水击和调节保证计算

合集下载

水电站的水锤与调节保证计算

水电站的水锤与调节保证计算

水管进口
L 压
力 管
水轮机 Hg 主阀

水锤前稳定工况(恒定流):
平均流速: V 0
电站静水头: H g
管内水压力: P 0
讨论阀门关闭时的水锤
第一节 水锤现象及传播速度
Hg
Hg
二、水锤及其传播过程 ❖ 0~L/a: 升压波
由阀门向水库传播,水库为异号 等值反射。(惯性) ❖ L/a~2L/a: 降压波 由水库向阀门传播,阀门为同号 等值反射。(压差) ❖ 2L/a~3L/a: 降压波 阀门→水库。 (惯性) ❖ 3L/a~4L/a: 升压波 ❖ 水库→阀门。(压差)
❖ 应满足的前提条件:水管的材料、管壁厚度、直径 沿管长不变。
❖ 水击连锁方程用相对值来表示为:
tAtD t2(vtAvtD t)
tD tA t 2(v tD v tA t)
二、水锤的连锁方程
D
Lat
❖ 若已知断面A在时刻 t 的压力为HtA,流速为VtA ,两个通 解消去 f 后,得:
H tAH gc g(V tAV 0)2F(ta x)
❖ 同理可写出时刻Δt=L/a后D点的压力和流速的关系:
H tD t H g c g (V tD t V 0 ) 2 F (t tx aL )
D0 —管 道 内 径m, E —管 道 的 材 料 弹 性 (材不料同, 取 值 不 同 ) t —管 壁 厚 度m,
四、研究水锤的目的
(一) 水锤的危害 (1) 压强升高过大→水管强度不够而破裂; (2) 尾水管中负压过大→尾水管空蚀,水轮机运行
时产生振动;出现严重的抬机现象 (3) 压强波动→机组运行稳定性和供电质量下降。 (二) 调节保证计算的目的
水锤和机组转速变化的计算,一般称为调节保证 计算。

水击及调节保证.

水击及调节保证.

传至D点,全管压力比水库水位低ΔH,水库水
体流向管中。在随后的dt1时段内,首先紧靠水
由H0-ΔH 升至H0,水体密度增大,管径增大。 同理,经过各时间段在各管段将发生同样的变 化,升压波向下游传播。直到t=4L/a时刻,整
库的管段发生变化,流速由0变为v0,压强升高,
个管道流速、压强、密度、管径恢复到初始状
水击波在水库处发生反射,入射波与反射波数 值相同,符号相反,升压波反射为降压波,水 流从阀门流向水库。
水电站
HYDROPOWER ENGINEERING
第三过程(
2L/a~3L/a):t=2L/a时刻水击
波传至阀门处,阀门关闭,流速由-v0变为0,
压强下降,由H0 降至H0-ΔH,水体密度减小,
水击波速,增加的压强为水击压强。该过程发生的
为升压波,动能转化为弹性
HYDROPOWER ENGINEERING
第二过程(L/a~2L/a):t=L/a时刻水击波传至D点,
其左边为水库,压强保持不变,其右边管道内水压强比 水库高ΔH,管中水体流向水库。在随后的dt1时段内, 首先紧靠水库的管段发生变化,流速由0变为-v0,压强 下降,由H0+ΔH 降至H0,水体密度减小,管径减小, 补给了流向水库的水体,一直延续到该时段末。同理, 经过各时间段在各管段将发生同样的变化,压强降低如 同“波”一样向下游传播,该过程发生的为降压波,弹 性能转化为动能。直到t=2L/a时刻,整个管道流速、压 强、密度、管径恢复到初始数值,但流速方向反向。
水击过程(图9-1与表9-1)
第一过程(0~L/a):t=0时刻阀门突然关闭的dt1时
段内,紧靠阀门处管段dX1首先发生变化,流速由v0 变为0,压强上升,由H0增至H0+ΔH,水体压缩,密 度增加,管子膨胀,腾出空间容纳该管段以上管段仍 以V0流速流来的水体,一直延续到dt1时段末。同理, 经过各时间段在各管段将发生同样的变化,压强增加 如同“波”一样向上游传播,为水击波,传播速度为

调节保证计算

调节保证计算

第二章 调节保证计算第一节 调节保证计算的任务和标准一、调节保证计算的目的和意义在电站的运行中,常会遇到各种事故,机组突然与系统解列,把负荷甩掉。

在甩负荷时,导叶迅速关闭,水轮机的流量急剧变化,因此在水轮机的引水系统中产生水击,特别是甩(增)全负荷时产生的最大压力上升(最大压力下降),对压力管道系统的强度影响最大。

