典概型概率.4.已知函数1)2)(2+++=mx x m x f (为偶函数,则)(x f 在区间()∞+,1上是( )A .先增后减B .先减后增C .减函数D .增函数 【答案】D【解析】试题分析:因为函数()f x 为偶函数,所以()200022m m m m +≠⎧⎪⇒=⎨-=⎪+⎩.所以()221f x x =+.所以函数()221f x x =+的图像是开口向上以y 轴为对称轴的抛物线,所以函数()f x 在()1,+∞上单调递增.故D 正确.【考点】1偶函数的性质;2二次函数的单调性.【方法点睛】本题主要考查偶函数的性质和二次函数单调性问题,难度一般.偶函数的图像关于y 轴轴对称,在本题中由此可求得m 的值.二次函数的单调性由开口方向和对称轴同时决定.5.若以下程序框图的输出结果为120,则判断框中应填写的判断条件为( )A .?5<iB .?5>iC .?6>iD .?5≥i 【答案】B【解析】试题分析:根据框图的循环结构依次可得: 122,213T i =⨯==+=;236,314T i =⨯==+=;6424,415T i =⨯==+=;246120,516T i =⨯==+=,此时应跳出循环输出120T =.所以判断框中应填入5?i >.故B 正确. 【考点】程序框图.【易错点晴】本题主要考查的是程序框图,属于容易题.解题时一定要抓住重要条件输出“120T =”,否则很容易出现错误.在给出程序框图有输出结果而需要填判断框时只要按照程序框图规定的运算方法逐次计算,直到达到输出条件,此时即可得出判断框中所填内容.6.已知函数⎩⎨⎧<+≥-=4)),2((4,1)(x x f f x x x f ,则=)3(f ( )A .5B .4C .3D .2 【答案】C【解析】试题分析:()()()()()35514413f f f f f ==-==-=.故C 正确. 【考点】分段函数求值.7.若a 是从区间[]2,0中任取的一个实数, b 是从区间[]3,0中任取的一个实数,则概率是( )A .32B .65C .31D .61【答案】A【解析】试题分析:试验的全部结果构成的区域(如图)为边长分别为2和3的矩形,面积为236⨯=.其中满足a b <的结果构成的区域为图中阴影部分,其面积为162242-⨯⨯=.则所求概率为4263P ==.故A 正确. 【考点】几何概型.【思路点睛】本题主要考查几何概型概率,难度一般.几何概型的概率为长度比或面积比或体积比.所以应先根据已知条件作出满足初始条件的点所构成的可行域,再在其中标注出其中满足b a <的点构成的可行域.分别计算出其面积.即可求得所求概率.8.甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图所示,1x ,2x 分别表示甲、乙两名运动员这项测试成绩的平均数,21S ,22S 分别表示甲、乙两名运动员这项测试成绩的方差,则有( )试卷第4页,总14页A .1x >2x ,21S <22S B .1x =2x ,21S >22S C .1x =2x ,21S =22S D .1x =2x ,21S <22S【答案】B【解析】试题分析:181315151722156x +++++==;291415151621156x +++++==;()()()()()()222222211538151315151515151715221563S ⎡⎤=-+-+-+-+-+-=⎣⎦,()()()()()()222222221379151415151515151615211563S ⎡⎤=-+-+-+-+-+-=⎣⎦.故B 正确.【考点】平均数,方差.9.函数54ln )(2++-=x x x x f 的零点个数为( ) A .0 B .1 C .2 D .3 【答案】C【解析】试题分析:函数()2ln 45f x x x x =-++的零点个数等价于函数ln y x =图像与函数245y x x =--图像的交点个数问题.由数形结合可知函数ln y x =图像与函数245y x x =--图像有2个交点.所以函数()f x 有2个零点.故C 正确.【考点】1函数零点;2转化思想.10.向顶角为0120的等腰三角形ABC (其中BC AC =)内任意投一点M ,则AM 小于AC 的概率为( ) A .33π B .93πC .21D .3π【答案】B【解析】试题分析:令1AC BC ==,则111sin1202ABC S ∆=⨯⨯⨯= .满足AC AM <的点M 所在区域的面积为230136012ππ⨯⨯=.所以所求概率为9Pπ==.【考点】几何概型.【思路点睛】本题主要考查几何概型概率,难度一般.因为几何概率的值为比值所以边长的取值对结果没有影响,为计算方便不妨令等腰三角形两腰长为1,从而可得此三角形的面积.AM小于AC时点M所在区域为以A为圆心以AC为半径的圆且在三角形内部的扇形部分,可得此扇形面积.扇形面积与三角形面积的比值即为所求.11.如果奇函数)0)((≠=xxfy在()0,∞-∈x时,1)(+=xxf,那么使0)2(<-xf成立的x的取值范围是()A.()()∞+∞-31,B.()1,-∞-()1,0C.()()3,00,∞-D.()1,∞-()32,【答案】D【解析】试题分析:因为()y f x=为奇函数,所以()()f x f x-=-,即()()f x f x=--.x>时0x-<,()()()11f x f x x x=--=--+=-.()()()1,01,0x xf xx x+<⎧⎪∴=⎨->⎪⎩.()2020210xf xx-<⎧∴-<⇔⎨-+<⎩或20210xx->⎧⎨--<⎩1x⇒<或23x<<.故D正确.【考点】1奇函数;2不等式.12.若函数)2(log)(2xxxfa-=)且1,0(≠>aa在区间⎪⎭⎫⎝⎛1,21内恒有0)(>xf,则函数)(xf的单调递增区间是()A.()0,∞- B.⎪⎭⎫⎝⎛∞-41, C.⎪⎭⎫⎝⎛+∞,21D.⎪⎭⎫⎝⎛∞+,41【答案】A【解析】试题分析:2200x x x->⇒<或12x>.函数()f x的定义域为试卷第6页,总14页()1,0,2⎛⎫-∞+∞ ⎪⎝⎭.要使区间⎪⎭⎫⎝⎛1,21内恒有0)(>x f ,只需()min 0f x >当1a >时,此时存在33log log 1048a a f ⎛⎫=<= ⎪⎝⎭.故舍.当01a <<时,又函数22y x x =-在区间1,12⎛⎫⎪⎝⎭上单调递增,所以函数()f x 在1,12⎛⎫⎪⎝⎭上单调递减. 此时()()1log 10a f x f >==恒成立,符合题意. 综上可得01a <<.因为函数22y x x =-在(),0-∞上单调递减;在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,又01a <<所以函数)(x f 的单调递增区间(),0-∞.故A 正确. 【考点】对数函数单调性;二次函数单调性;复合函数单调性.二、填空题13.若六进制数)6(510k (k 为正整数)化为十进制数为239,则=k . 【答案】3 【解析】试题分析:()321061051606656216652216239k k k k =⨯+⨯+⨯+⨯=++=+=, 解得3k =.【考点】进位制.14.幂函数1222)33)(+-+-=m mx m m x f (在区间()+∞,0上是增函数,则=m .【答案】2【解析】试题分析:由题意可知2331m m -+=,即2320m m -+=,解得1m =或2m =.当1m =时,()0f x x =,在区间()0,+∞上为常数1,不具有单调性,故舍; 当2m =时,()f x x =,在区间()0,+∞上单调递增,符合题意. 综上可得2m =.【考点】1幂函数的概念;2函数的单调性.【思路点睛】本题主要考查幂函数的概念和函数的单调性,难度一般.根据幂函数的定义: a y x =叫做幂函数,可知2331m m -+=,从而可得m 的值.将其分别代入()f x 验证是否满足()f x 在区间()0,+∞上单调递增.15.函数)(x g 是函数)2(log )(-=x x f a )1,0(≠>a a 且的反函数,则函数)(x g 的图象过定点 . 【答案】()3,0【解析】试题分析:()3log 10a f == ,∴函数()()log 2a f x x =-的图像过定点()3,0.所以函数()g x 的图像过定点()0,3.【考点】互为反函数的性质.【思路点睛】本题重点考查对数函数过定点和互为反函数的性质问题,属容易题.根据对数公式log 10a =可求得()f x 所过的定点.因为互为反函数的两个函数图像关于y 轴对称,所以函数()f x 图像过的定点()00,x y 关于y 轴的对称点()00,y x 即为函数()g x 的图像过的定点.16.0x 是x 的方程x a a x log =)10(≠>a a ,且的解,则0,1,x a 这三个数的大小关系是 . 【答案】10<<x a【解析】试题分析:当1a >时,由数形结合可知函数x y a =的图像与函数log a y x =的图像无交点,所以此时方程log x a a x =无解,不合题意故舍; 当01a <<时,由数形结合可知函数x y a =的图像与函数log a y x =的图像只有一个交点,即此时方程log x a a x =只有一个解0x .由数形结合分析可知00001,0log 1x x a x a <<<=<,又01a <<,0000log 1log 1log log 1x a a a a x a x a ∴<<⇔<<⇒>>. 综上可得10<<x a .【考点】1指数函数,对数函数图像;2对数不等式;3数形结合思想.三、解答题17.一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时试卷第8页,总14页生产有缺点零件的多少,随机器的运转的速度而变化,具有线性相关关系,下表为抽样试验的结果:(1)如果y 对x 有线性相关关系,求回归方程;(2)若实际生产中,允许每小时生产的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?参考公式:x b y aˆˆ-=,∑∑==---=ni ini i ix xy y x xb 121)())((ˆ∑∑==--=ni ini ii x n xyx n yx 1221【答案】(1)52107ˆ-=x y;(2)机器的运转速度应控制在7614转/秒内. 【解析】试题分析:(1)根据已给公式求,x y ,再求ˆb,ˆa 从而可求得回归方程.(2)根据题意解不等式ˆ10y≤即可求得所求. 试题解析:解:(1)设所求回归方程为a x b yˆˆˆ+=,则由上表可得 12=x ,8=y ,107ˆ=b, 52107128ˆˆ-=⨯-=-=x b y a ∴回归方程为52107ˆ-=x y .(2)由y ≤10得1052107ˆ≤-=x y,解得7614≤x , 所以机器的运转速度应控制在7614转/秒内.【考点】线性回归方程.18.(1)计算20325.0)43()2(2)27102(2)1615(--÷+⨯-⨯-π(2)计算3log 28log 318log 3log 4913662742log --+⋅-【答案】(1)0;(2)3. 【解析】试题分析:(1)根据指数的性质及运算法则即可求得其值; (2)根据对数的性质及运算法则即可求得其值.试题解析:解:(1)20325.0)43()2(2)27102(2)1615(--÷+⨯-⨯-π232)34(2)2764(21681÷-⨯-=- 22)43(2)43(249⨯-⨯-=0=(2)3log 28log 318log 3log 4913662742log --+⋅-3log 2log 23664log 3++-=6log 246+-=12+=3=【考点】1指数的性质及运算法则;2对数的性质及运算法则.19.已知集合A 是函数][))(2(log )(a x a x x g a ---=)1,0(≠>a a 且的定义域,集合B 和集合C 分别是函数x x f 39)(-=的定义域和值域。

重庆市2016—2017学年高一上学期期末数学 试卷 Word版含解析

重庆市2016—2017学年高一上学期期末数学 试卷 Word版含解析

