静定梁平面刚架受力分析

合集下载

01-静定梁和超定结构知识点小结

01-静定梁和超定结构知识点小结

第3章 静定梁和静定刚架(知识点小结)一、杆件内力分析方法1、内力分量轴力N F 是横截面上的应力沿截面法线方向的合力,一般以拉力为正,压力为负。

剪力S F 是横截面上的应力沿截面切线方向的合力,以绕截面处微段隔离体顺时针方向转动为正,反之为负。

弯矩M 是横截面上的应力对截面形心取矩的代数和,一般不规定正负号。

有时按习惯也可规定,在水平杆件中弯矩使杆件截面的下侧纤维受拉时为正,上侧受拉时为负。

2、截面法截面法是计算指定截面内力的基本方法,即沿指定截面假想将结构截开,切开后截面内力暴露为外力,取截面左侧(或右侧)作为隔离体,作隔离体受力图,建立平衡方程,从而可确定指定截面的内力。

由截面法可得截面上三个内力分量的运算规则如下:(1)轴力N F 等于截面左侧(或右侧)的所有外力(包括支座反力)沿截面法线方向的投影代数和;(2)剪力S F 等于截面左侧(或右侧)的所有外力(包括支座反力)沿截面切线方向的投影代数和;(3)弯矩M 等于截面左侧(或右侧)的所有外力(包括支座反力)对截面形心取矩的代数和。

3、内力图内力图表示结构上各截面的内力随横截面位置变化规律的图形,包括M 图、S F 图和N F 图。

内力图用平行于杆轴线方向的坐标表示横截面位置(又称基线),用垂直于杆轴线的坐标(又称竖标)表示相应截面的内力值。

轴力图、剪力图中,竖标正、负值分别画在杆件基线的两侧,要标明正负号;弯矩图画在杆件的受拉侧,不标正负。

内力图要画上竖标,标注某些控制截面处的竖标值,并写明图名和单位。

4、内力图的形状特征直杆段上内力图的形状特征归纳如表3-1所示。

熟练掌握内力图的这些形状特征,对于以后正确、迅速地绘制内力图、校核内力图是非常有帮助的。

5、区段叠加法作M图对承受横向荷载作用的任意结构中直杆段,都可采用区段叠加法作其弯矩图:先采用截面法求出该段两个杆端截面弯矩值并将其连以一虚线,然后以此虚线为基线,叠加相应简支梁在跨间相应荷载作用下的弯矩图,如图3-1所示。

建筑力学之 静定结构的内力分析知识详解

建筑力学之 静定结构的内力分析知识详解

第二个脚标表示该截面所属杆件的另一端。例如 则表M示BA AB杆B端截面的弯矩。
表M示AB AB杆A端截面的弯矩,
❖ (3)内力图绘制
❖ 静定刚架内力图有弯矩图、剪力图、轴力图。刚架的内力图由各杆的内力图组合 而成,而各杆的内力图,只需求出杆端截面的内力后,即可按照梁内力图的绘制 方法画出。
❖ 6.平面刚架计算步骤
第十一章 静定结构的内力分析
❖ 第一节 楼梯斜梁和多跨静定梁 ❖ 1. 楼梯斜梁 ❖ 楼梯斜梁承受的荷载主要有两种,一种是沿
斜梁水平投影长度分布的荷载,如楼梯上人群 的重量等;另一种是沿倾斜的梁轴方向分布的 竖向荷载,如梁的自重等。 ❖ 一般在计算时,为计算简便可将沿梁轴方 向分布的竖向荷载按等值转换为沿水平方向分 布的竖向荷载,如图11-1 (a),沿梁轴线方向分 布 则的 由荷 于载 是等′值转转换换为,沿所水q 以平有方:向分布的荷q 载 ,
❖ (2)杆端内力的表示:如:FNAB 、 、 、 FNBA FQAB FQBA 、M AB 、M BA 等。 ❖ 注意:刚结点处不同方向有不同的杆端内力。
❖ 为了明确表示刚架上不同截面的内力,特别是为了区别汇交于同一结点的不同杆
端截面的内力,在内力符号右下角采用两个脚标;第一个脚标表示内力所属截面,
❖ 详解见教材
图11-21
❖ (6)结点法与截面法的联合应用 ❖ 欲求图11-23所示a杆的内力,如果只用结点法计算,不论取哪个结
点为隔离体,都有三个以上的未知力无法直接求解;如果只用截面法 计算,也需要解联立方程。 ❖ 为简化计算,可以先作Ⅰ-Ⅰ截面,如图所示,取右半部分为隔离 体,由于被截的四杆中,有三杆平行,故可先求1B杆的内力,然后以 B结点为隔离体,可较方便地求出3B杆的内力,再以3结点为隔离体, 即可求得a杆的内力。