工程实践中曾发生过因甩负荷致使压力上升太高,从而导致压力钢管爆破的灾难事故;同时因为机组负荷全部丢失,如果不及时地采取措施,可导致转速上升过高,也会影响机组的强度、寿命,并引起机组的振动。

为了避免以上事故的发生,在设计阶段应该计算出上述过渡过程中最大转速上升和最大压力上升值,以保证电站的安全可靠运行。

在电站初步选定压力引水系统的布置、尺寸和机组型号后,通过调节保证计算,正确合理地选择导叶关闭的时间,使最大压力上升和最大转速上升都在允许的范围内。

二、调节保证计算的标准机组在甩负荷过程中转速上升率为max 0n n n β-=。

一般情况下,最大转速上升率max 55%β≤。

对于大型电站max 45%β≤,对于冲击式机组max 35%β≤。

当机组甩全负荷时,有压过水系系统允许的最大压力上升率见下表。

尾水管的真空值不大于O mH 29~8。

机组甩负荷时有压过水系统允许的最大压力上升率见表6-1:表6-1 机组甩负荷时有压过水系统允许的最大压力上升率该电站设计水头为76m ,且在系统中承担调峰调频任务,故ξ30%<。

三、本水电站基本参数电站形式:坝后式水头:m H m H r 76,95max == 水轮机型号:HLD74—LJ —450 水轮机额定出力:151300KW 机组额定转速:166.7r/min 机组转动惯量:19383.58t ·㎡ 吸出高度:H S =-3.15m发电机型号:SF151.3-36/948.42 发电机容量:172914KVA 压力波速:a=1000m /s 引水钢管长:186m 机组台数:4台第二节 调节保证主要参数计算一、计算压力引水管的Ti Ti L V ∑机组段长度的确定:确定机组段长度,是确定两台机组间的安装距离。

第九章水击

第九章水击

三、水击特性
(1)水锤压力实际上是由于水流速度变化而产生的惯性力。 (1)水锤压力实际上是由于水流速度变化而产生的惯性力。 水锤压力实际上是由于水流速度变化而产生的惯性力
当突然启闭阀门时,由于启闭时间短、流量变化快, 当突然启闭阀门时,由于启闭时间短、流量变化快,因而水锤压力往往 较大,而且整个变化过程是较快的。 较大,而且整个变化过程是较快的。
(9-6) (9-7)
(9-4) (9-5)
Eh ) Kf = ( 2 1 − µ c r1
100 K 0 Kr = r2
钢衬抗力系数, 式中 KS ——钢衬抗力系数,按式(9-2)计算, 钢衬抗力系数 按式( )计算, r=r1,为回填混凝土内半径,m; ,为回填混凝土内半径, ; Kh为回填混凝土抗力系数;Kf为环向钢筋抗力 为回填混凝土抗力系数; 系数; 为围岩单位抗力系数; 系数;Kr为围岩单位抗力系数;K0为岩石单位抗力 系数。 为隧洞开挖直径, 为混凝土泊松比; 系数。r2为隧洞开挖直径,m; µc为混凝土泊松比; 其他符号意义同前。 其他符号意义同前。
(9-1) ) 2 E w 1 + kr ——水的体积弹性模量。在一般压力和温度下, =2.06×106KPa 水的体积弹性模量。 水的体积弹性模量 在一般压力和温度下, w × E
a =
式中
Ew
水体密度, 水体密度 大小与温度有关,温度越高,密度越小, ρ W ——水体密度,大小与温度有关,温度越高,密度越小,一般 ρ W=1000Kg/m3 为声波在水中的传播速度, 为声波在水中的传播速度 一般为1435m/s; Ewρw ——为声波在水中的传播速度,一般为 压力管道半径, 压力管道半径 r ——压力管道半径,m; K——压力管壁抗力系数,不同材料管道,各取不同数值。 压力管壁抗力系数,不同材料管道,各取不同数值。 压力管壁抗力系数

水电站调节保证计算

水电站调节保证计算

第九章水电站的水锤与调节保证计算第一节概述一、水电站的不稳定工况机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。

