粉末冶金技术论文..
粉末冶金设计范文第1篇 (2)

粉末冶金设计范文第1篇1.1同步带轮结构特点1)内部有3个均匀分布的弧形凹槽和3个定位孔;2)形位精度要求较高,内孔的同轴度公差为0.05mm,齿形跳动度为0.1,中心孔的垂直度为0.03。
综上分析,如果选择常规方法加工同步带轮,其形状以及内部微小尺寸控制难度大;如果采用粉末冶金法进行成形,零件的凹槽、定位孔及尺寸精度均可通过模具成形来保证。
1.2成形模具设计原理粉末冶金成形工艺是由粉末冶金零件压机和粉末冶金模具通过对所需粉末进行装料、加压、脱模等主要工步来完成,并使金属粉末密实成具有一定尺寸、形状、孔隙度和强度坯块的过程。
该同步带轮应采用不等高零件成形模具设计原理。
1.3成形速度相等原理根据不等高零件成形运动规律,在不等高零件成形过程中,必须满足成形前、后粉末质量守恒定律,才能使不同高度区域密度近乎相等,在粉末成形时,零件的不同高度区都在同一时间进行粉末压缩和成形,并且各部分所用成形速率相等,所遵循的原理即为成形速率相等原理。
由此可知,在压制不等高零件时,要使不同高度的各个区域遵循成形速率相等原理,从而保证零件不同高度区的平均密度相等。
2同步带轮粉末冶金模具的设计1)齿形成形通过控制材料的流动方向,成形出理想的形状尺寸,是同步带轮成形模具中最关键的环节。
由于成形过程中单位压力增大,载荷集中,因此要求模具工作部位刚性好。
另外还应设置过载保护,防止毛坯的超差、材料不均匀等导致的过载。
2)同步带轮属于轴类零件,在成形过程中轴向密度差较大,因此模具应采用芯棒成形结构,以保证同步带轮轴向密度分布均匀。
3)该同步带轮有3个定位孔,应采用芯棒成形结构成形定位孔,可以延长模具使用寿命,提高装配精度。
该同步带轮采用德国DORST压机进行压制,铁粉的松装密度约为3.2g/cm3,零件的毛坯密度不得小于6.6g/cm3,为了节约成本,模具配件采用已有的五档同步器齿毂模具配件,例如,垫板、压盖等。
由此可知,该同步带轮成形模具的设计主要包括中模、上模冲(2个)、下模冲(3个)、芯棒(2个)的设计。
粉末冶金综述论文

合金元素在Cu-PM材料中的应用研究进展(重庆理工大学重庆巴南)摘要:在铜基粉末冶金材料中添加合金元素可以显著改善材料的性能特别是摩擦性能,烧结含合金元素的Cu-PM材料是一种有发展前景的粉末冶金材料,如添加Al、Cr、Ni等元素。
本文综述了合金元素对铜基粉末冶金材料的性能和组织结构等的影响,总结了到目前为止相关领域的结论和进展,并讨论了Cu-PM 材料生产现状和发展趋势。
关键词:合金元素;Cu-PM;应用;进展1 引言铜基粉末冶金摩擦材料是以铜粉为主要成分,此外含有润滑组元石墨和摩擦组元陶瓷颗粒以及强化铜基体的合金元素等多种组分。
其最早出现于1929年,材料是含少量的铅、锡和石墨的铜基合金。
铜基粉末冶金摩擦材料在飞机、汽车、船舶、工程机械等刹车装置上的应用发展较快,使用较成熟是在70年代之后。
前苏联于1941年后成功地研制了一批铜基摩擦材料,广泛应用于汽车和拖拉机上。
美国对铜基摩擦材料的研究也较多,主要是致力于基体强化,从而提高材料的高温强度和耐磨性。
二十世纪初,铜基摩擦材料大多用在干摩擦条件下工作,五十年代以后,大约75%的铜基摩擦材料,均在润滑条件下工作。
这些摩擦材料都是以青铜为基,以锌、铝、镍、铁等元素强化基体。
由于合金元素在铜基粉末冶金材料中的良好作用,国内很多单位及个人展开了相关方面的工作并发表了论文及成果。
本文就国内含合金元素的铜基粉末冶金材料的相关研究进行了论述。
2 Cu-PM材料生产现状及国内外对比纯铜粉末主要用电解法和雾化法生产。
电解法是借助电流的作用, 使电解液中的铜离子在阴极析出成粉的制粉过程。
用电解法生产的铜粉呈表面积发达的树枝状、纯度高、压制性能优良, 是纯铜粉末的主要生产方法。
相关文献表中数字表明, 我国的铜及铜基合金粉末的产量和用量与欧美等国家差距很大, 这从一个侧面说明我国铜粉生产与应用还具有十分广阔的开发空间。
电解铜粉与国外产品相比, 主要差距在于:(1)产品的规格少。
粉末冶金技术在制造业中的应用研究

粉末冶金技术在制造业中的应用研究近年来,随着科学技术的不断进步和制造业的发展,粉末冶金技术越来越受到关注和应用。
粉末冶金技术是一种通过将金属粉末压制成形,然后经过烧结或其他处理工艺得到实际零件的方法。