结构力学-第三章

结构力学-第三章
M FN FQ M+dM
dx dx
FN+d FN FQ+dFQ
内力图-表示结构上各截面内力值的图形 横坐标--截面位置;纵坐标--内力的值
1.结构力学的截面内力分量及其正负号规定
FN FN
轴力—截面上应力沿杆轴切线方向的 合力,使杆产生伸长变形为正,画轴力图 要注明正负号;
剪力—截面上应力沿杆轴法线方向的
C
25 5 20 25 50 20
F
55
G
85 40 10
H
50
40k N A 25 2m B 2m C 2m 5 50 20 50 40k N D 1m
80k N· m E 2m 2m 1m 55 40 40 20 F
20k N/m G 4m 85 40 10 2m H
M 图(k N· m)
20k N/m
A
2
2
YA
C
YB
XC
YC
B
XB
2)取右部分为隔离体 Fp l M C 0, X B l YB 2 0, X B 4 () Fp Fy 0, YC YB 0, YC YB 2 () Fp Fx 0, X B X C 0, X C 4 ()
分析下列多跨连续梁结构几何构造关系,并确定内力计算顺序。 q F
A B C D E F G H
q F
E C A B D F G H
F A F A B C D E B C D E
q F q F
注意: 从受力和变形方面看:基本部分上的荷载仅能在其自身上产生内力和
弹性变形,而附属部分上的荷载可使其自身和基本部分均产生内力和 弹性变形。因此,多跨静定梁的内力计算顺序也可根据作用于结构上 的荷载的传力路线来决定。

结构力学 第三章 静定结构

结构力学 第三章 静定结构
• 由结点弯矩平 衡校核弯矩计算是 否正确。
MBC=1kN· m
B
MBE= 4kN· m
MBA=5kN· m
FP1=1kN FP2=4kN
• 用计算中未使 用过的隔离体平衡 条件校核结构内力 计算是否正确。
5kN· m
1kN
3kN
FP3=1kN
2、简支刚架
• 解: • (1)、求支座 反力 • ∑y=0 • FCy =80kN(↑) • ∑m0=0 • FAx=120kN(←) •∑x=0 •FBx=80kN(→)
§3-2 静定多跨梁

由中间铰将若干根梁(简单梁) 联结在一起而构成的静定梁,称为静 定多跨梁。
1、几何组成:
• 基本部分+附属部分。 • (1)、基本部分:不依赖其它部分, 本身能独立承受荷载并维持平衡。 • (2)、附属部分:依赖于其它部分而 存在。
2、层叠图和传力关系
(1)、附属部分荷载 传 基本部分或 支撑它的附属部分。 • (2)、基本部分的荷载对附属部分无 影响,从层叠图上可清楚的看出来。 •
练习: 分段叠加法作弯矩图
q
A B
C
1 2 ql 4
l
q
1 ql 2
ql
l l l
例题
4kN· m
4kN
3m
3m
(1)集中荷载作用下
6kN· m
(2)集中力偶作用下
4kN· m 2kN· m
(3)叠加得弯矩图
4kN· m
4kN· m
例题
3m
8kN· m
2kN/m
3m
2m
(1)悬臂段分布荷载作用下
FP2=4kN
q=0.4kN/m

建筑力学课件8

建筑力学课件8
成反比。
三铰拱的计算
2、内力的计算
计算图a所示三铰拱K截面的内力 取隔离体如图b
M [ FAV x F1 ( x a1 )] FH y
相应简支梁K截面的弯矩为M 0 相应简支梁K截面的剪力为FS0 相应简支梁K截面的轴力为FN0 相应简支梁
M M 0 FH y
FS FS0 cos FH sin FN FS0 sin FH cos 压力为正
Mk1
FNK1 FQK1
4m
5.33kN 1.33kN
FNK1 1.33sin (5.33 q y1 ) cos 0.72kN
FQK 1 1.33cos (5.33 q y1 ) sin 1.95kN y12 M K 1 1.33x1 5.33y1 q 3.80kN m 2
练习: 作图示结构弯矩图
Pl / 2 Pl / 2 l/2
P
P
P
l
l/2
l l
Pl / 2
l
2 Pl
P
l/2 l/2
Pl
Pl
P
l l
l
练习: 作图示结构弯矩图
P
l l l l
P
l
l
P
l
l
拱的内力分析
一般指杆的轴线为曲线形状, 并且在竖向荷载作用下会产 生水平支座反力的结构。
重要特点: 竖向荷载产生水平推力(与梁相比) 优点: M减小,FN为主 ——便于使用抗压材料:砖、石、混凝土 缺点: 水平反力要求 ——地基、支承结构、(墙、柱、墩等) 更坚固。 ——可称拱式结构或推力结构
刚架的内力: 刚架的内力是指各杆件中垂直于杆轴的横 截面上的弯矩、剪力和轴力。在计算静定刚 架时,通常应由整体或某些部分的平衡条件 ,求出各支座反力和各铰接处的约束力,然 后逐杆绘制内力图。