重庆市2016—2017学年年高一上学期期末数学试卷一.选择题.(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)设集合A={x|x+2=0},集合B={x|x2﹣4=0},则A∩B=()A.{﹣2} B.{2} C.{﹣2,2} D.∅2.(5分)已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2 B.0 C.1 D.2 3.(5分)已知α是第四象限的角,若cosα=,则tanα=()A.B.﹣C.D.﹣4.(5分)如图,在正六边形ABCDEF中,++等于()A.0 B.C.D.5.(5分)函数f(x)=3x+x﹣3在区间(0,1)内的零点个数是()A.3 B.2 C.1 D.0 6.(5分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<)的部分图象如图所示,则f(x)的解析式是()A.f(x)=2sin(2x+)B.f(x)=2sin(x+)C.f(x)=2sin(2x+)D.f(x)=2sin(x+)7.(5分)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.y=cosx B.y=ln|x| C.y=D.y=tan2x8.(5分)设a=tan35°,b=cos55°,c=sin23°,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b9.(5分)定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈B.C.D.二.填空题.(本大题共5小题,每小题5分,共25分.)11.(5分)tan=.12.(5分)如图所示,平行四边形ABCD的对角线AC与BD相交于点O,点M是线段OD的中点,设=,=,则=.(结果用,表示)13.(5分)(lg25﹣lg)÷100=.14.(5分)求值:=.15.(5分)设g(x)=x﹣1,已知f(x)=,若关于x的方程f(x)=m恰有三个互不相等的实根x1,x2,x3,则x12+x22+x32的取值范围是.三.解答题.(本大题共6小题,共75分.解答须写出文字说明、证明过程和演算步骤.)16.(13分)已知<α<π,tanα﹣=﹣.(Ⅰ)求tana的值;(Ⅱ)求的值.17.(13分)平面内给定三个向量=(3,2),=(﹣1,2),=(4,1).(Ⅰ)设向量=+,且||=,求向量的坐标;(Ⅱ)若(+k)∥(2﹣),求实数k的值.18.(13分)已知函数f(x)=a x(a>0,a≠1)在区间上的最大值是最小值的8倍.(Ⅰ)求a的值;(Ⅱ)当a>1时,解不等式log a(2a+2x)<log a(x2+1).19.(12分)已知函数g(x)=4sin(ωx+),h(x)=cos(ωx+π)(ω>0).(Ⅰ)当ω=2时,把y=g(x)的图象向右平移个单位得到函数y=p(x)的图象,求函数y=p(x)的图象的对称中心坐标;(Ⅱ)设f(x)=g(x)h(x),若f(x)的图象与直线y=2﹣的相邻两个交点之间的距离为π,求ω的值,并求函数f(x)的单调递增区间.20.(12分)已知函数f(x)=log2(4x+1)+mx.(Ⅰ)若f(x)是偶函数,求实数m的值;(Ⅱ)当m>0时,关于x的方程f(8(log4x)2+2log2+﹣4)=1在区间上恰有两个不同的实数解,求m的范围.21.(12分)已知定义在(﹣∞,﹣1)∪(1,+∞)函数满足:①f(4)=1;②对任意x >2均有f(x)>0;③对任意x>1,y>1,均有f(x)+f(y)=f(xy﹣x﹣y+2).(Ⅰ)求f(2)的值;(Ⅱ)证明:f(x)在(1,+∞)上为增函数;(Ⅲ)是否存在实数k,使得f(sin2θ﹣(k﹣4)(sinθ+cosθ)+k)<2对任意的θ∈恒成立?若存在,求出k的范围;若不存在说明理由.重庆市2016—2017学年年高一上学期期末数学试卷参考答案与试题解析一.选择题.(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)设集合A={x|x+2=0},集合B={x|x2﹣4=0},则A∩B=()A.{﹣2} B.{2} C.{﹣2,2} D.∅考点:交集及其运算.专题:计算题.分析:分别求出两集合中方程的解,确定出A与B,找出A与B的公共元素即可求出交集.解答:解:由A中的方程x+2=0,解得x=﹣2,即A={﹣2};由B中的方程x2﹣4=0,解得x=2或﹣2,即B={﹣2,2},则A∩B={﹣2}.故选A点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2 B.0 C.1 D.2考点:函数的值.专题:函数的性质及应用.分析:利用奇函数的性质,f(﹣1)=﹣f(1),即可求得答案.解答:解:∵函数f(x)为奇函数,x>0时,f(x)=x2+,∴f(﹣1)=﹣f(1)=﹣2,故选A.点评:本题考查奇函数的性质,考查函数的求值,属于基础题.3.(5分)已知α是第四象限的角,若cosα=,则tanα=()A.B.﹣C.D.﹣考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:由α为第四象限角,以及cosα的值,利用同角三角函数间的基本关系求出s inα的值,即可确定出tanα的值.解答:解:∵α是第四象限的角,若cosα=,∴sinα=﹣=﹣,则tanα==﹣,故选:D.点评:此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.4.(5分)如图,在正六边形ABCDEF中,++等于()A.0 B.C.D.考点:向量的加法及其几何意义.专题:平面向量及应用.分析:利用正六边形ABCDEF的性质,对边平行且相等得到向量相等或者相反,得到所求为0向量.解答:解:因为正六边形ABCDEF中,CD∥AF,CD=AF,所以++=++=;故选A.点评:本题考查了向量相等以及向量加法的三角形法则,属于基础题.5.(5分)函数f(x)=3x+x﹣3在区间(0,1)内的零点个数是()A.3 B.2 C.1 D.0考点:函数零点的判定定理.专题:计算题;函数的性质及应用.分析:函数f(x)=3x+x﹣3在区间(0,1)上连续且单调递增,利用函数零点的判定定理求解即可.解答:解:函数f(x)=3x+x﹣3在区间(0,1)上连续且单调递增,又∵f(0)=1+0﹣3=﹣2<0,f(1)=3+1﹣3=1>0;∴f(0)•f(1)<0;故函数f(x)=3x+x﹣3在区间(0,1)内有一个零点,故选C.点评:本题考查了函数零点的判定定理的应用及函数的单调性的应用,属于基础题.6.(5分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<)的部分图象如图所示,则f(x)的解析式是()A.f(x)=2sin(2x+)B.f(x)=2sin(x+)C.f(x)=2sin(2x+)D.f(x)=2sin(x+)考点:正弦函数的图象.专题:三角函数的图像与性质.分析:根据图象确定A,ω和φ的值即可求函数的解析式解答:解:由图象知函数的最大值为2,即A=2,函数的周期T=4()=2,解得ω=1,即f(x)=2sin(x+φ),由五点对应法知+φ=π,解得φ=,故f(x)=2sin(x+),故选:B点评:本题主要考查函数解析式的求解,根据条件确定A,ω和φ的值是解决本题的关键.要要求熟练掌握五点对应法.7.(5分)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.y=cosx B.y=ln|x| C.y=D.y=tan2x考点:函数单调性的判断与证明;函数奇偶性的判断.专题:函数的性质及应用.分析:根据余弦函数的单调性,对数函数的单调性,偶函数、奇函数的定义即可判断每个选项的正误.解答:解:A.y=cosx在(1,2)是减函数,所以A错误;B.显然y=ln|x|是偶函数,且在(1,2)内是增函数,所以B正确;C.显然函数是奇函数,所以该选项错误;D.tan﹣2x=﹣tan2x,所以该函数是奇函数,所以该选项错误.故选B.点评:考查余弦函数的单调性,对数函数的单调性,以及奇函数、偶函数的定义.8.(5分)设a=tan35°,b=cos55°,c=sin23°,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b考点:正弦函数的图象.专题:三角函数的求值.分析:利用三角函数的诱导公式结合三角函数的单调性即可得到结论.解答:解:由诱导公式可得b=cos55°=cos(90°﹣35°)=sin35°,由正弦函数的单调性可知sin35°>sin23°,即b>c,而a=tan35°=>sin35°=b,∴a>b>c,故选:A点评:本题考查三角函数值大小的比较,涉及诱导公式和三角函数的单调性,属基础题.9.(5分)定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈B. C.D.考点:函数的值域.专题:函数的性质及应用.分析:化简得出令=m,则1+sinx=2m﹣mcosx,sinx+mcosx=2m﹣1,φ)=2m﹣1得sin(x+φ)=,由≤1,解得0,利用函数性质求解f(m)=单增,解答:解:f(x)==﹣==﹣=令=m,则1+sinx=2m﹣mcosx,sinx+mcosx=2m﹣1,φ)=2m﹣1得sin(x+φ)=,由≤1,解得0,f(m)=单增,值域为点评:本题考察了函数的性质,换元法求解问题,属于难题,计算量较大.二.填空题.(本大题共5小题,每小题5分,共25分.)11.(5分)tan=﹣.考点:运用诱导公式化简求值.专题:三角函数的求值.分析:原式中的角度变形后,利用诱导公式及特殊角的三角函数值计算即可得到结果.解答:解:tan=tan(π﹣)=﹣tan=﹣.故答案为:﹣点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.12.(5分)如图所示,平行四边形ABCD的对角线AC与BD相交于点O,点M是线段OD的中点,设=,=,则=.(结果用,表示)考点:向量的三角形法则.专题:平面向量及应用.分析:利用向量的三角形法则、向量共线定理可得+==,即可得出.解答:解:+===.故答案为:.点评:本题考查了向量的三角形法则、向量共线定理,属于基础题.13.(5分)(lg25﹣lg)÷100=20.考点:有理数指数幂的化简求值.专题:函数的性质及应用.分析:根据对数的运算法则和有理数的公式进行化简即可.解答:解:(lg25﹣lg)÷100=(lg100)×=2×10=20,故答案为:20.点评:本题主要考查有理数的化简,比较基础.14.(5分)求值:=1.考点:三角函数的恒等变换及化简求值.专题:计算题.分析:先把原式中切转化成弦,利用两角和公式和整理后,运用诱导公式和二倍角公式化简整理求得答案.解答:解:原式=sin50°•=cos40°===1故答案为:1点评:本题主要考查了三角函数的恒等变换及其化简求值,以及两角和公式,诱导公式和二倍角公式的化简求值.考查了学生对三角函数基础知识的综合运用.15.(5分)设g(x)=x﹣1,已知f(x)=,若关于x的方程f(x)=m恰有三个互不相等的实根x1,x2,x3,则x12+x22+x32的取值范围是(,1).考点:根的存在性及根的个数判断;分段函数的应用.专题:计算题;作图题;函数的性质及应用.分析:化简f(x)=,从而作出其图象,结合图象可得0<m<,从而分别讨论x1,x2,x3,再令y=x12+x22+x32=+1﹣2m,化简并利用换元法求取值范围即可.解答:解:∵g(x)=x﹣1,f(x)=,f(x)=;即f(x)=;作出其图象如下,若方程f(x)=m有三个根,则0<m<,且当x>0时,方程可化为﹣x2+x﹣m=0,易知,x2+x3=1,x2x3=m;当x≤0时,方程可化为x2﹣x﹣m=0,可解得x1=;记y=x12+x22+x32=+1﹣2m=﹣m﹣+;令t=∈(1,),则y=﹣t2﹣t+,解得,y∈(,1).故答案为:(,1).点评:本题考查了分段函数的应用及数形结合的思想应用,同时考查了换元法的应用及方程的根与函数的图象的交点的关系应用,属于中档题.三.解答题.(本大题共6小题,共75分.解答须写出文字说明、证明过程和演算步骤.)16.(13分)已知<α<π,tanα﹣=﹣.(Ⅰ)求tana的值;(Ⅱ)求的值.