这种技术的应用范围广泛,不仅可以用于金属部件的制造,还可以用于复合材料、陶瓷等领域。
本文将探讨粉末冶金技术在制造业中的应用研究,并分析其优势和潜力。
粉末冶金技术的应用不仅可以提高制造业的生产效率,还可以改善产品的性能和质量。
首先,通过粉末冶金技术可以制造出形状复杂的零件,如齿轮、连杆等。
相比传统的加工方法,粉末冶金技术能够在一次成型的过程中实现多个孔、平面和立体形状的制造,大大提高了产品的加工效率。
其次,粉末冶金技术可以生产高精度的零件,并且可以减少加工过程中的浪费。
由于粉末冶金技术可以直接制造所需形状的零件,因此可以减少或避免材料的切削、车削等加工过程,降低了能源和材料的消耗。
此外,粉末冶金技术还可以制造出具有均匀组织的材料,提高了产品的性能和可靠性。
粉末冶金技术在制造业中的应用研究已取得了丰硕的成果,正不断推动着制造业的发展。
例如,在汽车制造业中,粉末冶金技术可以用于制造发动机零件、制动系统、悬挂系统等关键零部件。
这些零部件用粉末冶金技术制造,不仅可以提高产品的性能和可靠性,还可以减少零件的重量和浪费,从而降低车辆的燃油消耗。
此外,粉末冶金技术还可以制造出轻量化材料,为汽车工业的节能减排做出贡献。
除了汽车制造业,粉末冶金技术在航空航天、电子设备制造、工具制造等领域也有广泛的应用。
在航空航天领域,粉末冶金技术可以制造出轻质耐高温材料,用于制造航空发动机、气动部件等关键零件,提高了航空发动机的效率和可靠性。
在电子设备制造领域,粉末冶金技术可以制造出高导电材料,应用于半导体器件、导电粘接等,提高了电子设备的性能和可靠性。
在工具制造领域,粉末冶金技术可以制造出硬质合金、切削工具等,提高了切削效率和寿命。
粉末冶金论文

粉末冶金技术论文专业年级学号________________________________ 姓名中国石油大学2012-6-12粉末冶金技术XXX ( 09 级材料三班)摘要:粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。
粉末冶金法与生产陶瓷有相似的地方,因此,一系列粉末冶金新技术也可用于陶瓷材料的制备。
粉末冶金材料是指用几种金属粉末或金属与非金属粉末作原料,通过配料、压制成形、烧结等工艺过程而制成的材料。
这种工艺过程成为粉末冶金法,是一种不同于熔炼和铸造的方法。
其生产过程与陶瓷制品相类似,所以又称金属陶瓷法。
粉末冶金法不仅是制取具有某些特殊性能材料的方法,也是一种无切削或少切削的加工方法。
它具有生产率高、材料利用率高、节省机床和生产占地面积等优点。
但金属粉末和模具费用高,制品大小和形状受到一定限制,制品的韧性较差。
粉末冶金法常用于制作硬质合金、减摩材料、结构材料、摩擦材料、难熔金属材料、过滤材料、金属陶瓷、无偏析高速工具钢、磁性材料、耐热材料等。
关键词:粉末冶金、基本工序、应用、发展方向、问题及机遇Powder metallurgy technologyXXX(09 grade material class three)Abstract: Powder metallurgy is used for preparing metal or metal powder (or metal powder and metal powder mixture) as raw material, after forming and sintering, manufacture of metal materials, composite and various types of products technology.Powder metallurgy method and the production of ceramic have similar place, therefore, a series of new powder metallurgy technologies can also be used for preparing ceramic material. Powder metallurgy materials refers to the use of several kinds of metal powder or metal and non metal powder