在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。

此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速。

由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。

其主要表现为:(1) 引起机组转速的较大变化由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化。

丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。

反之增加负荷时机组转速降低。

(2) 在有压引水管道中发生“水锤”现象当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。

导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。

反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升。

(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。

无压引水系统中产生的水位波动计算在第八章已介绍。

二、调节保证计算的任务水锤压力和机组转速变化的计算,一般称为调节保证计算。

调节保证计算的任务及目的是:(1) 计算有压引水系统的最大和最小内水压力。

最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。

第九章 水电站的水锤与调节保证计算

第九章 水电站的水锤与调节保证计算

水电站事故引起的负荷变化。水电站可能会各种各 样的事故,可能要求水电站丢弃全部或部分负荷。 这是水电站水锤计算的控制条件。
(二)水电站的不稳定工况表现形式
1. 引起机组转速的较大变化
丢弃负荷:剩余能量→机组转动部分动能→机组 转速升高 增加负荷:与丢弃负荷相反。 2.在有压引水管道中发生“水锤”现象
F 1 r f 1
根据水锤常数和任意时刻的开度,可利用上式确定 阀门在任意时刻的反射系数。 当阀门完全关闭时,τ=0,r=1,阀门处发生同号等值 反射。
上式对反击式水轮机是近似的。
3、水锤波在管径变化处的反射
根据水锤波的基本方 程,推导出管径变化 处的反射系数为:
到阀门之前开度变化已经结束,阀门处只受开
度变化直接引起的水锤波的影响——称为直接
水锤
计算直接水锤压力的公式: c
H H H 0 Biblioteka g(V V0 )
c H H H 0 (V V0 ) g
(1) 当阀门关闭时,管内流速减小,V-V0<0为负值,
△H为正,产生正水锤;反之当开启阀门时,即
A t
同理可写出时刻Δt=L/c后B点的压力和流速的关系:
H
B t t
c B xL H 0 (Vt t V0 ) 2 F (t t ) g c
由于F[(t+Δt)-(x+L)/c]=F[t-x/c],由上述二式得
H
同理:
B t t
c B H Vt t Vt A g
导时关闭时,在压力管道和蜗壳中将引起压力上 升,尾水管中则造成压力下降。 导叶开启时则相反。
3.在无压引水系统中产生水位波动现象。

水电站的水击及调节保证计算

水电站的水击及调节保证计算

第四章水电站的水击及调节保证计算本章重点内容:水电站有压引水系统非恒定流现象和调节保证计算的任务、单管水击简化计算、复杂管路的水击解析计算及适用条件、机组转速变化的计算方法和改善调节保证的措施。

第一节概述一、水电站的不稳定工况由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。

其主要表现为:(1) 引起机组转速的较大变化丢弃负荷:剩余能量→机组转动部分动能→机组转速升高增加负荷:与丢弃负荷相反。

(2) 在有压引水管道中发生“水击”现象管道末端关闭→管道末端流量急剧变化→管道中流速和压力随之变化→“水击”。

导时关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。

导叶开启时则相反,将在压力管道和蜗壳内引起压力下降,而在尾水管中则引起压力上升。

(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。

二、调节保证计算的任务(一) 水击的危害(1) 压强升高过大→水管强度不够而破裂;(2) 尾水管中负压过大→尾水管汽蚀,水轮机运行时产生振动;(3) 压强波动→机组运行稳定性和供电质量下降。

(二) 调节保证计算水击和机组转速变化的计算,一般称为调节保证计算。

1.调节保证计算的任务:(1) 计算有压引水系统的最大和最小内水压力。

最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据;最小内水压力作为压力管道线路布置,防止压力管道中产生负压和校核尾水管内真空度的依据;(2) 计算丢弃负荷和增加负荷时转速变化率,并检验其是否在允许的范围内。

(3) 选择调速器合理的调节时间和调节规律,保证压力和转速变化不超过规定的允许值。

(4) 研究减小水击压强及机组转速变化的措施。

2.调节保证计算的目的正确合理地解决导叶启闭时间、水击压力和机组转速上升值三者之间的关系,最后选择适当的导叶启闭时间和方式,使水击压力和转速上升值均在经济合理的允许范围内。

第二节水击现象及其传播速度1、一、水击现象1.定义在水电站运行过程中,为了适应负荷变化或由于事故原因,而突然启闭水轮机导叶时,由于水流具有较大的惯性,进入水轮机的流量迅速改变,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,这种变化是交替升降的一种波动,如同锤击作用于管壁,有时还伴随轰轰的响声和振动,这种现象称为水击。

第九章-水电站的水锤及调节保证计算

第九章-水电站的水锤及调节保证计算

第九章水电站的水锤及调节保证计算本章重点内容:水电站有压引水系统非恒定流现象和调节保证计算的任务、单管水锤简化计算、复杂管路的水锤解析计算及适用条件、机组转速变化的计算方法和改善调节保证的措施。