考点:同角三角函数基本关系的运用;运用诱导公式化简求值.专题:三角函数的求值.分析:(Ⅰ)设tanα=x,已知等式变形后求出方程的解确定出x的值,即可求出tana 的值;(Ⅱ)原式利用诱导公式化简,再利用同角三角函数间基本关系变形,将tanα的值代入计算即可求出值.解答:解:(Ⅰ)令tanα=x,则x﹣=﹣,即2x2+3x﹣2=0,解得:x=或x=﹣2,∵<α<π,∴tanα<0,则tanα=﹣2;(Ⅱ)原式==tanα+1=﹣2+1=﹣1.点评:此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.17.(13分)平面内给定三个向量=(3,2),=(﹣1,2),=(4,1).(Ⅰ)设向量=+,且||=,求向量的坐标;(Ⅱ)若(+k)∥(2﹣),求实数k的值.考点:平面向量共线(平行)的坐标表示;平面向量的坐标运算.专题:平面向量及应用.分析:(Ⅰ)根据向量的坐标运算以及模长公式,求出λ的值即可;(Ⅱ)根据向量平行的坐标表示,列出方程,即可求出k的值.解答:解:(Ⅰ)∵向量=(3,2),=(﹣1,2),∴=+=(,)+(﹣,)=(λ,3λ);又||=,∴=,解得λ=±1,∴=(1,3)或=(﹣1,﹣3);(Ⅱ)∵+k=(3,2)+k(4,1)=(3+4k,2+k),2﹣=2(﹣1,2)﹣(3,2)=(﹣5,2);且(+k)∥(2﹣),∴2×(3+4k)﹣(﹣5)×(2+k)=0,解得k=﹣.点评:本题考查了平面向量的坐标运算问题,也考查了向量平行与求向量模长的问题,是基础题目.18.(13分)已知函数f(x)=a x(a>0,a≠1)在区间上的最大值是最小值的8倍.(Ⅰ)求a的值;(Ⅱ)当a>1时,解不等式log a(2a+2x)<log a(x2+1).考点:指数函数的图像与性质.专题:函数的性质及应用.分析:(Ⅰ)分类讨论当a>1时,当0<a<1时,求出最大值,最小值,即可求解答案.(Ⅱ)转化log2(4+2x)<log2(x2+1)得出得出不等式组,求解即可解答:解:f(x)max=a2,f(x)min=a﹣1,则=a2=8,解得a=2;当0<a<1时,f(x)=max=a﹣1,f(x)min=a2,则=a﹣3=8,解得a=;故a=2或a=(Ⅱ)当a>1时,由前知a=2,不等式log a(2a+2x)<log a(x2+1)即得解集为(﹣2,﹣1)∪(3,+∞).点评:本题考察了指数函数的性质,分类讨论的思想,属于中档题,关键是分类得出方程,不等式组.19.(12分)已知函数g(x)=4sin(ωx+),h(x)=cos(ωx+π)(ω>0).(Ⅰ)当ω=2时,把y=g(x)的图象向右平移个单位得到函数y=p(x)的图象,求函数y=p(x)的图象的对称中心坐标;(Ⅱ)设f(x)=g(x)h(x),若f(x)的图象与直线y=2﹣的相邻两个交点之间的距离为π,求ω的值,并求函数f(x)的单调递增区间.考点:函数y=Asin(ωx+φ)的图象变换;正弦函数的图象;余弦函数的图象.专题:三角函数的求值;三角函数的图像与性质.分析:(Ⅰ)由题意,先求得:p(x)=4sin(2x+),令2x+=kπ,即可求得函数y=p(x)的图象的对称中心坐标;(Ⅱ)先求得解析式f(x)=2sin(2ωx﹣)﹣,由题意T=π,可解得ω的值,令t=2x﹣是x的增函数,则需y=2sint﹣是t的增函数,由2k≤2x﹣≤2k,可解得函数f(x)的单增区间.解答:解:(Ⅰ)当ω=2时,g(x)=4sin(2x+),g(x﹣)=4sin(2x﹣+)=4sin(2x+),p(x)=4sin(2x+),令2x+=kπ,得x=﹣+,中心为(﹣+,0)(k∈Z);(Ⅱ)f(x)=4sin(ωx+)(﹣cosωx)=﹣4cosωx=2sinωxcosωx﹣2cos2ωx=sin2ωx﹣(1+cos2ωx)=2sin(2ωx﹣)﹣由题意,T=π,∴=π,ω=1令t=2x﹣是x的增函数,则需y=2sint﹣是t的增函数故2k≤2x﹣≤2k,2k≤2x≤2kπ+,k≤x≤kπ+函数f(x)的单增区间是(k∈Z).点评:本题主要考查了函数y=Asin(ωx+φ)的图象变换,三角函数的图象和性质,属于基础题.20.(12分)已知函数f(x)=log2(4x+1)+mx.(Ⅰ)若f(x)是偶函数,求实数m的值;(Ⅱ)当m>0时,关于x的方程f(8(log4x)2+2log2+﹣4)=1在区间上恰有两个不同的实数解,求m的范围.考点:对数函数的图像与性质;指数函数综合题.专题:函数的性质及应用.分析:(Ⅰ)根据f(x)是偶函数,建立方程关系即可求实数m的值;(Ⅱ)利用对数函数的性质,利用换元法,转化为两个函数的交点问题即可得到结论.解答:解:(Ⅰ)若f(x)是偶函数,则有f(﹣x)=f(x)恒成立,即:log2(4﹣x+1)﹣mx=log2(4x+1)+mx.于是2mx=log2(4﹣x+1)﹣log2(4x+1)=log2()﹣log2(4x+1)=﹣2x,即是2mx=﹣2x对x∈R恒成立,故m=﹣1.(Ⅱ)当m>0时,y=log2(4x+1),在R上单增,y=mx在R上也单增所以f(x)=log2(4x+1)+mx在R上单增,且f(0)=1,则f(8(log4x)2+2log2+﹣4)=1可化为f(8(log4x)2+2log2+﹣4)=f(0),又f(x)单增,得8(log4x)2+2log2+﹣4=0,换底得8()2﹣2log2x+﹣4=0,即2(log2x)2﹣2log2x+﹣4=0,令t=log2x,则t∈,问题转换化为2t2﹣2t+﹣4=0在t∈,有两解,即=﹣2t2+2t+4,令y=﹣2t2+2t+4,则y=﹣2t2+2t+4=﹣2(t﹣)2+,∴当t=时,函数取得最大值,当t=0时,函数y=4,当t=时,函数取得最小值,若方程f(8(log4x)2+2log2+﹣4)=1在区间上恰有两个不同的实数解,则等价为4≤<,解得<m≤1,故求m的范围为<m≤1.点评:本题主要考查函数奇偶性的应用,以及对数函数的应用,利用方程和函数之间的关系,转化为两个函数的交点问题是解决本题的关键.21.(12分)已知定义在(﹣∞,﹣1)∪(1,+∞)函数满足:①f(4)=1;②对任意x >2均有f(x)>0;③对任意x>1,y>1,均有f(x)+f(y)=f(xy﹣x﹣y+2).(Ⅰ)求f(2)的值;(Ⅱ)证明:f(x)在(1,+∞)上为增函数;(Ⅲ)是否存在实数k,使得f(sin2θ﹣(k﹣4)(sinθ+cosθ)+k)<2对任意的θ∈恒成立?若存在,求出k的范围;若不存在说明理由.考点:函数恒成立问题;抽象函数及其应用.专题:函数的性质及应用;三角函数的图像与性质.分析:(Ⅰ)将条件③变形得到f(m+1)+f(n+1)=f(mn+1)对任意m,n>0均成立,其中m=x﹣1,n=y﹣1,令m=n=1,即可解得f(2)=0;(Ⅱ)由(Ⅰ),将f(m+1)+f(n+1)=f(mn+1)变形得f(mn+1)﹣f(n+1)=f(m+1),则要证明f(x)在(1,+∞)上为增函数,只需m>1即可.显然当m>1即m+1>2时f(m+1)>0;(Ⅲ)利用条件①②将问题转化为是否存在实数k使得sin2θ﹣(k﹣4)(sinθ+cosθ)+k<或1<sin2θ﹣(k﹣4)(sinθ+cosθ)+k<10对任意的θ∈恒成立.再令t=sinθ+cosθ,,则问题等价于t2﹣(k﹣4)t+k﹣1<或1<t2﹣(k﹣4)t+k﹣1<10对恒成立.分情况讨论,利用二次函数的性质即可解题.解答:解:(Ⅰ)由条件③可知f(x)+f(y)=f(xy﹣x﹣y+2)=f=f,令m=x﹣1,n=y﹣1,则由x>1,y>1知m,n>0,并且f(m+1)+f(n+1)=f(mn+1)对任意m,n>0均成立.令m=n=1,即有f(2)+f(2)=f(2),故得f(2)=0.(Ⅱ)由(Ⅰ),将f(m+1)+f(n+1)=f(mn+1)变形得:f(mn+1)﹣f(n+1)=f(m+1),要证明f(x)在(1,+∞)上为增函数,只需m>1即可.设x2=mn+1,x1=n+1,其中m,n>0,m>1,则x2﹣x1=n(m﹣1)>0,故x2>x1,则f(x2)﹣f(x1)=f(mn+1)﹣f(n+1)=f(m+1),m>1,m+1>2,所以f(m+1)>0,即f(x2)﹣f(x1)>0,所以f(x2)>f(x1),即f(x)在(1,+∞)上为增函数;(Ⅲ)∵由f(m+1)+f(n+1)=f(mn+1)对任意m,n>0均成立,及f(4)=1∴令m=n=3,有f(4)+f(4)=f(10),即f(10)=2.令m=9,n=,则f(9+1)+f(+1)=f(9×+1)=f(2),故f()=f(2)﹣f(10)=﹣2,由奇偶性得f(﹣)=﹣2,则f(x)<2的解集是.于是问题等价于是否存在实数k使得sin2θ﹣(k﹣4)(sinθ+cosθ)+k<或1<sin2θ﹣(k﹣4)(sinθ+cosθ)+k<10对任意的θ∈恒成立.令t=sinθ+cosθ,,问题等价于t2﹣(k﹣4)t+k﹣1<或1<t2﹣(k﹣4)t+k﹣1<10对恒成立.令g(t)=t2﹣(k﹣4)t+k﹣1,则g(t)对恒成立的必要条件是,即解得,此时无解;同理1<g(t)<10恒成立的必要条件是,即解得,即;当时,g(t)=t2﹣(k﹣4)t+k﹣1的对称轴.下面分两种情况讨论:(1)当时,对称轴在区间的右侧,此时g(t)=t2﹣(k﹣4)t+k﹣1在区间上单调递减,1<g(t)<10恒成立等价于恒成立,故当时,1<g(t)<10恒成立;(2)当时,对称轴在区间内,此时g(t)=t2﹣(k﹣4)t+k﹣1在区间上先单调递减后单调递增,1<g(t)<10恒成立还需,即,化简为k2﹣12k+24<0,解得,从而,解得;综上所述,存在,使得f(sin2θ﹣(k﹣4)(sinθ+cosθ)+k)<2对任意的θ∈恒成立.点评:本题考查了抽象函数的运算,单调性,以及函数恒成立问题,需要较强的分析、计算能力,属于难题.。

2015-2016学年重庆市部分区县高三(上)入学数学试卷(理科)(解析版)

2015-2016学年重庆市部分区县高三(上)入学数学试卷(理科)(解析版)

2015-2016学年重庆市部分区县高三(上)入学数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合I={x|﹣3<x<3,x∈z},A={1,2},B={﹣2,﹣1,2},则A∩(∁I B)等于()A.{1}B.{1,2}C.{0,1,2}D.{﹣1,0,1,2} 2.(5分)复数z满足(﹣1+i)z=(1+i)2,其中i为虚数单位,则在复平面上复数z对应的点位()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知正数组成的等比数列{a n},若a1•a20=100,那么a7+a14的最小值为()A.20B.25C.50D.不存在4.(5分)设x∈R,则“|x﹣2|<1”是“x2+x﹣2>0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.(5分)若x,y满足,则z=x+2y的最大值为()A.0B.1C.D.26.(5分)已知函数,则函数f(x)的图象的一条对称轴是()A.B.C.D.7.(5分)已知双曲线C:的焦距为10,点P(2,1)在C的渐近线上,则C 的方程为()A.B.C.D.8.(5分)执行如图所示的程序框图,输出的S值为()A.2B.4C.8D.169.(5分)已知点A(﹣1,0),若函数f(x)的图象上存在两点B、C到点A的距离相等,则称该函数f(x)为“点距函数”,给定下列三个函数:①y=﹣x+2(﹣1≤x≤2);②y =;③y=x+4(x≤﹣).其中,“点距函数”的个数是()A.0B.1C.2D.310.(5分)已知函数f(x)=若f(2﹣a2)>f(a),则实数a的取值范围是()A.(﹣∞,﹣1)∪(2,+∞)B.(﹣1,2)C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)11.(5分)在△ABC中,AB=2,AC=3,•=1,则BC=()A.B.C.2D.12.(5分)已知定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),当x∈[0,2)时,f(x)=﹣2x2+4x.