as raw material, through mixing, pressing, sintering process and made of materials.The process to become powder metallurgy method, is different from the melting and casting method.Its production process and ceramic products are similar, so called ceramic metal.Powder metallurgy method not only has some special properties of material preparation method, is also a kind of without cutting or less cutting processing method. It has high productivity, high material utilization rate, saving machine tools and production area etc..But the metal powderand high mold cost, product size and shape are subject to certain restrictions, flexibility is poor.Powder metallurgy method often used for the production of hard alloy, antifriction material, structural material, friction material, refractory metal materials, filter materials, metal ceramic, no segregation in high speed tool steel, magnetic materials, heat resistant materials.Key words: powder metallurgy, basic process, application, development trend, problems and opportunities一、世界粉末冶金工业概况2003 年全球粉末货运总量约为88 万吨,其中美国占51%,欧洲18%,日本13%,其它国家和地区18%。
粉末冶金的研究及应用毕业设计(论文)[管理资料]
![粉末冶金的研究及应用毕业设计(论文)[管理资料]](https://img.taocdn.com/s3/m/4bbe280dc8d376eeafaa317e.png)
毕业设计(论文)题目: 粉末冶金的研究及应用专业:数控技术及应用班级:04421班学号:34号姓名:唐宇指导老师:李华志成都电子机械高等专科学校二〇〇七年六月绪论粉末冶金方法起源于公元前三千多年。
制造铁的第一个方法实质上采用的就是粉末冶金方法。
而现代粉末冶金技术的发展中共有三个重要标志:1、克服了难熔金属熔铸过程中产生的困难。
1909年制造电灯钨丝,推动了粉末冶金的发展;1923年粉末冶金硬质合金的出现被誉为机械加工中的革命。
2、三十年代成功制取多孔含油轴承;继而粉末冶金铁基机械零件的发展,充分发挥了粉末冶金少切削甚至无切削的优点。
3、向更高级的新材料、新工艺发展。
四十年代,出现金属陶瓷、弥散强化等材料,六十年代末至七十年代初,粉末高速钢、粉末高温合金相继出现;利用粉末冶金锻造及热等静压已能制造高强度的零件。
什么是粉末冶金呢? 粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。
粉末冶金法与生产陶瓷有相似的地方,因此,一系列粉末冶金新技术也可用于陶瓷材料的制备。
由于粉末冶金技术的优点,它已成为解决新材料问题的钥匙,在新材料的发展中起着举足轻重的作用。
粉末冶金技术可以最大限度地减少合金成分偏聚,消除粗大、不均匀的铸造组织。
在制备高性能稀土永磁材料、稀土储氢材料、稀土发光材料、稀土催化剂、高温超导材料、新型金属材料(如Al-Li合金、耐热Al合金、超合金、粉末耐蚀不锈钢、粉末高速钢、金属间化合物高温结构材料等)具有重要的作用。
