注意:(1)主视图与左视图

合集下载

三视图1

三视图1

视图的的长度一样,侧视图和俯视图的宽度一样.
高平齐
正视图 正视图 侧 视 图
侧视图
高度
长对正
长度
宽相等
宽度
俯视图
俯视图
精彩例题
画出如图所示四棱锥的三视图。
高平齐
长对正 正视图
1、确定主视图的位置,画出主视图。 2、在主视图下方画出俯视图, 注意主、俯视图“长对正” 3、在主视图右方画出左视图, 注意主、左视图“高平齐”; 俯、左视图“宽相等”. 4、可见轮廓线画实线, 5.同一物体放置的位置不同,所画的三视 俯图可能不同. 视图
是一个正六边形和一个圆(中心重
合).
它 的 三 视 图 如 图
A
B
C
D
主视图
左视图
俯视图
例5 画出如图所示组合体的三视图.
解:这是一个轴承架的模型(有轴承
孔),它是由两个长方体和一个半圆 柱体拼接而成,并挖去了一个与该半 圆柱同心的圆柱(形成圆孔).它的 视图是轴对称图形,轴承架上的圆孔,
在主视图和俯视图中为不可见轮廓线,
主视图
左视图
俯视图 【解析】由俯视图可知该几何体是多面体,结合主 视图、左视图可知该几何体是正六棱锥.
5.根据三视图判断几何体
主 视 图 左 视 图
四 棱 柱
俯视图
1.三视图之间的投影规律:
主视图与俯视图------长对正.
主视图与左视图------高平齐.
俯视图与左视图------宽相等.
2.画几何体的三视图时,能看得见的轮廓线或棱用实 线表示,不能看见的轮廓线或棱用虚线表示.
从上面看
从左面看
从正面看
主视图
左视图
俯视图

主视图、左视图、俯视图(1)

主视图、左视图、俯视图(1)
图) 画(能画出简单物体的三个视

横看成岭侧成峰, 远近高低各不同.
不识庐山真面目, 只缘身在此山中. ——苏轼
(1)从上面、左面、正面看一个
圆柱,看到的图形分别是什么?
从 上 面 看
从上面看
从左面看
从左面看
从正面看 立体图形
平面图形
(2)从正面、左面、上面看一个四
棱锥,看到的图形分别是什么?
从 上 面 看
从上面看
从左面看
A.甲在丁的对面,乙在甲的左边,丙在丁的右边 B.丙在乙的对面,丙的左边是甲,右边是乙 C.甲在乙的对面,甲的右边是丙,左边是丁 D.甲在丁的对面,乙在甲的右边,丙在丁的右边
9
解:由图可知应选择D.
回 头 一 看 , 我 想 说 …
你有哪些收获呢? 学会两个基本功: 看(能看出是哪一种视图) 与大家共分享!
( 1)
( 2) 主视图
( 3) 俯视图
左视图
从三个方向看

高 宽
主俯长相等
主视图 左视图
主左高平齐 俯左宽相等
从上面看

俯视图
从左面看
从正面看
小 心 地 试 一 试
如右图所示的三棱柱的 主视图为 (1) ; 俯视图为 (3) ; 左视图为 (2) .
从左面看
从 上 面 看
( 1)
( 2)
( 3)
从左面看
从正面看 立体图形 平面图形
(1)桌面上放着 一个圆柱和一个长方 体,请说出下面三幅 从左面看 图分别是从哪一个方 向看到的?
从 上 面 看
( 1) 从左面看
( 2) 从正面看
( 3) 从上面看
(2)桌上放着 一个长方体、一个 棱锥和一个圆柱, 请说出下面的三幅 图分别是从哪个方 向看到的?

机械制图-三视图

机械制图-三视图

三个视图
V
H
W
三投影面体系: 在两投影面
体系的基础上, 再增加一个同时 与V、H面都垂直 的W面。
三个视图
V
W
H 把物体放在三投影面体系中,用正投影法得到 物体的三个投影,称为三视图。
三个视图
V W
H
三个投影面的名称
V
主视图
左视图 W
450
H
俯视图
第三分角
第II分角
V
第I分角 W 第III分角
三视图
三视图的形成
视图的形成 用正投影法, 将物体投影到 某一投影面上, 称为视图。
一个视图 不能唯一确定物体的形状
两个视图
V
H
两投影面体系V/H: 两个投影面相互垂 直,物体在两投影 面体系中可得到物 体的两个投影。
投影面的展开: V面不动 H面向下转动90度
两个视图
两个视图 也不能唯一确定物体的形状
H
第V分角
第三分角
把三个视图展开
H 顶视图
前视图 V
右视图 W
三视图的投影规律
图和物 体方位 的关系
视图与 视图的 关系
2.三视图的投影规律
图和物体大小的关系
长 宽
V 主视图
左视图