设f(x)在[2n﹣2,2n)上的最大值为a n(n∈N*),且{a n}的前n项和为S n,则S n=()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.(5分)在x(1+)6的展开式中,含x3项系数是.(用数字作答)14.(5分)古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木、木克土,土克水,水克火,火克金”,从这五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率是.15.(5分)已知P为△ABC所在的平面内一点,满足的面积为2015,则ABP的面积为.16.(5分)若实数a、b、c成等差数列,点P(﹣1,0)在动直线l:ax+by+c=0上的射影为M,点N(0,3),则线段MN长度的最小值是:.三、解答题:本大题共5小题,满分70分,解答应写出文字说明、证明过程或演算步骤17.(14分)已知函数f(x)=(sin x+cos x)2+2cos2x.(Ⅰ)求f(x)最小正周期;(Ⅱ)求f(x)在区间[0,]上的最大值和最小值.18.(14分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.19.(14分)为了参加2013年市级高中篮球比赛,该市的某区决定从四所高中学校选出12人组成男子篮球队代表所在区参赛,队员来源人数如下表:该区篮球队经过奋力拼搏获得冠军,现要从中选出两名队员代表冠军队发言.(Ⅰ)求这两名队员来自同一学校的概率;(Ⅱ)设选出的两名队员中来自学校甲的人数为ξ,求随机变量ξ的分布列及数学期望Eξ.20.(14分)定义:若两个椭圆的离心率相等,则称两个椭圆是“相似”的.如图,椭圆C1与椭圆C2是相似的两个椭圆,并且相交于上下两个顶点.椭圆C1:的长轴长是4,椭圆C2:短轴长是1,点F1,F2分别是椭圆C1的左焦点与右焦点,(Ⅰ)求椭圆C1,C2的方程;(Ⅱ)过F1的直线交椭圆C2于点M,N,求△F2MN面积的最大值.21.(14分)设函数f(x)=lnx﹣ax,g(x)=e x﹣ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a 的取值范围;(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.选修题:请考生在第(22)、(23)(24)三体中任选一题作答,如果多做,则按所做的第一题记分.选修4-1:几何证明选讲22.如图所示,圆O的直径为BD,过圆上一点A作圆O的切线AE,过点D作DE⊥AE于点E,延长ED与圆O交于点C.(1)证明:DA平分∠BDE;(2)若AB=4,AE=2,求CD的长.23.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的参数方程为,(t为参数),曲线C1的方程为ρ(ρ﹣4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.(1)求点Q的轨迹C2的直角坐标方程;(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.24.已知函数f(x)=|2x+1|,g(x)=|x|+a(Ⅰ)当a=0时,解不等式f(x)≥g(x);(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.2015-2016学年重庆市部分区县高三(上)入学数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:∵集合I={x|﹣3<x<3,x∈Z}={﹣2,﹣1,0,1,2},A={1,2},B={﹣2,﹣1,2},∴∁I B={0,1},则A∩(∁I B)={1}.故选:A.2.【解答】解:∵复数z满足(﹣1+i)z=(1+i)2,其中i为虚数单位,∴z=====1﹣i,故复数z对应点的坐标为(1,﹣1),故选:D.3.【解答】解:∵正数组成的等比数列{a n},a1•a20=100,∴a1•a20=a7•a14=100,∴a 7+a14≥2=2=2=20.当且仅当a7=a14时,a7+a14取最小值20.故选:A.4.【解答】解:由“|x﹣2|<1”得1<x<3,由x2+x﹣2>0得x>1或x<﹣2,即“|x﹣2|<1”是“x2+x﹣2>0”的充分不必要条件,故选:A.5.【解答】解:作出不等式组表示的平面区域,当l经过点B时,目标函数z达到最大值∴z最大值=0+2×1=2.故选:D.6.【解答】解:f(x)=2sin(x﹣).令x﹣=kπ+,解得x=kπ+,k∈Z,当k=0时,x=,故选:A.7.【解答】解:∵双曲线C:的焦距为10,点P(2,1)在C的渐近线上,∴a2+b2=25,=1,∴b=,a=2∴双曲线的方程为.故选:A.8.【解答】解:第1次判断后S=1,k=1,第2次判断后S=2,k=2,第3次判断后S=8,k=3,第4次判断后3<3,不满足判断框的条件,结束循环,输出结果:8.故选:C.9.【解答】解:对于①,过A作直线y=﹣x+2的垂线y=x+1,交直线y=﹣x+2于D(,)点,D(,)在y=﹣x+2(﹣1≤x≤2)的图象上,故y=﹣x+2(﹣1≤x≤2)的图象上距离D距离相等的两点B、C,满足B、C到点A的距离相等,故该函数f(x)为“点距函数”;对于②,y=表示以(﹣1,0)为圆心以3为半径的半圆,图象上的任意两点B、C,满足B、C到点A的距离相等,故该函数f(x)为“点距函数”;对于③,过A作直线y=x+4的垂线y=﹣x﹣1,交直线y=x+4于E(,)点,E(,)是射线y=x+4(x≤﹣)的端点,故y=x+4(x≤﹣)的图象上不存在两点B、C,满足B、C到点A的距离相等,故该函数f(x)不为“点距函数”;综上所述,其中“点距函数”的个数是2个,故选:C.10.【解答】解:由f(x)的解析式可知,f(x)在(﹣∞,+∞)上是单调递增函数,在由f(2﹣a2)>f (a),得2﹣a2>a即a2+a﹣2<0,解得﹣2<a<1.故选:C.11.【解答】解:根据题意画出相应的图形,如图所示:∵•=1,设∠B=θ,AB=2,∴2•BC•cos(π﹣θ)=1,即cosθ=﹣,又根据余弦定理得:cosθ==,∴﹣=,即BC2=3,则BC=.故选:A.12.【解答】解:∵定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),∴f(x+2)=f(x),∴f(x+4)=f(x+2)=f(x),f(x+6)=f(x+4)=f(x),…f(x+2n)=f(x)设x∈[2n﹣2,2n),则x﹣(2n﹣2)∈[0,2)∵当x∈[0,2)时,f(x)=﹣2x2+4x.∴f[x﹣(2n﹣2)]=﹣2[(x﹣(2n﹣2)]2+4[x﹣(2n﹣2)].∴=﹣2(x﹣2n+1)2+2∴f(x)=21﹣n[﹣2(x﹣2n+1)2+2],x∈[2n﹣2,2n),∴x=2n﹣1时,f(x)的最大值为22﹣n∴a n=22﹣n∴{a n}表示以2为首项,为公比的等比数列∴{a n}的前n项和为S n==故选:B.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.【解答】解:(1+)6展开式的通项为T r+1=C6r()r=C6r,令r=4得含x2的项的系数是C64=15,∴在x(1+)6的展开式中,含x3项系数是:15.故答案为:1514.【解答】解:五种抽出两种的抽法有C52=10种相克的种数有5种故不相克的种数有5种故五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率是故答案为15.【解答】解:取AB中点D,则:=;∴;∴D,P,C三点共线,如图所示:∴;∴=1209.故答案为:1209.16.【解答】解:因为a,b,c成等差数列,故有2b=a+c,即a﹣2b+c=0,对比方程ax+by+c =0可知,动直线恒过定点Q(1,﹣2).由于点P(﹣1,0)在动直线ax+by+c=0上的射影为M,即∠PMQ=90°,所以点M在以PQ为直径的圆上,该圆的圆心为PQ的中点C(0,﹣1),且半径为=,再由点N到圆心C的距离为NC=4,所以线段MN的最小值为NC﹣r=4﹣,故答案为:4﹣.三、解答题:本大题共5小题,满分70分,解答应写出文字说明、证明过程或演算步骤17.【解答】解:(Ⅰ)f(x)=(sin x+cos x)2+2cos2x=sin2x+2sin x cos x+cos2x+2cos2x=1+sin2x+1+cos2x=sin(2x+)+2,…(4分)所以f(x)的最小正周期为T=π;…(6分)(Ⅱ)由0≤x≤得,0≤2x≤π,所以≤2 x+≤;…(8分)根据正弦函数y=sin x的图象可知当时,f(x)有最大值为2+,…(11分)当时,f(x)有最小值为1.…(13分)18.【解答】解:(1)方程x2﹣5x+6=0的根为2,3.又{a n}是递增的等差数列,故a2=2,a4=3,可得2d=1,d=,故a n=2+(n﹣2)×=n+1,(2)设数列{}的前n项和为S n,S n=,①S n=,②①﹣②得S n==,解得S n==2﹣.19.【解答】解:(I)“从这12名队员中随机选出两名,两人来自于同一学校”记作事件A,则.…(6分)(II)ξ的所有可能取值为0,1,2…(7分)则,,∴ξ的分布列为:…(10分)∴…(13分)20.【解答】解:(Ⅰ)设椭圆C1的半焦距为c,椭圆C2的半焦距为c'.由已知a=2,b=m,.∵椭圆C1与椭圆C2的离心率相等,即,∴,即∴,即bm=b2=an=1,∴b=m=1,∴椭圆C1的方程是,椭圆C2的方程是;(Ⅱ)显然直线的斜率不为0,故可设直线的方程为:.联立:,得,即,∴△=192m2﹣44(1+4m2)=16m2﹣44>0,设M(x1,y1),N(x2,y2),则,,∴,△F2MN的高即为点F2到直线的距离h==,∴△F2MN的面积,∵,等号成立当且仅当,即时,∴,即△F2MN的面积的最大值为.21.【解答】解:(1)求导数可得f′(x)=﹣a∵f(x)在(1,+∞)上是单调减函数,∴﹣a≤0在(1,+∞)上恒成立,∴a≥,x∈(1,+∞).∴a≥1.令g′(x)=e x﹣a=0,得x=lna.当x<lna时,g′(x)<0;当x>lna时,g′(x)>0.又g(x)在(1,+∞)上有最小值,所以lna>1,即a>e.故a的取值范围为:a>e.(2)当a≤0时,g(x)必为单调函数;当a>0时,令g′(x)=e x﹣a>0,解得a<e x,即x>lna,因为g(x)在(﹣1,+∞)上是单调增函数,类似(1)有lna≤﹣1,即0<.结合上述两种情况,有.①当a=0时,由f(1)=0以及f′(x)=>0,得f(x)存在唯一的零点;②当a<0时,由于f(e a)=a﹣ae a=a(1﹣e a)<0,f(1)=﹣a>0,且函数f(x)在[e a,1]上的图象不间断,所以f(x)在(e a,1)上存在零点.另外,当x>0时,f′(x)=﹣a>0,故f(x)在(0,+∞)上是单调增函数,所以f(x)只有一个零点.③当0<a≤时,令f′(x)=﹣a=0,解得x=.当0<x<时,f′(x)>0,当x>时,f′(x)<0,所以,x=是f(x)的最大值点,且最大值为f()=﹣lna﹣1.(i)当﹣lna﹣1=0,即a=时,f(x)有一个零点x=e;(ii)当﹣lna﹣1>0,即0<a<时,f(x)有两个零点;实际上,对于0<a<,由于f()=﹣1﹣<0,f()>0,且函数f(x)在[]上的图象不间断,所以f(x)在()上存在零点.另外,当0<x<时,f′(x)=﹣a>0,故f(x)在(0,)上时单调增函数,所以f(x)在(0,)上只有一个零点.下面考虑f(x)在(,+∞)上的情况,先证明f()=a()<0.为此,我们要证明:当x>e时,e x>x2.设h(x)=e x﹣x2,则h′(x)=e x﹣2x,再设l(x)=h′(x)=e x﹣2x,则l′(x)=e x﹣2.当x>1时,l′(x)=e x﹣2>e﹣2>0,所以l(x)=h′(x)在(1,+∞)上时单调增函数;故当x>2时,h′(x)=e x﹣2x>h′(2)=e2﹣4>0,从而h(x)在(2,+∞)上是单调增函数,进而当x>e时,h(x)=e x﹣x2>h(e)=e e﹣e2>0,即当x>e时,e x>x2当0<a<,即>e时,f()==a()<0,又f()>0,且函数f(x)在[,]上的图象不间断,所以f(x)在(,)上存在零点.又当x>时,f′(x)=﹣a<0,故f(x)在(,+∞)上是单调减函数,所以f(x)在(,+∞)上只有一个零点.综合(i)(ii)(iii),当a≤0或a=时,f(x)的零点个数为1,当0<a<时,f(x)的零点个数为2.选修题:请考生在第(22)、(23)(24)三体中任选一题作答,如果多做,则按所做的第一题记分.选修4-1:几何证明选讲22.【解答】(1)证明:∵AE是⊙O的切线,∴∠DAE=∠ABD,∵BD是⊙O的直径,∴∠BAD=90°,∴∠ABD+∠ADB=90°,又∠ADE+∠DAE=90°,∴∠ADB=∠ADE.∴DA平分∠BDE.(2)由(1)可得:△ADE∽△BDA,∴,∴,化为BD=2AD.∴∠ABD=30°.∴∠DAE=30°.∴DE=AE tan30°=.由切割线定理可得:AE2=DE•CE,∴,解得CD=.23.【解答】解:(1)根据题意,得曲线C1的直角坐标方程为:x2+y2﹣4y=12,设点P(x′,y′),Q(x,y),根据中点坐标公式,得,代入x2+y2﹣4y=12,得点Q的轨迹C2的直角坐标方程为:(x﹣3)2+(y﹣1)2=4,(2)直线l的普通方程为:y=ax,根据题意,得,解得实数a的取值范围为:[0,].24.【解答】解:(Ⅰ)当a=0时,由f(x)≥g(x)得|2x+1|≥|x|,两边平方整理得3x2+4x+1≥0,解得x≤﹣1 或x≥﹣,∴原不等式的解集为(﹣∞,﹣1]∪[﹣,+∞).(Ⅱ)由f(x)≤g(x)得a≥|2x+1|﹣|x|,令h(x)=|2x+1|﹣|x|,即h(x)=,故h(x)min=h(﹣)=﹣,故可得到所求实数a的范围为[﹣,+∞).。