可以制备非晶、微晶、准晶、纳米晶和超饱和固溶体等一系列高性能非平衡材料,这些材料具有优异的电学、磁学、光学和力学性能。
可以容易地实现多种类型的复合,充分发挥各组元材料各自的特性,是一种低成本生产高性能金属基和陶瓷复合材料的工艺技术。
可以生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品,如新型多孔生物材料,多孔分离膜材料、高性能结构陶瓷和功能陶瓷材料等。
粉末冶金技术论文

粉末冶金技术论文粉末冶金是用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结制成金属材料、复合材料以及各种类型制品的工艺过程。
下面小编整理了粉末冶金技术论文,欢迎阅读!粉末冶金技术论文篇一粉末冶金的现状以及发展趋势【摘要】粉末冶金是用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结制成金属材料、复合材料以及各种类型制品的工艺过程。
粉末冶金它具有低耗节能、材料利用率高、高效省时等优点,但其也存在一定不足,如金属粉末和模具费成本高,产品尺寸的大小和形状受限制,产品韧性较差等。
目前粉末冶金广泛应用在硬质合金制作、多孔材料、难熔金属材料、磁性材料、金属陶瓷等。
【关键词】粉末冶金历史基本工序粉末冶金优势与不足趋势1 粉末冶金的历史粉末冶金发展经历三个阶段:20世纪初,通过粉末冶金工艺制得电灯钨丝,被誉为现代粉末冶金技术发展的标志。
随后许多难熔金属材料如钨、钽、铌等都可通过粉末冶金工艺方法制备。
1923年粉末冶金硬质合金的诞生更被誉为机械加工业的一次革命;20世纪30年代,粉末冶金工艺成功制得铜基多孔含油轴承。
继而发展到铁基机械零件,并且迅速在汽车、纺织、办公设备等现代制造领域广泛应用;20世纪中叶以后,粉末冶金技术与化工、材料、机械等学科互相渗透,更高性能的新材料、新工艺发展进一步促进粉末冶金发展。
并使得粉末冶金技术广泛应用到汽车、航空航天、军工、节能环保等领域。
2 粉末冶金的基本工序(1)粉末的制取。
目前制粉方法大体可分为两类:机械法和物理化学法。
机械法是将原材料机械地粉碎,化学成分基本不发生变化。
物理化学法是借助化学或物理作用,改变原材料的化学成分或聚集状态而获得粉末。
目前工业制粉应用最为广泛的有雾化法、还原法和电解法;而沉积法(气相或液相)在特殊应用时也很重要。
(2)粉末成型。
成型是使金属粉末密实成具有一定形状、尺寸、孔隙度和强度坯块的工艺过程。
成型分普通模压成型和特殊成型两类。
粉末冶金技术

粉末冶金技术粉末冶金技术是一种重要的金属加工方法,它是将金属粉末经过混合、成型和烧结等工艺制成制品的工艺方法。
相比传统的熔炼和锻造工艺,粉末冶金技术具有许多优点,如能够制备出具有复杂形状的零件、材料性能均匀、精确控制产品尺寸和性能等。
本文将从粉末冶金技术的历史发展、工艺流程、应用领域等方面进行介绍。
粉末冶金技术的历史可以追溯至早在公元前3000年左右,早期人们已经开始使用粉末冶金技术来制作金属工艺品。
然而,直到20世纪初,粉末冶金技术才得到广泛应用,并在战争期间得到了飞速发展。
战后,在石油、汽车、航空航天等领域的需求推动下,粉末冶金技术得到了进一步的发展壮大。
粉末冶金技术的工艺流程主要包括粉末的制备、混合、成型和烧结等步骤。
首先,原料金属被经过研磨等工艺得到所需的粉末。
然后,将不同种类和粒径的金属粉末混合,并添加适量的添加剂以改变材料的性能。
下一步,通过压制等成型方法将混合得到的金属粉末压制成所需形状的绿体。
最后,将绿体在高温下进行烧结,使金属粉末颗粒之间发生相互扩散和连结,形成致密的金属制品。
粉末冶金技术的应用领域非常广泛。
在汽车工业中,粉末冶金技术被广泛应用于发动机、传动系统、悬挂系统等零部件的制造。
由于粉末冶金技术可以制备出具有复杂形状和高精度需求的零件,因此在航空航天领域也被广泛应用。
此外,粉末冶金技术还可用于制备具有高耐磨性、高温强度和耐腐蚀性能的材料,用于工具、刀具、模具、轴承等领域。
虽然粉末冶金技术具有许多优点,但也存在一些挑战和限制。
首先,粉末冶金技术对原料金属的纯度有较高要求,因此原料的采购和处理工艺比较复杂。