第一节概述一、水电站的不稳定工况由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。

其主要表现为:(1) 引起机组转速的较大变化丢弃负荷:剩余能量→机组转动部分动能→机组转速升高增加负荷:与丢弃负荷相反。

(2) 在有压引水管道中发生“水锤”现象管道末端关闭→管道末端流量急剧变化→管道中流速和压力随之变化→“水锤”。

导时关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。

导叶开启时则相反,将在压力管道和蜗壳内引起压力下降,而在尾水管中则引起压力上升。

(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。

二、调节保证计算的任务(一) 水锤的危害(1) 压强升高过大→水管强度不够而破裂;(2) 尾水管中负压过大→尾水管汽蚀,水轮机运行时产生振动;(3) 压强波动→机组运行稳定性和供电质量下降。

(二) 调节保证计算水锤和机组转速变化的计算,一般称为调节保证计算。

1.调节保证计算的任务:(1) 计算有压引水系统的最大和最小内水压力。

最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据;最小内水压力作为压力管道线路布置,防止压力管道中产生负压和校核尾水管内真空度的依据;(2) 计算丢弃负荷和增加负荷时转速变化率,并检验其是否在允许的范围内。

(3) 选择调速器合理的调节时间和调节规律,保证压力和转速变化不超过规定的允许值。

(4) 研究减小水锤压强及机组转速变化的措施。

2.调节保证计算的目的正确合理地解决导叶启闭时间、水锤压力和机组转速上升值三者之间的关系,最后选择适当的导叶启闭时间和方式,使水锤压力和转速上升值均在经济合理的允许范围内。

第二节 水锤现象及其传播速度一、 水锤现象1.定义在水电站运行过程中,为了适应负荷变化或由于事故原因,而突然启闭水轮机导叶时,由于水流具有较大的惯性,进入水轮机的流量迅速改变,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,这种变化是交替升降的一种波动,如同锤击作用于管壁,有时还伴随轰轰的响声和振动,这种现象称为水锤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时,根据《水力学》推得的水击基本方程
g H V x t
H a2 V t g x
上述基本方程的通解:
ΔH=H-H0=F(t-x/c)+f(t+x/c) ΔV=V-V0=-g/c[F(t-x/c)-f(t+x/c)] 注:F和f为两个波函数,量纲与水头H相同,故可 视为压力波。波函数由管道上下游边界条件求的。 F(t-x/c)为逆水流方向移动的压力波,称为逆流波; f(t+x/c)为顺水流方向移动的压力波,称为顺流波。 任何断面任何时刻的水锤压力值等于两个方向相反 的压力波之和;而流速值为两个压力波之差再乘以 -g/c。
L/a~2L/a: 降压波,由水 库向阀门传播,阀门为同 号等值反射。
2L/a~3L/a: 降压波,阀门 →水库
3L/a~4L/a: 升压波,水库 →阀门
水击过程运动特征(TS=0)
时段
速度变化 运动方向 压强变化 波传播方 液体状态
t
v
△H