W









俯视图

450

H
2.三视图的投影规律
图和物体方位的关系 左视图
V 主视图

上W
主俯分左右 主左看上下 俯左辨前后

右后 前
下 后


左 H 俯视图 前

主视图、左视图、俯视图(1)

主视图、左视图、俯视图(1)
2.三视图的特点: 主俯长对正; 主左高平齐; 俯左宽相等.
三 视 图
主视图 左视图 俯视图
例:把如图所示物体 的主视图、左视图、俯视图
的名称填在相应的括号内.
( 左视图)
( 主视图 )
(俯视图 )
练:把如图所示物体的主视图、左视图、 俯视图的名称填在相应的括号内.
( 左视图 ) (主视图) (俯视图 )
练:从三个方向看右图,得到
以下三个图形,请同学们说出 哪一个是主视图? 哪一个是左视图? 哪一个是俯视图?




俯视图
球与正方体的 三视图呢?
左视图
三棱锥与五棱柱 的三视图呢?
主视图
立体图形
平面图形
2.分别画出图中三个物体的主视图、左视图、 俯视图.
(1)
(2)
(3)
解:(1)如图:
主视图
左视图
俯视图
解:(2)如图:
主视图 俯视图
左视图
解:(3)如图:
主视图
左视图
俯视图
看谁画得好
画出左图的主视图、 左视图、俯视图
左视图
主视图
俯视图
1.观察下表中所示的物体,并将看到的图形画入表中.
物体
观察角度
圆柱
(主视图)
从正面看
(左视图)
从左面看
(俯视图)
从上面看
圆锥
棱柱
.
长 高
主视图

左视图
“主俯长对正” “主左高平齐” “左俯宽相等”
从上面看 宽
俯视图
从左面看
从正面看
从左面看
1.从正面、左面、上面看一个 四棱锥,看到的图形分别是什么?

5.4主视图、左视图、俯视图(2)

5.4主视图、左视图、俯视图(2)

主视图
左视图
俯视图
请同学们观察这个几何体,再画出 它的主视图、左视图和俯视图。
从上面看 从左面看 解: 所求三视图如图
主视图
左视图
从正面看
俯视图
(1)桌面上放着一个 圆柱和一个长方体,请说 出下面三幅图分别是从哪 一个方向看到的?
从 上 面 看 从左面看
( 1) 从左面看
( 2) 从正面看
( 3) 从上面看
主视图
a a b
h
h
b h
左视图
俯视图
a
b
主视图
a a b
h
h
b h
左视图
俯视图
a
b
一个长方体的立体图如图 所示,请画它的三视图.
解: 所求三视图如图
主视方向 注意:要
主视图
左视图
写上各视 图的名称
俯视图
几种基本立体图形三视图 1.圆柱、圆锥、球的三视图
几何体 主视图 左视图 俯视图
·
几种基本立体图形的三视图 2.棱柱、棱锥的三视图
义务教育课程标准实验教科书
数 学
七年级(上册)
江苏科学技术出版社
5.4主视图、左视图、俯 视图
复习回顾:
我们从不同的方向观察同一个物 体时,可能看到不同的图形.为了能完 整确切地表达物体的形状和大小,必须 从多方面观察物体.在几何中,我们通 常选择从正面、上面、左面三个方向 观察物体。 这样就把一个立体图形用几个平 面图形来描述
几何体 主视图 左视图 俯视图
想一想:
从上面看 从左面看 从正面看 俯视图 主视图 左视图
试一试:
1. 如图,桌上放着一个物体:
下面三幅图分别是从哪个方向看到 的?请说出这三个视图的名称.

三视图基础

三视图基础
主视俯视长相等且对正 俯视左视宽相等且对应 主视左视高相等且平齐
三等关系
长对正 宽相等 高平齐

3.三视图之间的方位对应关系
上 左 右 后


下 后 左
前 右

主视图反映:上、下
、左、右
俯视图反映:前、后 、左、右
左视图反映:上、下 、前、后
3.2 基本体的形成及其三视图
常 见 的 基 本 几 何 体 平面 基本体
如图,正方体的三视图都是正方形。
正视图
左视图
俯视图