2015-2016学年重庆市巴蜀中学高一上学期期末数学试卷(带解析)

2015-2016学年重庆市巴蜀中学高一上学期期末数学试卷(带解析)

绝密★启用前2015-2016学年重庆市巴蜀中学高一上学期期末数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:162分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、(2015秋•重庆校级期末)若函数f (x )=cos (asinx )﹣sin (bcosx )没有零点,则a 2+b 2的取值范围是( )A .[0,1)B .[0,π2)C .D .[0,π)2、(2015•岳阳模拟)设函数f (x )=,若对任意给定的y ∈(2,+∞),都存在唯一的x ∈R ,满足f (f (x ))=2a 2y 2+ay ,则正实数a 的最小值是( ) A . B . C .2 D .43、(2015秋•重庆校级期末)已知关于x 的方程4x +m•2x +m 2﹣1=0有实根,则实数m 的取值范围是( )A.[﹣,]B.[﹣,1)C.[﹣,1]D.[1,]4、(2015秋•重庆校级期末)定义在R上的函数f(x)满足f(x﹣1)的对称轴为x=1,f(x+1)=(f(x)≠0),且在区间(2015,2016)上单调递减.已知α,β是钝角三角形中两锐角,则f(sinα)和f(cosβ)的大小关系是()A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)C.f(sinα)=f(cosβ)D.以上情况均有可能5、(2012•武陟县校级模拟)tan70°•cos10°(tan20°﹣1)等于()A.1 B.2 C.﹣1 D.﹣26、(2015•临沂模拟)下列函数中,与函数y=的奇偶性相同,且在(﹣∞,0)上单调性也相同的是()A. B.y=x2+2 C.y=x3﹣3 D.7、(2014•天津模拟)为了得到函数y=sin(2x﹣)的图象,可以将函数y=sin2x的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位8、(2015秋•重庆校级期末)f (3x )=x ,则f (10)=( ) A .log 310 B .lg3 C .103 D .3109、(2015秋•重庆校级期末)若θ是第四象限角,且|cos |=﹣cos,则是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角10、(2009•全国卷Ⅰ)sin585°的值为( ) A .B .C .D .11、(2015秋•重庆校级期末)“x≥3”是“x >3”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件12、(2015秋•重庆校级期末)集合M={﹣1,1,3,5},集合N={﹣3,1,5},则以下选项正确的是( ) A .N ∈M B .N ⊆M C .M∩N={1,5} D .M ∪N={﹣3,﹣1,3}第II卷(非选择题)二、填空题(题型注释)13、(2015秋•重庆校级期末)f(x)是定义在D上的函数,若存在区间[m,n]⊂D(m <n),使函数f(x)在[m,n]上的值域恰为[km,kn],则称函数f(x)是k型函数.①f(x)=3﹣不可能是k型函数;②若函数y=﹣x2+x是3型函数,则m=﹣4,n=0;③设函数f(x)=|3x﹣1|是2型函数,则m+n=1;④若函数y=(a≠0)是1型函数,则n﹣m的最大值为正确的序号是.14、(2015秋•重庆校级期末)当t∈[0,2π)时,函数f(t)=(1+sint)(1+cost)的最大值为.15、(2015秋•重庆校级期末)函数y=|x﹣2|﹣|x+1|的取值范围为.16、(2015秋•重庆校级期末)函数f(x)=的定义域为.三、解答题(题型注释)17、(2015秋•重庆校级期末)已知函数f(x)的定义域为0,1],且f(x)的图象连续不间断.若函数f(x)满足:对于给定的m (m∈R且0<m<1),存在x0∈[0,1﹣m],使得f(x0)=f(x0+m),则称f(x)具有性质P(m).(1)已知函数f(x)=,若f(x)具有性质P(m),求m最大值;(2)若函数f (x )满足f (0)=f (1),求证:对任意k ∈N *且k≥2,函数f (x )具有性质P ().18、(2015秋•重庆校级期末)已知集合A={t|t 使{x|x 2+2tx ﹣4t ﹣3≠0}=R},集合B={t|t 使{x|x 2+2tx ﹣2t=0}≠∅},其中x ,t 均为实数. (1)求A∩B ;(2)设m 为实数,g (α)=﹣sin 2α+mcosα﹣2m ,α∈[π,π],求M={m|g (α)∈A∩B}.19、(2015秋•重庆校级期末)已知二次函数f (x )=x 2﹣16x+q+3. (1)若函数在区间[﹣1,1]上最大值除以最小值为﹣2,求实数q 的值;(2)问是否存在常数t (t≥0),当x ∈[t ,10]时,f (x )的值域为区间D ,且区间D 的长度为12﹣t (此区间[a ,b]的长度为b ﹣a )20、(2015秋•重庆校级期末)函数f (x )=cos 2(ωx+φ)﹣cos (ωx+φ)•sin (ωx+φ+)﹣(ω>0,0<φ<)同时满足下列两个条件:①f (x )图象最值点与左右相邻的两个对称中心构成等腰直角三角形 ②(,0)是f (x )的一个对称中心、(1)当x ∈[0,2]时,求函数f (x )的单调递减区间;(2)令g (x )=f 2(x ﹣)+f (x ﹣)+m ,若g (x )在x ∈[,]时有零点,求此时m 的取值范围.21、(2015秋•重庆校级期末)已知f (x )=x 为偶函数(t ∈z ),且在x ∈(0,+∞)单调递增. (1)求f (x )的表达式; (2)若函数g (x )=log a [a ﹣x]在区间[2,4]上单调递减函数(a >0且a≠1),求实数a 的取值范围.(1)求的值;(2)求sin(﹣α)的值.23、(2015秋•重庆校级期末)已知A={x|x2+2x﹣8>0},B={x||x﹣a|<5|},且A∪B=R,求a的取值范围.参考答案1、C2、A3、B4、B5、C6、B7、B8、A9、B10、A11、B12、C13、②③④14、15、16、{x|x≥1或x≤0}.17、(1)m的最大值为;(2)见解析18、(1)A∩B=(﹣2,﹣1);(2)M={m|0<m<}.19、(1)q=;(2)所以存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12﹣t.20、(1)函数f(x)的单调递减区间为:[0,]∪[,2].(2)m∈[﹣,﹣].21、(1)f(x)的表达式为f(x)=x4;(2).22、(1)20;(2).23、[﹣3,1].【解析】1、试题分析:先假设函数存在零点x0,得出方程:sin(x0+φ)=2kπ+,再根据三角函数的性质得出结果.解:假设函数f(x)存在零点x0,即f(x0)=0,由题意,cos(asinx0)=sin(bcosx0),根据诱导公式得:asinx0+bcosx0=2kπ+,即,sin(x0+φ)=2kπ+(k∈Z),要使该方程有解,则≥|2kπ+|min,即,≥(k=0,取得最小),所以,a2+b2≥,因此,当原函数f(x)没有零点时,a2+b2<,所以,a2+b2的取值范围是:[0,).故答案为:C.考点:函数零点的判定定理;三角函数中的恒等变换应用.2、试题分析:此题的突破口在于如何才会存在唯一的x满足条件,结合f(x)的值域范围或者图象,易知只有在f(x)的自变量与因变量存在一一对应的关系时,即只有当f(x)>1时,才会存在一一对应.解:根据f(x)的函数,我们易得出其值域为:R,又∵f(x)=2x,(x≤0)时,值域为(0,1];f(x)=log2x,(x>0)时,其值域为R,∴可以看出f(x)的值域为(0,1]上有两个解,要想f(f(x))=2a2y2+ay,在y∈(2,+∞)上只有唯一的x∈R满足,必有f(f(x))>1 (因为2a2y2+ay>0),所以:f(x)>2,解得:x>4,当x>4时,x与f(f(x))存在一一对应的关系,∴2a2y2+ay>1,y∈(2,+∞),且a>0,所以有:(2ay﹣1)(ay+1)>0,解得:y>或者y<﹣(舍去),∴≤2,∴a,故选:A考点:分段函数的应用.3、试题分析:令2x=t(t>0),可得t2+mt+m2﹣1=0有正根,分类讨论,即可求实数m 的取值范围.解:令2x=t(t>0),可得t2+mt+m2﹣1=0有正根,①有两个正根,,∴﹣≤m<﹣1;②一个正根,一个负数根,m2﹣1<0,∴﹣1<m<1;③m=﹣1时,t2﹣t=0,t=0或1,符合题意,综上所述,﹣≤m<1.故选:B.考点:根的存在性及根的个数判断.4、试题分析:由平移图象可得y=f(x)的对称轴为x=0,由f(x)f(x+1)=4,将x 换为x+1,可得f(x)的周期为2,由题意可得f(x)在(﹣1,0)上递减,在(0,1)上递增,由α,β是钝角三角形中两锐角,可得α+β<,运用诱导公式和正弦函数的单调性,即可判断大小,得到结论.解:f(x﹣1)的对称轴为x=1,可得y=f(x)的对称轴为x=0,即有f(﹣x)=f(x),又f(x)f(x+1)=4,可得f(x+1)f(x+2)=4,即为f(x+2)=f(x),函数f(x)为最小正周期为2的偶函数.f(x)在区间(2015,2016)上单调递减,可得f(x)在(﹣1,0)上递减,在(0,1)上递增,由α,β是钝角三角形中两锐角,可得α+β<,即有0<α<﹣β<,则0<sinα<sin(﹣β)<1,即为0<sinα<cosβ<1,则f(sinα)<f(cosβ).故选:B.考点:抽象函数及其应用.5、试题分析:将原函数式中的“切”化“弦”后,通分整理,用辅助角公式整理即可.解:tan70°•cos10°(tan20°﹣1)=•cos10°(•﹣1)=•=×2sin(20°﹣30°)==﹣1.故选C.考点:三角函数的恒等变换及化简求值.6、试题分析:运用奇偶性的定义判断已知函数为偶函数,在x<0上递减,再由常见函数的奇偶性和单调性及定义,即可得到满足条件的函数.解:函数y=,当x=0时,f(0)=1;当x>0时,﹣x<0,f(﹣x)=()﹣x=e x=f(x),当x<0时,﹣x>0,f(﹣x)=e﹣x=f(x),则有在R上,f(﹣x)=f(x).则f(x)为偶函数,且在x<0上递减.对于A.f(﹣x)=﹣f(x),则为奇函数,则A不满足;对于B.