其次,粉末冶金技术的设备和工艺流程较为复杂,对操作人员的技术水平有一定要求。
此外,粉末冶金技术制造出的制品通常会出现一些孔洞和缺陷,需要进一步进行加工和处理。
总的来说,粉末冶金技术作为一种重要的金属加工方法,具有许多优点和广泛的应用领域。
随着工艺和设备的不断改进,粉末冶金技术将会在更多领域发挥重要作用,并为各行业的发展提供更多可能性。
粉末冶金及模具设计论文

粉末冶金及模具设计论文1. 引言粉末冶金是一种先进的金属材料制备技术,它通过将金属粉末进行成形和烧结,制备出具有特殊性能和形状的零件和材料。
与传统的加工方法相比,粉末冶金具有许多优点,例如可以制备复杂形状的零件、可以制备多相和复合材料、可以节约原材料、具有良好的尺寸精度和表面光洁度等。
而模具设计在粉末冶金过程中也起到至关重要的作用,它直接影响着成形零件的质量和性能。
因此,研究粉末冶金及模具设计对于提高金属材料的制备效率和性能具有重要的意义。
2. 粉末冶金的工艺过程粉末冶金的工艺过程包括粉末的选择和处理、粉末成形和烧结等步骤。
2.1 粉末的选择和处理粉末的选择和处理是粉末冶金过程的第一步。
在粉末的选择中,需要考虑金属粉末的纯度、粒度和形状等因素。
高纯度的金属粉末可以得到高质量的成品,而合适的粒度和形状可以提高成形性能和烧结性能。
在粉末的处理中,通常包括混合、干燥和筛分等步骤。
混合是将所需金属粉末按一定比例混合以获得所需的合金成分,干燥则是去除粉末中的水分,筛分则是按照所需粒度进行筛选。
2.2 粉末成形粉末成形是指将混合并处理好的粉末以一定的压力加工成形。
常见的粉末成形方法包括压制、注射成形和挤压成形等。
压制是将粉末放置于模具中,然后施加压力使其形成一定形状的零件。
注射成形则是将粉末加入模具中,然后通过注射机将粉末充填模腔,最后再施加压力形成零件。
挤压成形是将粉末放置于模具中,然后通过挤压机施加压力使其在模腔中流动并形成零件。
2.3 烧结烧结是粉末冶金过程中的关键步骤,它是指将成形好的粉末在一定条件下进行加热处理,使其颗粒之间产生扩散和结合从而形成致密的固体材料。
烧结温度、时间和气氛都会影响烧结过程的质量和性能。
3. 模具设计在粉末冶金中的应用模具设计在粉末冶金中起到至关重要的作用,它直接影响着成形零件的质量和性能。
模具设计主要包括模具材料的选择、模腔设计和模具加工工艺的确定。
3.1 模具材料的选择模具材料的选择对于模具的寿命和成形零件的质量都有很大的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粉末冶金技术摘要:粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。
粉末冶金法与生产陶瓷有相似的地方,因此,一系列粉末冶金新技术也可用于陶瓷材料的制备。
粉末冶金材料是指用几种金属粉末或金属与非金属粉末作原料,通过配料、压制成形、烧结等工艺过程而制成的材料。
这种工艺过程成为粉末冶金法,是一种不同于熔炼和铸造的方法。
其生产过程与陶瓷制品相类似,所以又称金属陶瓷法。
粉末冶金法不仅是制取具有某些特殊性能材料的方法,也是一种无切削或少切削的加工方法。
它具有生产率高、材料利用率高、节省机床和生产占地面积等优点。
但金属粉末和模具费用高,制品大小和形状受到一定限制,制品的韧性较差。
粉末冶金法常用于制作硬质合金、减摩材料、结构材料、摩擦材料、难熔金属材料、过滤材料、金属陶瓷、无偏析高速工具钢、磁性材料、耐热材料等。
关键词:粉末冶金、基本工序、应用、发展方向、问题及机遇Powder metallurgy technology(11 grade material class two)Abstract:Powder metallurgy is used for preparing metal or metal powder (or metal powder and metal powder mixture) as raw material, after forming and sintering, manufacture of metal materials, composite and various types of products technology.Powder metallurgy method and the production