如图,圆柱的主 视图和左视图都是长 方形,俯视图是圆。
主视图
左视图
俯视图
1.说出圆锥和球的三视图各是什么图形.
( 第1题 )
( 第1题 )
( 第2题 )
2.已知一个直三棱柱的底面是等腰直角三角形,如 图.请画出它的三视图.
在生活和生产实践中,我们经常需要运用 三视图来描述物体的形状和大小,如图3-17所 示就是图形3-16所示的热水瓶的三视图.
图3-16
图3-17
从图3-16、图3-17可以看出,在三视图中, 主视图和俯视图共同反映了物体左右方向的尺 寸, 通常称之为“长对正”;主视图和左视图 共同反映了物体上下方向的尺寸,通常称之为 “高平齐”;俯视图和左视图共同反映了物体 前后方向的尺寸,通常称之为“宽相等” “长对正、高平齐、宽相等”是画三视图 必须遵循的法则.在画三视图时,我们一般先画 主视图,再把左视图画在主视图的右边,把俯视 图画在主视图的下面.
(3).根据长对正,高平齐,宽相等的原则找出 三个视图中的对应关系,重现实体 看下面的几个例子
圆柱轮廓素线
⒉ 利用线框,分析表面相对位置关系。

三视图教学(1)

三视图教学(1)

主视图
俯视图
左视图
主视图
俯视图 左视图
主视图
現在你能画出正方 体的三视图吗?
理一理:
1、从正面看到的图形叫做主视图, 从上面看到的图形叫做俯视图,从 左面看到的图形叫做左视图。 2、画三视图必须遵循的法则: “长对齐,高平齐,宽相等”
从上面看
从左面看
从正面看
主视图
左视图
俯视图
想一想,再动手画一画:
主视图
左 视 图 俯视图
画出下面几何体的主视图、左视图与俯视图
主视图
左视图
俯视图
画出下面几何体的主视图、左视图与俯视图
主视图
左视图
俯视图
利用骰子,摆成下面的图形,分别从正面、左面、上 面观察这个图形,各能得到什么平面图形?
主视图
左视图
俯视图
探究
3、下列图中,不是正方体的表面展开图的是( C ) 摺紙箱遊戲
三视图是主视图、俯视图、左视图的 统称。它是从三个方向分别表示物体形状 的一种常用视图。
三视图(1)
从左面看
从上面看 主视图 左视图 高
主视图
正面



俯视图
从正面看
P116 三视图(2)
主视图
主视图 左视图 高
正面
长 宽 俯视图

从上面看
从左边看
俯视图
长方体
左视图
从正面看
主视图
俯视图
左视图
练一练: 画出圆柱 的三视图
圆柱的形成
空间想象力
2. 正 视 图 左 视 图
试一试
俯 视 图
空间想象力 正视图
试一试
侧视图
俯视图

中考数学考点33视图与投影(解析版)

中考数学考点33视图与投影(解析版)