第3章 静定结构内力分析Ⅰ

第3章  静定结构内力分析Ⅰ

掌握不同杆系的受力特点和内力计算,能够准 确绘出其内力图。 掌握静定结构的静力特性。
重点:
杆系结构基本部分、附属部分的特征及层次图的 绘制。 用控制截面法正确绘制杆系结构的内力图。 拱合理拱轴线的定义及求法。 静定结构的静力特性。
难点:
基本部分、附属部分的特性。
截面法绘制杆系的内力图。 拱合理拱轴线的求法。
l
M
M
l
练习: 利用微分关系等作弯矩图
1 FP l 2
l
1 FP l 4
FP
l/2
M
M M
l l
l/2
M M
M
2M
M
l
M M M
l
l
l
1 FP l 2
l
1 FP l 4
FP
l/2
q
l/2
M
1 2 ql 2
l
l
2M
M
M
M
M
M M M
M M
l l
M M
M
练习: 利用微分关系等作弯矩图
练习: 利用微分关系,叠加法等作弯矩图
内力图的变化规律 (a)无均布荷载的区段,FQ图为水平线、M为斜线。 有---------------------, FQ图为斜直线、M为曲线。 凹向与均布荷载的方向一致。
(b)M图的极值点在FQ =0处或FQ图变号处。
(c)铰处无力偶作用时,M=0; 有---------------------,弯矩等于力偶值。 (d)集中力作用时, M图是折线; FQ图有突变, 突变值等于作用力。 (e)集中力偶作用时, M图有突变,突变值等于力偶值。
20k N/m G H
2m
2m

静定梁与静定刚架

静定梁与静定刚架

(二)绘内力图:
H A
=0
V
A =130KN
X 0 Y 0 M 0
C
NC 0 QC 130 KN M C 130 KN .M
第3章 例题: 试绘制图示外伸梁的内力图。
解:
10KN/m A HA=0 4m C 2m D B E 30KN.m 20KN
(1)计算支座反力
2m
2kN E
2m F
F
2m
G 2kN
2m
(b)
A
4kN/m B
C
G 2kN
G
B
11kN 4
4kN
4
(d)
8 7
(e) 9
4 M(kN.m) 2 2
Q(kN)
2
第3章 例题2: 图示三跨静定梁,全长承受均布荷载q,试确定铰E、F的位置,使中 间一跨支座的负弯矩与跨中正弯矩数据数值相等。
第3章
3.3 静定平面刚架的内力计算 一、刚架的组成 1、刚架的特征 由若干梁和柱用刚结点联结而成的结构。具有刚结点是 刚架的主要特征。 2、刚架的应用 刚架在工程上有广泛的应用。
(1)斜梁的倾角为常数,而曲梁各截面的的倾角是变量。 (2)计算曲梁的倾角时,可先写出曲梁的轴线方程y=f(x),而后对x求一 阶导数,进而确定倾角:
dy tan ; dx
tan1 (tan )
(3)角以由x轴的正方向逆时针转到切线方向时为正,反时针方向为负。
例题:试求图示曲梁C截面的内力值。已知曲梁轴线方程为:
y 4f 4 4 (l x) x 2 (12 1.5) 1.5 1.75m l2 12
4f 4 4 tan yx 1.5 2 (l 2 x) x1.5 2 (12 2 1.5) 1 l 12 2 450 sin con 0.707 2

静定梁和刚架内力分析典型例题(附详细解题过程)

静定梁和刚架内力分析典型例题(附详细解题过程)

静定梁和刚架结构的内力分析——典型例题【例1】如图1所示斜梁,若改变B 点链杆的方向(不通过铰A ),试分析斜梁内力变化情况。

图1【解】若改变B 点链杆方向,在图示荷载下,B 处支座反力垂直于杆轴方向的分量不发生变化。

因此,简支斜梁当荷载、杆长相同时,支座方向的改变对M 、F S 图无影响,只对F N 图有影响。

【例2】如图2(a)所示多跨梁承受均布荷载作用,欲使梁中正、负弯矩峰值相等,试确定铰E 、F 的位置。

图2【解】以x 表示铰E 、F 与支座B 、C 之间的距离。

先取附属部分AE (或FD )分析,如图2(b)所示,计算铰E 、F 处的约束力,并可知AB 跨(或CD 跨)的正弯矩峰值位于AE (或FD )的中间位置处,即:再取基本部分EBCF ,支座B 或C 处的弯矩为负弯矩峰值,即:2()8AE q l x M -=跨中而BC 跨的正弯矩峰值位于BC 跨中位置,且有: AB 跨的跨中弯矩记为:。

由于,因此该梁正弯矩峰值位于AE (或FD )的中间位置处。

令,即:解得:(舍掉)。

将x 代入或,得正、负弯矩峰值均为,M 图如图2(c)所示。

【例3】绘制如图3(a)所示多跨梁的M 图及F S 图。

2()1222B C q l x qx M M x qlx -==+=28B ql M M =-BC 跨中282B M ql M =-AB 跨中M M >AB 跨中BC 跨中B AE M M =跨中2()182q l x qlx -=0.172x l = 5.828x l =AE M 跨中B M 20.086ql图3【解】(1)由几何组成分析可知:梁段EGC 为附属部分,支承在基本部分DBE 梁段上,而DBE 梁段又支承在梁段AD 上。

计算顺序为:EGC →DBE →AD 。

(2)取附属部分梁段EGC 分析,如图3(d)所示,求得C 处支反力及铰E 处的约束力。

(3)取DBE 梁段分析,如图3(c)所示,求得B 处支反力及铰D 处的约束力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档