of ceramic have similar place, therefore, a series of new powder metallurgy technologies can also be used for preparing ceramic material. Powder metallurgy materials refers to the use of several kinds of metal powder or metal and non metal powder as raw material, through mixing, pressing, sintering process and made of materials.The process to become powder metallurgy method, is different from the melting and casting method.Its production process and ceramic products are similar, so called ceramic metal.Powder metallurgy method not only has some special properties of material preparation method, is also a kind of without cutting or less cutting processing method. It has high productivity, high material utilization rate, saving machine tools and production area etc..But the metal powder and high mold cost, product size and shape are subject to certain restrictions, flexibility is poor.Powder metallurgy method often used for the production of hard alloy, antifriction material, structural material, friction material, refractory metal materials, filter materials, metal ceramic, no segregation in high speed tool steel, magnetic materials, heat resistant materials.Key words:powder metallurgy, basic process, application, development trend, problems and opportunities一基本简介粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。
二发展前景近年来,通过不断引进国外先进技术与自主开发创新相结合,中国粉末冶金产业和技术都呈现出高速发展的态势,是中国机械通用零部件行业中增长最快的行业之一,每年全国粉末冶金行业的产值以35%的速度递增。
全球制造业正加速向中国转移,汽车行业、机械制造、金属行业、航空航天、仪器仪表、五金工具、工程机械、电子家电及高科技产业等迅猛发展,为粉末冶金行业带来了不可多得的发展机遇和巨大的市场空间。
另外,粉末冶金产业被中国列入优先发展和鼓励外商投资项目,发展前景广阔。
七、粉末冶金研究先进设备-放电等离子烧结系统(SPS)1 前言随着高新技术产业的发展,新型材料特别是新型功能材料的种类和需求量不断增加,材料新的功能呼唤新的制备技术。
放电等离子烧结(Spark Plasma Sintering,简称SPS)是制备功能材料的一种全新技术,它具有升温速度快、烧结时间短、组织结构可控、节能环保等鲜明特点,可用来制备金属材料、陶瓷材料、复合材料,也可用来制备纳米块体材料、非晶块体材料、梯度材料等。