视图与投影【命题趋势】中考视图与投影仍是考查重点内容.尤其视图与投影与实际生活有关系的应用问题。

在中考的难度不大.分数约占3-6分左右。

【中考考查重点】一、投影二、三视图的判断三、立体图形的展开与折叠考点:投影1.投影:在光线的照射下.空间中的物体落在平面内的影子能够反映出该物体的形状和大小.这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光源下形成的物体的投影叫做中心投影.点光源叫做投影中心.【注意】灯光下的影子为中心投影.影子在物体背对光的一侧.等高的物体垂直于地面放置时.在灯光下.离点光源近的物体的影子短.离点光源远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影.在平行投影下.同一时刻两物体的影子在同一方向上.并且物高与影长成正比.(3)正投影:投射线与投影面垂直时的平行投影.叫做正投影.1.(2021•淮南模拟)下列现象中.属于中心投影的是()A.白天旗杆的影子B.阳光下广告牌的影子C.舞台上演员的影子D.中午小明跑步的影子【答案】C【解答】解:A、白天旗杆的影子为平行投影.所以A选项不合题意;B、阳光下广告牌的影子为平行投影.所以B选项不合题意;C、舞台上演员的影子为中心投影.所以C选项符合题意;D、中午小明跑步的影子为平行投影.所以D选项不合题意.故选:C.2.(2020•南岸区模拟)如图.在直角坐标系中.点P(2.2)是一个光源.木杆AB两端的坐标分别为(0.1).(3.1).则木杆AB在x轴上的投影长为()A.3B.5C.6D.7【答案】C【解答】解:延长P A、PB分别交x轴于A′、B′.作PE⊥x轴于E.交AB于D.如图.∵P(2.2).A(0.1).B(3.1).∴PD=1.PE=2.AB=3.∵AB∥A′B′.∴△P AB∽△P A′B′.∴=.即=.∴A′B′=6.故选:C.3.(2020•青白江区模拟)如图.夜晚路灯下有一排同样高的旗杆.离路灯越近.旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化【答案】B【解答】解:由图易得AB<CD.那么离路灯越近.它的影子越短.故选:B.考点:视图1.视图:由于可以用视线代替投影线.所以物体的正投影通常也称为物体的视图.2.三视图:1)主视图:从正面看得到的视图叫做主视图.2)左视图:从左面看得到的视图叫做左视图.3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中.主视图反映物体的长和高.左视图反映了物体的宽和高.俯视图反映了物体的长和宽.3.三视图的画法1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正.主左高平齐.左俯宽相等”.2)注意实线与虚线的区别:能看到的线用实线.看不到的线用虚线.4.(2021秋•淮安期末)某物体的三视图如图所示.那么该物体形状可能是()A.圆柱B.球C.正方体D.长方体【答案】A【解答】解:根据三视图的知识.正视图以及左视图都为矩形.俯视图是一个圆.易判断该几何体是圆柱.故选:A.5.(2021秋•高州市校级期末)如图所示的几何体的左视图是()A.B.C.D.【答案】C【解答】解:根据左视图的定义可知.这个几何体的左视图是一个正方形.正方形的内部的右上角是一个小正方形.故选:C.6.(2022•本溪模拟)如图所示的移动台阶.它的左视图是()A.B.C.D.【答案】D【解答】解:从左面看.是一个矩形.矩形内部有两条横向的虚线.故选:D考点:几何体的展开与折叠1.常见几何体的展开图几何体立体图形表面展开图侧面展开图圆柱圆锥.正方体的展开图正方体有11种展开图.分为四类:第一类.中间四连方.两侧各有一个.共6种.如下图:第二类.中间三连方.两侧各有一、二个.共3种.如下图:第三类.中间二连方.两侧各有二个.只有1种.如图10;第四类.两排各有三个.也只有1种.如图11.7.(2021•宁波模拟)某几何体的三视图如图所示.则它的表面展开图是()A.B.C.D.【答案】D【解答】解:这个几何体是正三棱柱.表面展开图如下:.故选:D.8.下列图形中.不是正方体的展开图形的是()A.B.C.D.【答案】C【解答】解:正方体共有11种表面展开图.A、B、D能围成正方体;C不能.折叠后有两个面重合.不能折成正方体.故选:C.9.在图中剪去1个小正方形.使得到的图形经过折叠能够围成一个正方体.则要剪去的正方形对应的数字是()A.1B.2C.3D.4【答案】B【解答】解:由正方体的平面展开图得.要剪去的正方形对应的数字是2.、故选:B1.北京冬奥会的吉祥物是一只叫冰墩墩的熊猫.这次冰墩墩的3D设计.就是将熊猫拟人化.含义就是告诉全世界的人.中国是一个社会和谐.人们生活富裕的国家.如图是正方体的展开图.每个面内都写有汉字.折叠成立体图形后“冬”的对面是()A.奥B.会C.吉D.祥【答案】D【解答】解:∵正方体的平面展开图中.相对面的特点是之间一定相隔一个正方形.∴折叠成立体图形后“冬”的对面是“祥”.故选:D.2.(2020•安顺)下列四幅图中.能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.【答案】C【解答】解:A、两棵小树的影子的方向相反.不可能为同一时刻阳光下影子.所以A 选项错误;B、两棵小树的影子的方向相反.