遥感原理实验报告1遥感图像特征
遥感成像原理与遥感图像特征

第三章遥感成像原理与遥感图像特征目的与要求:掌握可见光、近红外、热红外和SAR成像机理,遥感器的类型及其特性对遥感影像的影响,评价遥感影像的主要指标等。
重点及难点:遥感器与遥感成像特性,评价遥感影像的主要指标;遥感成像机理。
教学法:讲授法、演示法教学过程:第一节传感器一、传感器的定义和功能传感器是收集、探测、记录地物电磁波辐射信息的工具。
它的性能决定遥感的能力,即传感器对电磁波段的响应能力、传感器的空间分辨率及图像的几何特征、传感器获取地物信息量的大小和可靠程度。
二、传感器的分类按工作方式分为:主动方式传感器:