2 国内外SPS的发展与应用状况SPS技术是在粉末颗粒间直接通入脉冲电流进行加热烧结,因此在有的文献上也被称为等离子活化烧结或等离子辅助烧结(plasmaactivatedsintering-PAS或plasma-assistedsintering-PAS)[1,2]。
早在1930年,美国科学家就提出了脉冲电流烧结原理,但是直到1965年,脉冲电流烧结技术才在美、日等国得到应用。
日本获得了SPS技术的专利,但当时未能解决该技术存在的生产效率低等问题,因此SPS技术没有得到推广应用。
1988年日本研制出第一台工业型SPS装置,并在新材料研究领域内推广使用。
1990年以后,日本推出了可用于工业生产的SPS第三代产品,具有10~100t 的烧结压力和脉冲电流5000~8000A。
最近又研制出压力达500t,脉冲电流为25000A的大型SPS装置。
由于SPS技术具有快速、低温、高效率等优点,近几年国外许多大学和科研机构都相继配备了SPS烧结系统,并利用SPS进行新材料的研究和开发[3]。
1998年瑞典购进SPS烧结系统,对碳化物、氧化物、生物陶瓷等材料进行了较多的研究工作[4]。
国内近三年也开展了用SPS技术制备新材料的研究工作[1,3],引进了数台SPS烧结系统,主要用来烧结纳米材料和陶瓷材料[5~8]。
SPS作为一种材料制备的全新技术,已引起了国内外的广泛重视。
3 SPS的烧结原理3.1等离子体和等离子加工技术[9,10]SPS是利用放电等离子体进行烧结的。
等离子体是物质在高温或特定激励下的一种物质状态,是除固态、液态和气态以外,物质的第四种状态。
等离子体是电离气体,由大量正负带电粒子和中性粒子组成,并表现出集体行为的一种准中性气体。
等离子体是解离的高温导电气体,可提供反应活性高的状态。
等离子体温度4000~10999℃,其气态分子和原子处在高度活化状态,而且等离子气体内离子化程度很高,这些性质使得等离子体成为一种非常重要的材料制备和加工技术。
等离子体加工技术已得到较多的应用,例如等离子体CVD、低温等离子体PBD以及等离子体和离子束刻蚀等。
目前等离子体多用于氧化物涂层、等离子刻蚀方面,在制备高纯碳化物和氮化物粉体上也有一定应用。
而等离子体的另一个很有潜力的应用领域是在陶瓷材料的烧结方面[1]。
产成等离子体的方法包括加热、放电和光激励等。
放电产生的等离子体包括直流放电、射频放电和微波放电等离子体。
SPS利用的是直流放电等离子体。
3.2SPS装置和烧结基本原理SPS装置主要包括以下几个部分:轴向压力装置;水冷冲头电极;真空腔体;气氛控制系统(真空、氩气);直流脉冲及冷却水、位移测量、温度测量、和安全等控制单元。
SPS的基本结构如图1所示。
SPS与热压(HP)有相似之处,但加热方式完全不同,它是一种利用通-断直流脉冲电流直接通电烧结的加压烧结法。
通-断式直流脉冲电流的主要作用是产生放电等离子体、放电冲击压力、焦耳热和电场扩散作用[11]。
SPS烧结时脉冲电流通过粉末颗粒如图2所示。
在SPS烧结过程中,电极通入直流脉冲电流时瞬间产生的放电等离子体,使烧结体内部各个颗粒均匀的自身产生焦耳热并使颗粒表面活化。
与自身加热反应合成法(SHS)和微波烧结法类似,SPS是有效利用粉末内部的自身发热作用而进行烧结的。
SPS 烧结过程可以看作是颗粒放电、导电加热和加压综合作用的结果。
除加热和加压这两个促进烧结的因素外,在SPS技术中,颗粒间的有效放电可产生局部高温,可以使表面局部熔化、表面物质剥落;高温等离子的溅射和放电冲击清除了粉末颗粒表面杂质(如去处表面氧化物等)和吸附的气体。
电场的作用是加快扩散过程[1,9,12]。
4 SPS的工艺优势SPS的工艺优势十分明显:加热均匀,升温速度快,烧结温度低,烧结时间短,生产效率高,产品组织细小均匀,能保持原材料的自然状态,可以得到高致密度的材料,可以烧结梯度材料以及复杂工件[3,11]。
与HP和HIP相比,SPS装置操作简单,不需要专门的熟练技术。
文献[11]报道,生产一块直径100mm、厚17mm的ZrO2(3Y)/不锈钢梯度材料(FGM)用的总时间是58min,其中升温时间28min、保温时间5min和冷却时间25min。
与HP相比,SPS技术的烧结温度可降低100~200℃[13]。
5 SPS在材料制备中的应用目前在国外,尤其是日本开展了较多用SPS制备新材料的研究,部分产品已投入生产。
SPS可加工的材料种类如表1所示。