则函数为偶函数,在x<0上递减,则B满足;对于C.f(﹣x)=(﹣x)3﹣3=﹣x3﹣3≠f(x),则不为偶函数,则C不满足;对于D.f(﹣x)=f(x),则为偶函数,当x<0时,y=递增,则D不满足.故选B.考点:奇偶性与单调性的综合.7、试题分析:根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.解:y=sin(2x﹣)=sin2(x﹣),故将函数y=sin2x的图象向右平移个单位,可得y=sin(2x﹣)的图象,故选:B.考点:函数y=Asin(ωx+φ)的图象变换.8、试题分析:设3x=t,求出f(t)=log3t,由此能求出f(10).解:∵f(3x)=x,∴设3x=t,则x=log3t,∴f(t)=log3t,∴f(10)=log310.故选:A.考点:函数的值.9、试题分析:根据θ是第四象限角,得出是第二或第四象限角,再由|cos|=﹣cos,得出是第二象限角.解:∵θ是第四象限角,∴2kπ+≤θ≤2kπ+2π,k∈Z;∴kπ+≤≤kπ+π,k∈Z;又|cos|=﹣cos,∴是第二象限角.故选:B.考点:三角函数值的符号;象限角、轴线角.10、试题分析:由sin(α+2kπ)=sinα、sin(α+π)=﹣sinα及特殊角三角函数值解之.解:sin585°=sin(585°﹣360°)=sin225°=sin(45°+180°)=﹣sin45°=﹣,故选A.考点:诱导公式的作用.11、试题分析:根据充分条件和必要条件的定义进行判断即可.解:若x=3满足x≥3,但x>3不成立,若x>3,则x≥3成立,即“x≥3”是“x>3”成立的必要不充分条件,故选:B考点:必要条件、充分条件与充要条件的判断.12、试题分析:由元素与集合之间的关系,判断A不正确,由集合N中的元素不都是集合M中的元素,判断B不正确,再由交集以及并集运算判断C,D则答案可求.解:集合M={﹣1,1,3,5},集合N={﹣3,1,5},N∈M不正确,∈是元素与集合之间的关系,故A不正确,N⊆M不正确,集合N中的元素不都是集合M中的元素,故B不正确,对于C,M∩N={﹣1,1,3,5}∩{﹣3,1,5}={1,5},故C正确,对于D,M∪N={﹣1,1,3,5}∪{﹣3,1,5}={﹣3,﹣1,1,3,5},故D不正确.故选:C.考点:集合的包含关系判断及应用.13、试题分析:根据题目中的新定义,结合函数与方程的知识,逐一判定命题①②③④是否正确,从而确定正确的答案.解:①,f(x)的定义域是{x|x≠0},且f(2)=3﹣=1,f(4)=3﹣=2,∴f(x)在[2,4]上的值域是[1,2],f(x)是型函数,∴①错误;②y=﹣x2+x是3型函数,即﹣x2+x=3x,解得x=0,或x=﹣4,∴m=﹣4,n=0,∴②正确;③设函数f(x)=|3x﹣1|是2型函数,则当定义域为[m,n]时,函数值域为[2m,2n],若n≤0,则函数f(x)=|3x﹣1|=1﹣3x,为减函数,则,即,即2﹣(3m+3n)=2(m+n),若m+n=1,则2﹣(3m+3n)=2,即3m+3n=0不成立,若m≥0,则函数f(x)=|3x﹣1|=3x﹣1为增函数,则,则(3m+3n)﹣2=2(m+n),若m+n=1,则(3m+3n)﹣2=2,即3m+3n=4,当m=0,n=1时,等式成立,则③正确,④,y=(a≠0)是1型函数,即(a2+a)x﹣1=a2x2,∴a2x2﹣(a2+a)x+1=0,∴方程的两根之差x1﹣x2==≤,即n﹣m的最大值为,∴④正确;故答案为:②③④考点:命题的真假判断与应用;函数的定义域及其求法;函数的值域.14、试题分析:由f(t)=1+(sint+cost)+sintcost,令m=sint+cost=sin(t+)∈[﹣,],sintcost=,则f(t)=1+m+=,运用二次函数的值域求法,可得最大值.解:f(t)=(1+sint)(1+cost)=1+(sint+cost)+sintcost,令m=sint+cost=sin(t+)∈[﹣,],即有m2=1+2sintcost,即sintcost=,则f(t)=1+m+=,即有m=﹣1时,f(t)取得最小值0;m=,即t=时,f(t)取得最大值,且为.故答案为:.考点:函数的最值及其几何意义.15、[﹣3,3]试题分析:化简函数,分别确定其范围,即可得出函数y=|x﹣2|﹣|x+1|的取值范围.解:当﹣1<x<2时,y=2﹣x﹣x﹣1=1﹣2x∈(﹣3,3);当x≤﹣1时,y=2﹣x+(x+1)=3;当x≥2时,y=x﹣2﹣(x+1)=﹣3,所以y的取值范围是[﹣3,3].故答案为:[﹣3,3].考点:带绝对值的函数.16、试题分析:根据二次根式的性质得到关于x的不等式组,解出即可.解:由题意得:x(x﹣1)≥0,解得:x≥1或x≤0,故函数f(x)的定义域是:{x|x≥1或x≤0},故答案为:{x|x≥1或x≤0}.考点:函数的定义域及其求法.17、试题分析:(1)m的最大值为.分类进行证明,当m=时,函数f(x)具有性质P();假设存在<m<1,使得函数f(x)具有性质P(m),则0<1﹣m<,证明不存在x0∈(0,1﹣m],使得f(x0)=f(x0+m)即可;(2)任取k∈N*且k≥2,设g(x)=f(x+)﹣f(x),其中x∈[0,],利用叠加法可得g(0)+g()+…+g()+…+g()=f(1)﹣f(0)=0,分类讨论:当g(0)、g()、…、g()中有一个为0时,函数f(x)具有性质P();当g(0)、g()、…、g()均不为0时,由于其和为0,则必然存在正数和负数,进而可证函数f(x)具有性质P().解:(1)m的最大值为.首先当m=时,取x0=,则f(x0)=f()=1,f(x0+m)=f()=f(1)=1所以函数f(x)具有性质P()假设存在<m<1,使得函数f(x)具有性质P(m),则0<1﹣m<.当x0=0时,x0+m∈,f(x0)=1,f(x0+m)>1,f(x0)≠f(x0+m);当x0∈(0,1﹣m]时,x0+m∈(,1],f(x0)<1,f(x0+m)≥1,f(x0)≠f(x0+m);所以不存在x0∈(0,1﹣m],使得f(x0)=f(x0+m),所以,m的最大值为.(2)证明:任取k∈N*且k≥2设g(x)=f(x+)﹣f(x),其中x∈[0,],则有g(0)=f()﹣f(0)g()=f()﹣f()…g()=f()﹣f()…g()=f(1)﹣f()以上各式相加得:g(0)+g()+…+g()+…+g()=f(1)﹣f(0)=0当g(0)、g()、…、g()中有一个为0时,不妨设为g()=0,i∈{0,1,…,k﹣1},即g()=f(+)﹣f()=0,则函数f(x)具有性质P();当g(0)、g()、…、g()均不为0时,由于其和为0,则必然存在正数和负数,不妨设g()>0,g()<0,其中i≠j,i,j∈{0,1,…,k﹣1},由于g(x)是连续的,所以当j>i时,至少存在一个(当j<i时,至少存在一个)使得g(x0)=0,即g(x0)=f()﹣f(x0)=0所以,函数f(x)具有性质P()考点:分段函数的应用;函数的定义域及其求法;函数的值域.18、试题分析:(1)分别求出集合A、B,取交集即可;(2)令t=cosα,则t∈[﹣1,0],令h(m)=t2+mt﹣2m﹣1,得到:﹣2<t2+mt﹣2m﹣1<﹣1,求出m的范围即可.解:(1)∵集合A={t|t使{x|x2+2tx﹣4t﹣3≠0}=R},∴△1=(2t)2+4(4t+3)<0,∴A={t|﹣3<t<﹣1},∵集合B={t|t使{x|x2+2tx﹣2t=0}=∅},∴△2=4t2﹣4(﹣2t)<0,∴B={t|﹣2<t<0},∴A∩B=(﹣2,﹣1);(2)∵g(α)=﹣sin2α+mcosα﹣2m,α∈[π,π],∴g(α)=﹣﹣2m,令t=cosα,则t∈[﹣1,0],∴h(m)=t2+mt﹣2m﹣1,∴﹣2<t2+mt﹣2m﹣1<﹣1,解得:﹣<m<﹣,由t∈[﹣1,0],得:0<m<故M={m|0<m<}.考点:交集及其运算;集合的表示法.19、试题分析:(1)先求出函数的对称轴,得到函数f(x)的单调性,求出其最大值和最小值,得到关于q的方程,解出即可;(2)分t<8,最大值是f(t);t<8,最大值是f(10);8≤t<10三种情况进行讨论,对于每一种情况,由区间长度是12﹣t求出t的值,验证范围后即可得到答案.解:(1)∵二次函数f(x)=x2﹣16x+q+3的对称轴为x=8,∴函数f(x)在区间[﹣1,1]上是减函数,∴f(x)max=f(﹣1)=20+q,f(x)min=f(1)=﹣12+q,由题意得:=﹣2,解得:q=;(2)当时,即0≤t≤6时,f(x)的值域为:[f(8),f(t)],即[q﹣61,t2﹣16t+q+3].∴t2﹣16t+q+3﹣(q﹣61)=t2﹣16t+64=12﹣t.∴t2﹣15t+52=0,∴t=.经检验不合题意,舍去.当时,即6≤t<8时,f(x)的值域为:[f(8),f(10)],即[q﹣61,q﹣57].∴q﹣57﹣(q﹣61)=4=12﹣t.∴t=8经检验t=8不合题意,舍去.当t≥8时,f(x)的值域为:[f(t),f(10)],即[t2﹣16t+q+3,q﹣57]∴q﹣57﹣(t2﹣16t+q+3)=﹣t2+16t﹣60=12﹣t∴t2﹣17t+72=0,∴t=8或t=9.经检验t=8或t=9满足题意,所以存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12﹣t.考点:二次函数的性质.20、试题分析:(1)利用三角函数中的恒等变换应用化简函数解析式可得f(x)=cos(2ωx+2φ+),令2ωx+2φ+=0,可得函数的一个最大值点O的坐标,令2ωx+2φ+=﹣,可得函数的一个最大值点O的左相邻的对称点A的坐标,令2ωx+2φ+=,可得函数的一个最大值点O的右相邻的对称点B的坐标,由|AB|2=2|OB|2,结合范围ω>0,解得.由cos(+2φ+)=0,结合范围0<φ<,可得φ=,可得函数解析式,由x∈[0,2]时,可得πx+∈[,],利用余弦函数的图象可得单调递减区间.(2)由(1)及配方法可得g(x)=+m﹣(sinπx+)2,由题意,m=(sinπx+)2﹣在x∈[,]时有解,利用正弦函数的有界性即可求解.解:(1)∵f(x)=cos2(ωx+φ)﹣cos(ωx+φ)•sin(ωx+φ+)﹣=﹣sin(2ωx+2φ)﹣﹣cos(2ωx+2φ)﹣=[cos(2ωx+2φ)﹣sin(2ωx+2φ)]=cos(2ωx+2φ+),∴函数周期T=,∵令2ωx+2φ+=0,可得函数的一个最大值点O的坐标为:(﹣,),令2ωx+2φ+=﹣,可得函数的一个最大值点O的左相邻的对称点A的坐标为:(﹣,0),令2ωx+2φ+=,可得函数的一个最大值点O的右相邻的对称点B的坐标为:(,0),∴由题意可得:|AB|2=2|OB|2,即得:()2=2[(+)2+(﹣)2],解得ω2=,∵ω>0,解得:.∴f(x)=cos(πx+2φ+),∵(,0)是f(x)的一个对称中心,即:cos(+2φ+)=0,∴+2φ+=kπ+,k∈Z,解得:φ=﹣,k∈Z,∴由0<φ<,可得:φ=.∴f(x)=cos(πx+),∵x∈[0,2]时,πx+∈[,],∴当利用余弦函数的图象可得,当πx+∈[π],πx+∈[2π,]时单调递减,即函数f(x)的单调递减区间为:[0,]∪[,2].(2)∵由(1)可得:f(x﹣)=cosπx,f(x﹣)=﹣sinπx.∴g(x)=f2(x﹣)+f(x﹣)+m=cos2πx﹣sinπx+m=+m﹣(sinπx+)2,∵g(x)在x∈[,]时有零点,即方程:+m﹣(sinπx+)2=0在x∈[,]时有解,∴m=(sinπx+)2﹣在x∈[,]时有解,∵x∈[,],sinπx∈[﹣1,],sinπx+∈[﹣,],(sinπx+)2∈[0,],∴m∈[﹣,﹣].考点:三角函数中的恒等变换应用;正弦函数的图象.21、试题分析:(1)根据函数的奇偶性和单调性的性质,即可求出t的值,从而求f(x)的解析式;(2)利于换元法,结合复合函数单调性之间的关系,即可得到结论.解:(1)∵在x∈(0,+∞)单调递增,∴﹣t2+2t+3>0,即t2﹣2t﹣3<0,得﹣1<t<3,∵t∈z,∴t=0,1,2,若t=0,则f(x)=x3为奇函数,不满足条件.若t=1,则f(x)=x4为偶函数,满足条件.若t=2,则f(x)=x3为奇函数,不满足条件.