不可能为同一时刻阳光下影子.所以B选项错误;C、在同一时刻阳光下.树高与影子成正比.所以C选项正确.D、图中树高与影子成反比.而在同一时刻阳光下.树高与影子成正比.所以D选项错误;故选:C.3.(2017•贺州)小明拿一个等边三角形木框在太阳下玩耍.发现等边三角形木框在地面上的投影不可能是()A.B.C.D.【答案】B【解答】解:当等边三角形木框与阳光平行时.投影是A;当等边三角形木框与阳光有一定角度时.投影是C或D;投影不可能是B.故选:B.4.(2022•商城县一模)下列几何体的三视图中.俯视图与主视图一定一致的是()A.B.C.D.【答案】B【解答】解:长方体的俯视图与主视图都是矩形.但两个矩形的宽不一定相同.因此A 不符合题意;球的俯视图与主视图都是圆.因此B符合题意;圆锥的主视图是等腰三角形、俯视图都是带圆心的圆.因此选项C不符合题意;圆柱的主视图是矩形.俯视图是圆.因此D不符合题意;故选:B.5.(2022•黔东南州模拟)如图正三棱柱的左视图是()A.B.C.D.【答案】C【解答】解:从左边看.是一个矩形.故选:C.6.(2021•岳麓区校级二模)某几何体的三视图如图.则该几何体是()A.三棱柱B.长方体C.圆柱D.圆锥【答案】A【解答】解:∵几何体的主视图和左视图都是宽度相等的长方形.∴该几何体是一个柱体.又∵俯视图是一个三角形.∴该几何体是一个三棱柱.故选:A.7.(2021•吉林模拟)如图.小树AB在路灯O的照射下形成投影BC.若树高AB=2m.树影BC=3m.树与路灯的水平距离BP=4m.则路灯的高度OP为m.【答案】【解答】解:∵AB∥OP.∴△ABC∽△OPC.∴=.即=.∴OP=(m).故答案为.1.(2020•广西)下列几何体中.左视图为三角形的是()A.B.C.D.【答案】C【解答】解:A、从左边看是一个圆.故本选项不合题意;B、从左边看是一个正方形.故本选项不合题意;C、从左边看是一个三角形.故本选项符合题意;D、从左边看是一个矩形.故本选项不合题意;故选:C.2.(2021•攀枝花)如图是一个几何体的三视图.则这个几何体是()A.圆锥B.圆柱C.三棱柱D.三棱锥【答案】A【解答】解:由于俯视图为圆形可得为球、圆柱.圆锥.主视图和左视图为三角形可得此几何体为圆锥.故选:A.3.(2021•阿坝州)如图所示的几何体的左视图是()A.B.C.D.【答案】D【解答】解:从左面看.能看到上下两个小正方形.故选:D.4.(2021•兰州)如图.该几何体的主视图是()A.B.C.D.【答案】C【解答】解:从正面看.可得如下图形:故选:C.5.(2021•河南)如图是由8个相同的小正方体组成的几何体.其主视图是()A.B.C.D.【答案】A【解答】解:该几何体的主视图有三层.从上而下第一层主视图为一个正方形.第二层主视图为两个正方形.第三层主视图为三个正方形.且左边是对齐的.故选:A.6.(2021•随州)如图是由4个相同的小正方体构成的一个组合体.该组合体的三视图中完全相同的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同【答案】A【解答】解:如图所示:故该组合体的三视图中完全相同的是主视图和左视图.故选:A.7.(2021•泰安)如图是由若干个同样大小的小正方体所搭几何体的俯视图.小正方形中的数字表示在该位置小正方体的个数.则这个几何体的左视图是()A.B.C.D.【答案】B【解答】解:从左边看从左到右第一列是两个小正方形.第二列有4个小正方形.第三列有3个小正方形.故选:B.1.(2021•紫金县校级二模)如图所示的几何体的左视图为()A.B.C.D.【答案】C【解答】解:从物体左面看.是一个正方形.正方形内部有一条纵向的虚线.故选:C.2.(2022•大渡口区模拟)下列四个几何体中.从正面看是三角形的是()A.B.C.D.【答案】B【解答】解:A.主视图为长方形.不符合题意;B.主视图为三角形.符合题意;C.主视图为长方形.不符合题意;D.主视图为长方形.不符合题意.故选:B.3.如图.一个几何体上半部为正四棱锥.下半部为立方体.且有一个面涂有颜色.下列图形中.是该几何体的表面展开图的是()A.B.C.D.【答案】C【解答】解:A.只有三个三角形.不是该几何体的表面展开图.故本选项不合题意;B.涂有颜色的面不能与三角形的面相邻.故本选项不合题意;C.是该几何体的表面展开图.故本选项符合题意;D.涂有颜色的面不能与三角形的面相邻.故本选项不合题意;故选:C.4.(2021•腾冲市模拟)如图是一个几何体的三视图.则这个几何体的侧面积是()A.48πB.57πC.24πD.33π【答案】C【解答】解:易得此几何体为圆锥.底面直径为6.母线长为8.所以圆锥的侧面积=πrl=8×3π=24π.故选:C5.(2019•望花区三模)如图.物体在灯泡发出的光照射下形成的影子是投影.(填“平行”或“中心”).【答案】中心【解答】解:由于光源是由一点发出的.因此是中心投影.故答案为:中心.6.(2020•槐荫区模拟)如图.已知路灯离地面的高度AB为4.8m.身高为1.6m的小明站在D处的影长为2m.那么此时小明离电线杆AB的距离BD为m.【答案】4【解答】解:∵DE∥AB.∴△CDE∽△CBA.∴=.即=.∴CB=6.∴BD=BC﹣CD=6﹣2=4(m).故答案为4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档