【0,L/a)
v0→0
D→A
△H
A →D
压缩
【L/a,2L/a) 0→- v0
5.1.2 调节保证计算的任务
水轮机调节
为适应负荷变化,导叶应改变开度以调节流量。关闭和开启导叶会 引起:1.压力管道中流速的变化,压力的波动。周期性波动的压力作 用于管道称为水击。导叶关闭的时间越短,产生的水击压力越大。大 的水击压力不仅会增大管道的投资,严重时还可造成管道的破坏;2. 导叶关闭的时间短却有利于尽快消除机组的不稳定状态,以保证转速 及时回归到额定转速,从而保证发电质量。
2.在无压引水系统(渠道、压力前池)中产生水位波动现象。
3.在有压引水管道中发生“水锤”现象
管道末端关闭→管道末端流量急剧变化→管道中流速和压力随 之变化→“水锤”。
导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中 则造成压力下降。
导叶开启时则相反,将在压力管道和蜗壳内引起压力下降,而 在尾水管中则引起压力上升。
❖水电站事故引起的负荷变化。水电站可能会各种各 样的事故,可能要求水电站丢弃全部或部分负荷。 这是水电站水锤计算的控制条件。
几个概念
瞬变现象 由于电能通常不能以其本身的方式大量储存,
所以电能的生产、分配和消费必须在同一时间内 进行,即从发电到用电形成一个均衡的系统。一 旦系统的均衡性被破坏,从而引起物理量的急剧 变化(瞬变现象),通过系统调整,系统再达到 新的均衡状态。整个系统调整达到新均衡态的过 程叫过渡过程。
由于管壁具有弹性和水体的压缩性,水锤压力 将以弹性波的形式沿管道传播。摩擦阻力的存 在造成能量损耗,水锤波将逐渐衰减。
水锤特性
水锤波同其它弹性波一样,在波的传播过程中, 在外部条件发生变化处(即边界处)均要发生波的 反射。其反射特性(指反射波的数值及方向)决定 于边界处的物理特性。
注:水锤波在管中传播一个来回的时间tr=2L/c, 称之为“相”,两个相为一个周期2tr=T。
阀门A处最先产生水击波,反射波又最后到达该 处,其保持最大压力时间最长,故该处受水击危 害也最大。
5.3 水锤基本方程和边界条件
一. 水击基本方程 1.水击计算的假定: 水流是无粘性流体,即不考虑水的摩擦力。 水流是一元流。 压力管道是简单管道。即管道的材料、壁厚和直径均
沿程不变。
2.水击基本方程 如图,当x轴改为取阀门端为原点,向上游为正
3. 水击波的传播速度
水击波的传播速度
a a0 1 K D
E
其中: a0是声波在水中的传播速度。a0=1435m / s.
是管壁厚度(m);
D是管道直径(m); K是水的体积弹性系数。K=19.6108N / m2; E是管壁材料的弹性系数。 对铸铁管,E=9.81010 N / m2; 对钢管,E=19.61010 N / m2; 对钢筋混凝土管,E=19.6109N / m2。
综上,水击压力的变化和转速变化对水轮机调节的要求是矛盾的。
调节保证计算的概念
为检验调节过程中机组转速变化及水压力变化是否满足要求的计 算叫调节保证计算。
5.1 调节保证计算的任务
调节保证计算的任务
根据水电站压力引水系统和水轮发电机的特性,合理选 择调速器的调节时间和调节规律,进行水击压力和机组转速 变化值的计算,使二者均在允许范围内。
❖稳定工况:当负荷不变,流量不变,水电站的出力 也不变的工作状态。这时,转速为额定转速,发电 频率为50HZ。
❖不稳定工况:由于负荷的变化而引起导水叶开度、 水轮机流量、水电站水头、机组转速的变化,称为 水电站的不稳定工况。
引起水轮机流量变化的两种情况
❖水电站正常运行情况下的负荷变化。担任峰荷或调 频任务的电站,水轮机的流量处于不断变化中;正 常的开机或停机。
第五章 水击和调节保证计算
5.1 调节保证计算的任务 5.2 水击现象 5.3 水击的基本方程与边界条件 5.4 简单管道水击计算 5.5 复杂管道水击计算 5.6 水击压力计算标准 5.7 机组转速变化计算 5.8 水击的危害及改善调节保证的措施
5.1 调节保证计算的任务
5.1.1问题的提出 水电站运行工况
A→D
0
D→A
恢复原状
【2L/a,3L/a) -v0→0
A→D
- △H
A →D
膨胀
【3L/a,4L/a) 0 → v0
D→A
0
D→A
恢复原状
5.2.2 水锤特性
水锤压力实际上是由于水流速度变化而产生的 惯性力。当突然启闭阀门时,由于启闭时间短、 流量变化快,因而水锤压力往往较大,而且整 个变化过程是较快的。
具体任Байду номын сангаас:
❖ 计算过水系统最大和最小水压力; ❖ 计算丢弃和增加负荷时机组转速的变化值,检验其是否在允
许范围内; ❖ 研究减小水击压力和机组转速变化的措施; ❖ 合理选择调速器的调节时间和调节规律。
5.2 水击现象
5.2.1 水击现象
关闭阀门后,时间t 0~L/a: 升压波,由阀门向
水库传播,水库为异号等 值反射。
瞬变是水电站水力系统的非恒定流稳态。
瞬变响应过程
负荷变化
机组转速变化
导叶开度变化
机组效率变化
水头变化
引水道流量变化
机组出力变化
满足新负荷要求
水电站的不稳定工况表现形式
1.引起机组转速的较大变化
丢弃负荷:剩余能量→增加机组转动部分动能→机组转速升高
→影响供电质量
增加负荷:与丢弃负荷相反。
f(50HZ)=pn/60
相关文档
最新文档