故f(x)的表达式为f(x)=x4;(2)∵f(x)=x4,∴g(x)=log a[a﹣x]=log a(ax2﹣x)设t=ax2﹣x,则y=log a t,若g(x)=log a[af(x)﹣x](a>0,且a≠1﹚在区间[2,4]上是单调递减函数,则t=ax2﹣x和y=log a t的单调性相反,若a>1,则t=ax2﹣x在区间[2,4]上是单调递减函数,则对称轴x=,即a,此时不满足条件.若0<a<1,则t=ax2﹣x在区间[2,4]上是单调递增函数,则对称轴x=,且当x=2时,t=4a﹣2>0,解得,即.考点:复合函数的单调性;奇偶性与单调性的综合;对数函数的图像与性质.22、试题分析:(1)化简所求表达式为正切函数的形式,代入求解即可.(2)利用同角三角函数基本关系式以及两角差的正弦函数化简求解即可.解:0<α<,tanα=(1)===20;(2)0<α<,tanα=,可得sinα=,cosα=,sin(﹣α)=cos sinα==.考点:三角函数的化简求值.23、试题分析:利用一元二次不等式的解法可化简集合A,利用绝对值不等式的解法可化简集合B,再利用集合的运算即可得出答案.解:对于集合A:由x2+2x﹣8>0,化为(x+4)(x﹣2)>0,解得x>2或x<﹣4,∴A=(﹣∞,﹣4)∪(2,+∞).对于集合B:由|x﹣a|<5,化为a﹣5<x<a+5,∴B=(a﹣5,a+5).∵A∪B=R,∴,解得﹣3≤a≤1.∴a的取值范围是[﹣3,1].考点:集合的包含关系判断及应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年重庆市部分区县高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.已知集合A={x|1<x≤3},B={x|x>2},则A∩B等于()A.{x|1<x≤2} B.{x|1≤x≤2} C.{x|1≤x≤3} D.{x|2<x≤3}2.计算sin45°cos15°+cos45°sin15°=()A.B. C.D.3.下列四个函数中,与y=x表示同一函数的而是()A.y=B.y=C.y=()2D.y=4.已知向量=(1,2),=(3,1),则与的夹角为()A.30°B.45°C.120°D.135°5.若a=30.5,b=ln2,c=log3sin,则下列不等式正确的是()A.a>b>c B.b>a>c C.b>c>a D.c>a>b6.已知函数f(x)=若f(a)=,则a=()A.﹣1 B.C.﹣1或 D.1或7.函数f(x)=2x+4x﹣3的零点所在区间是()A.(,) B.(﹣,0)C.(0,)D.(,)8.函数f(x)=sin(2x﹣)的图象向左平移个单位,再将图象上各点的横坐标压缩为原来的,那么所得图象的函数表达式为()A.y=sinx B.y=sin(x+)C.y=sin(4x+)D.y=sin(4x+)9.若函数y=f(x)的图象如图所示,则函数y=f(1﹣x)的图象大致为()A.B.C.D.10.函数y=sin(ωx+φ)(ω>0,|φ|<)的图象的一部分如图所示,则ω、φ的值分别为()A.1,B.2,C.1,﹣D.2,﹣11.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.B.2或﹣ C.或﹣D.2或﹣或﹣12.设f(x)是定义在R上的偶函数,且f(2+x)=f(2﹣x),当x∈[﹣2,0]时,f(x)=()x﹣1,若在区间(﹣2,6)内,函数y=f(x)﹣log a(x+2),(a>0,a≠1)恰有1个零点,则实数a 的取值范围是()A.(1,4)B.(4,+∞)C.(,1)∪(4,+∞)D.(0,1)∪(1,4)二、填空题:本大题共4小题,每小题5分,共20分.13.已知全集U=R,集合M={y|y=x2﹣1,x∈R},则∁U M=.14.函数的定义域为.15.已知向量,,满足•=0,||=2,||=1,则|+2|=.16.给出下列四个命题:①对于向量、、,若∥,∥,则∥;②若角的集合A={α|α=+,k∈N}.B={β|β=kπ±,k∈Z},则A=B;③函数y=2x的图象与函数y=x2的图象有且仅有2个公共点;④将函数f(﹣x)的图象向右平移2个单位,得到f(﹣x+2)的图象.其中真命题的序号是.(请写出所有真命题的序号)三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知A={x|1<2x<4},B={x|log2x>0}.(1)求A∪B;(2)若记符号A﹣B={x|x∈A且x∉B},求B﹣A.18.已知sin(x+)=,且x∈(0,).(1)求tanx的值;(2)求的值.19.已知是平面内两个不共线的非零向量,,,,且A,E,C三点共线.(1)求实数λ的值;(2)若=(2,1),=(2,﹣2),求的坐标.20.某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=,其中x是仪器的月产量.(注:总收益=总成本+利润)(1)将利润x表示为月产量x的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?21.在△ABC中,角A,B,C分别为三个内角,B=2A,向量=(cosA,﹣sinB),向量=(cosB,sinA),且向量⊥.(1)求角B的大小;(2)设f(x)=cos(ωx﹣)+sinωx(ω>0),且f(x)的最小正周期为π,求f(x)的单调递增区间及f(x)在[0,]上的最大值.22.已知函数f(x)=(m∈Z)为偶函数,且在(0,+∞)上为增函数.(1)求m的值,并确定f(x)的解析式;(2)若g(x)=log a[f(x)﹣ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,求出a的值,若不存在,请说明理由.2015-2016学年重庆市部分区县高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.已知集合A={x|1<x≤3},B={x|x>2},则A∩B等于()A.{x|1<x≤2} B.{x|1≤x≤2} C.{x|1≤x≤3} D.{x|2<x≤3}【考点】交集及其运算.【专题】计算题.【分析】直接根据交集的定义求解即可.【解答】解:因为集合A={x|1<x≤3},B={x|x>2},所以集合A∩B={x|1<x≤3}∩{x|x>2}={x|2<x≤3}.故选:D.【点评】本题主要考查集合的交并补运算,一般在高考题中出现在前三题的位置中,属于基础题目.2.计算sin45°cos15°+cos45°sin15°=()A.B. C.D.【考点】两角和与差的正弦函数.【专题】三角函数的求值.【分析】利用两角和与差的正弦公式求得答案.【解答】解:sin45°cos15°+cos45°sin15°=sin(45°+15°)=sin60°=,故选D.【点评】本题主要考查了两角和与差的正弦函数公式.属基础题.3.下列四个函数中,与y=x表示同一函数的而是()A.y=B.y=C.y=()2D.y=【考点】判断两个函数是否为同一函数.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】根据同一函数的定义:定义域相同,值域相同,解析式相同,判断即可得到结果.【解答】解:与y=x表示同一函数的是y=,故选:D.【点评】此题考查了判断两个函数是否为同一函数,弄清同一函数的定义是解本题的关键.4.已知向量=(1,2),=(3,1),则与的夹角为()A.30°B.45°C.120°D.135°【考点】平面向量数量积的运算.【专题】计算题;对应思想;向量法;平面向量及应用.【分析】利用平面向量的数量积公式解答即可.【解答】解:cos<>===,所以与的夹角为45°;故选:B.【点评】本题考查了平面向量的数量积公式是运用求两个向量的夹角;属于基础题.5.若a=30.5,b=ln2,c=log3sin,则下列不等式正确的是()A.a>b>c B.b>a>c C.b>c>a D.c>a>b【考点】对数值大小的比较.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用指数函数、对数函数的性质求解.【解答】解:∵a=30.5>30=1,0=ln1<b=ln2<lne=1,c=log3sin<log31=0,∴a>b>c.故选:A.【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的性质的合理运用.6.已知函数f(x)=若f(a)=,则a=()A.﹣1 B.C.﹣1或 D.1或【考点】分段函数的解析式求法及其图象的作法;函数的值.【分析】按照分段函数的分类标准,在各个区间上,构造求解,并根据区间对所求的解,进行恰当的取舍.【解答】解:令f(a)=则或,解之得a=或﹣1,故选:C.【点评】已知函数值,求对应的自变量值,是根据方程思想,构造方程进行求解.对于分段函数来说,要按照分段函数的分类标准,在各个区间上,构造求解,并根据区间对所求的解,进行恰当的取舍.7.函数f(x)=2x+4x﹣3的零点所在区间是()A.(,) B.(﹣,0)C.(0,)D.(,)【考点】二分法求方程的近似解.【专题】函数的性质及应用.【分析】据函数零点的判定定理,判断出f()与f()的符号相反,即可求得结论.【解答】解:∵函数f(x)=2x+4x﹣3的图象是连续的,且在定义域R上为增函数,又∵f()=﹣2<0,f()=>0,故函数f(x)=2x+4x﹣3的零点所在区间是(,),故选:A.【点评】本题考查函数的零点的判定定理,解答关键是熟悉函数的零点存在性定理,属基础题.8.函数f(x)=sin(2x﹣)的图象向左平移个单位,再将图象上各点的横坐标压缩为原来的,那么所得图象的函数表达式为()A.y=sinx B.y=sin(x+)C.y=sin(4x+)D.y=sin(4x+)【考点】函数y=Asin(ωx+φ)的图象变换.【专题】转化思想;综合法;三角函数的图像与性质.【分析】由条件利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:把函数f(x)=sin(2x﹣)的图象向左平移个单位,可得y=sin[2(x+)﹣]=sin (2x+)的图象,再将图象上各点的横坐标压缩为原来的,那么所得图象的函数表达式为y=sin(4x+),故选:D.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.9.若函数y=f(x)的图象如图所示,则函数y=f(1﹣x)的图象大致为()A.B.C.D.【考点】函数的图象与图象变化.【专题】压轴题;数形结合.【分析】先找到从函数y=f(x)到函数y=f(1﹣x)的平移变换规律是:先关于y轴对称得到y=f (﹣x),再整体向右平移1个单位;再画出对应的图象,即可求出结果.【解答】解:因为从函数y=f(x)到函数y=f(1﹣x)的平移变换规律是:先关于y轴对称得到y=f (﹣x),再整体向右平移1个单位即可得到.即图象变换规律是:①→②.故选:A.【点评】本题考查了函数的图象与图象的变换,培养学生画图的能力,属于基础题,但也是易错题.易错点在于左右平移,平移的是自变量本身,与系数无关.10.函数y=sin(ωx+φ)(ω>0,|φ|<)的图象的一部分如图所示,则ω、φ的值分别为()A.1,B.2,C.1,﹣D.2,﹣【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】计算题;三角函数的图像与性质.【分析】根据函数一个零点和与之最近的最小值点之间的距离,求出T==π,算出ω=2得到表达式为y=sin(2x+φ),再由函数的最小值,将(,﹣1)代入解出φ=,即可得到本题的答案.【解答】解:∵函数的一个零点为x=,与之最近的最小值点为x=∴函数的周期T==4(﹣),即=π,可得ω=2函数表达式为y=sin(2x+φ),∵x=时,函数的最小值为﹣1∴2×+φ=﹣+2kπ,可得φ=﹣+2kπ,(k∈Z)∵|φ|<,∴取k=1,得φ=故选:B【点评】本题给出三角函数的部分图象,求函数的表达式,着重考查了三角函数的图象与性质、由y=Asin(ωx+φ)的部分图象确定其解析式等知识,属于基础题.11.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.B.2或﹣ C.或﹣D.2或﹣或﹣【考点】二次函数的性质.【专题】计算题;分类讨论;分析法;函数的性质及应用.【分析】求出二次函数的对称轴为x=m,再分对称轴在区间[﹣2,1]的左侧、中间、右侧三种情况,分别根据当﹣2≤x≤1时y的最大值为4,求得m的值,综合可得结论.【解答】解:∵二次函数y=﹣(x﹣m)2+m2+1的对称轴为x=m,﹣2≤x≤1,当m<﹣2时,函数f(x)在[﹣2,1]上是减函数,函数的最大值为f(﹣2)=﹣(2﹣m)2+1+m2=4,求得m=,舍去;当﹣2≤m≤1时,函数f(x)的最大值为f(m)=1+m2=4,求得m=﹣(舍去).当m>1时,函数f(x)在[﹣2,1]上是增函数,函数的最大值为f(1)=﹣(1﹣m)2+1+m2=4,求得m=2.综上可得,m=2或﹣.故选:B.【点评】本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,体现了分类讨论的数学思想,属于中档题.12.设f(x)是定义在R上的偶函数,且f(2+x)=f(2﹣x),当x∈[﹣2,0]时,f(x)=()x﹣1,若在区间(﹣2,6)内,函数y=f(x)﹣log a(x+2),(a>0,a≠1)恰有1个零点,则实数a 的取值范围是()A.(1,4)B.(4,+∞)C.(,1)∪(4,+∞)D.(0,1)∪(1,4)【考点】函数奇偶性的性质.【专题】数形结合法;函数的性质及应用.【分析】由f(x)是定义在R上的偶函数,且f(2+x)=f(2﹣x),推出函数f(x)是以4为最小正周期的函数,结合题意画出在区间(﹣2,6)内函数f(x)和y=log a(x+2)的图象,注意对a讨论,分a>1,0<a<1,结合图象即可得到a的取值范围.【解答】解:∵f(x)是定义在R上的偶函数,∴f(﹣x)=f(x),又f(2+x)=f(2﹣x),即f(x+4)=f(﹣x)∴f(x+4)=f(x),则函数f(x)是以4为最小正周期的函数,∵当x∈[﹣2,0]时,f(x)=()x﹣1,f(x)是定义在R上的偶函数,∴当x∈[0,2]时,f(x)=()﹣x﹣1,结合题意画出函数f(x)在x∈(﹣2,6)上的图象与函数y=log a(x+2)的图象,结合图象分析可知,要使f(x)与y=log a(x+2)的图象,恰有1个交点,则有0<a<1或,解得0<a<1或1<a<4,即a的取值范围是(0,1)∪(1,4).故选:D.【点评】本题主要考查函数的奇偶性和周期性及其运用,同时考查数形结合的数学思想方法,以及对底数a的讨论,是一道中档题.二、填空题:本大题共4小题,每小题5分,共20分.13.已知全集U=R,集合M={y|y=x2﹣1,x∈R},则∁U M={y|y<﹣1}.【考点】补集及其运算.【专题】对应思想;定义法;集合.【分析】先化简集合M,再根据补集的定义求出∁U M.【解答】解:全集U=R,集合M={y|y=x2﹣1,x∈R}={y|y≥﹣1},∁U M={y|y<﹣1}.故答案为:{y|y<﹣1}.【点评】本题考查了补集的定义与运算问题,是基础题目.14.函数的定义域为[2,+∞).【考点】函数的定义域及其求法;对数函数的定义域.【专题】计算题.【分析】函数的定义域为,由此能求出结果.【解答】解:函数的定义域为,解得x≥2.故答案为:[2,+∞).【点评】本题考查函数的定义域及其求法,解题时要认真审题,仔细解答.15.已知向量,,满足•=0,||=2,||=1,则|+2|=4.【考点】平面向量数量积的运算.【专题】计算题;集合思想;平面向量及应用.【分析】根据题意,由数量积的运算性质可得|+2|2=(+2)2=2+4•+42=||2+4•+4||2,代入数据可得|+2|2的值,进而可得答案.【解答】解:根据题意,|+2|2=(+2)2=2+4•+42=||2+4•+4||2=8,则|+2|=4,故答案为:4.【点评】本题考查平面向量数量积的运算,掌握数量积的有关运算性质是解题的关键.16.给出下列四个命题:①对于向量、、,若∥,∥,则∥;②若角的集合A={α|α=+,k∈N}.B={β|β=kπ±,k∈Z},则A=B;③函数y=2x的图象与函数y=x2的图象有且仅有2个公共点;④将函数f(﹣x)的图象向右平移2个单位,得到f(﹣x+2)的图象.其中真命题的序号是②④.(请写出所有真命题的序号)【考点】命题的真假判断与应用.【专题】阅读型;函数的性质及应用;平面向量及应用;集合.【分析】由于可为零向量,而零向量与任何向量共线,即可判断①;对k讨论为奇数或偶数,分解集合A,判断A,B的关系,即可判断②;写出函数y=2x的图象与函数y=x2的图象的第一象限的交点,令f(x)=2x﹣x2,运用零点存在定理,得到f(x)在(﹣1,0)上有零点,即可判断③;由图象平移的规律,左右平移一定针对自变量x而言,即可判断④.【解答】解:①对于向量、、,若∥,∥,则,的位置关系不确定,由于可为零向量,而零向量与任何向量共线,故①错;②若k=2n,则α=nπ+,若k=2n﹣1,则α=n,n∈Z,则A=B,故②对;③函数y=2x的图象与函数y=x2的图象有交点(2,4),(4,16),当x<0时,令f(x)=2x﹣x2,由于f(﹣1)<0,f(0)>0,即f(x)在(﹣1,0)上有零点,故③错;④将函数f(﹣x)的图象向右平移2个单位,得到f(﹣(x﹣2))的图象,故④对.故答案为:②④【点评】本题考查向量的共线,注意零向量的特点,考查函数的图象的平移和图象的交点,注意运用零点存在定理,同时考查集合的相等,属于基础题.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知A={x|1<2x<4},B={x|log2x>0}.(1)求A∪B;(2)若记符号A﹣B={x|x∈A且x∉B},求B﹣A.【考点】交、并、补集的混合运算.【专题】计算题;集合思想;综合法;集合.【分析】(1)通过解不等式1<2x<4=22、log2x>0可知A=(0,2)、B=[1,+∞),进而计算可得结论;(2)通过(1)可知A=(0,2)、B=[1,+∞),进而利用B﹣A的定义计算即得结论.【解答】解:(1)∵1<2x<4=22,∴0<x<2,A=(0,2),∵log2x>0,∴x>1,B=[1,+∞),∴A∪B=(0,+∞);(2)由(1)可知A=(0,2)、B=[1,+∞),∴B﹣A={x|x∈B且x∉A}=[2,+∞).【点评】本题考查集合的交、并、补集的混合运算,考查运算求解能力,注意解题方法的积累,属于基础题.18.已知sin(x+)=,且x∈(0,).(1)求tanx的值;(2)求的值.【考点】同角三角函数基本关系的运用.【专题】转化思想;转化法;三角函数的求值.【分析】(1)利用诱导公式与同角三角函数基本关系式即可得出;(2)利用同角三角函数基本关系式、“弦化切”即可得出.【解答】解:(1)∵sin(x+)=,且x∈(0,).∴cosx=,sinx==.∴tanx==.(2)====7.【点评】本题考查了诱导公式、同角三角函数基本关系式、“弦化切”方法,考查了推理能力与计算能力,属于中档题.19.已知是平面内两个不共线的非零向量,,,,且A,E,C三点共线.(1)求实数λ的值;(2)若=(2,1),=(2,﹣2),求的坐标.【考点】平面向量的基本定理及其意义.【专题】平面向量及应用.【分析】本题(1)可以利用三点共线,得到向量的线性关系,解出λ的值,得到本题结论;(2)利用向量和,用,表示,利用,的坐标,得到的坐标,得到本题结论.【解答】解:(1)∵,,∴==+=.∵A,E,C三点共线,∴存在m∈R,使得,∵,∴=.∴=.∵是平面内两个不共线的非零向量,∴,∴,∴实数λ的值为:.(2)∵,,λ=,∴.∵=(2,1),=(2,﹣2),∴=(﹣6,﹣3)+(﹣1,1)=(﹣7,﹣2).∴的坐标为:(﹣7,﹣2).【点评】本题考查了向量共线和向量的坐标运算,本题难度不大,属于基础题.20.某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=,其中x是仪器的月产量.(注:总收益=总成本+利润)(1)将利润x表示为月产量x的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?【考点】函数模型的选择与应用.【专题】函数的性质及应用.【分析】(1)根据利润=收益﹣成本,由已知分两段当0≤x≤400时,和当x>400时,求出利润函数的解析式;(2)根据分段函数的表达式,分别求出函数的最大值即可得到结论.【解答】解:(1)由于月产量为x台,则总成本为20000+100x,从而利润f(x)=;(2)当0≤x≤400时,f(x)=300x﹣﹣20000=﹣(x﹣300)2+25000,∴当x=300时,有最大值25000;当x>400时,f(x)=60000﹣100x是减函数,∴f(x)=60000﹣100×400<25000.∴当x=300时,有最大值25000,即当月产量为300台时,公司所获利润最大,最大利润是25000元.【点评】本题主要考查函数的应用问题,根据条件建立函数关系,利用分段函数的表达式结合一元二次函数的性质求出函数的最值是解决本题的关键.21.在△ABC中,角A,B,C分别为三个内角,B=2A,向量=(cosA,﹣sinB),向量=(cosB,sinA),且向量⊥.(1)求角B的大小;(2)设f(x)=cos(ωx﹣)+sinωx(ω>0),且f(x)的最小正周期为π,求f(x)的单调递增区间及f(x)在[0,]上的最大值.【考点】平面向量数量积的运算;三角函数中的恒等变换应用;正弦函数的图象.【专题】计算题;函数思想;综合法;三角函数的图像与性质;平面向量及应用.【分析】(1)由向量垂直得到关于A的等式求出B;(2)利用(1)的结论,化简三角函数式,求单调区间和最值.【解答】解:(1)由已知B=2A,向量=(cosA,﹣sinB),向量=(cosB,sinA),且向量⊥.得到=cosAcosB﹣sinBsinA=cos(A+B)=cos3A=0,所以3A=,A=,B=;(2)f(x)=cos(ωx﹣)+sinωx=cos(ωx﹣)+sinωx==,(ω>0),因为f(x)的最小正周期为π,所以,解得ω=2;所以f(x)=,令2x+∈[],所以x∈[],所以f(x)的单调递增区间为[];当x∈[0,],2x+∈[],所以sin(2x+)在[0,]上的最大值为.【点评】本题考查了平面向量的数量积以及三角函数的性质的运用;关键是正确化简三角函数式为最简形式,利用正弦函数的性质求单调区间以及最值.22.已知函数f(x)=(m∈Z)为偶函数,且在(0,+∞)上为增函数.(1)求m的值,并确定f(x)的解析式;(2)若g(x)=log a[f(x)﹣ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,求出a的值,若不存在,请说明理由.【考点】复合函数的单调性;奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】(1)由幂函数在(0,+∞)上为增函数且m∈Z求出m的值,然后根据函数式偶函数进一步确定m的值,则函数的解析式可求;(2)把函数f(x)的解析式代入g(x)=log a[f(x)﹣ax],求出函数g(x)的定义域,由函数g (x)在区间[2,3]上有意义确定出a的范围,然后分类讨论使g(x)在区间[2,3]上的最大值为2的a的值.【解答】解:(1)由函数在(0,+∞)上为增函数,得到﹣2m2+m+3>0解得,又因为m∈Z,所以m=0或1.又因为函数f(x)是偶函数当m=0时,f(x)=x3,不满足f(x)为偶函数;当m=1时,f(x)=x2,满足f(x)为偶函数;所以f(x)=x2;(2),令h(x)=x2﹣ax,由h(x)>0得:x∈(﹣∞,0)∪(a,+∞)∵g(x)在[2,3]上有定义,∴0<a<2且a≠1,∴h(x)=x2﹣ax在[2,3]上为增函数.当1<a<2时,g(x)max=g(3)=log a(9﹣3a)=2,因为1<a<2,所以.当0<a<1时,g(x)max=g(2)=log a(4﹣2a)=2,∴a2+2a﹣4=0,解得,∵0<a<1,∴此种情况不存在,综上,存在实数,使g(x)在区间[2,3]上的最大值为2.【点评】本题考查了幂函数的单调性和奇偶性,考查了复合函数的单调性,考查了分类讨论的数学思想方法,训练了利用函数的单调性求函数的最值,是中档题.。

相关文档
最新文档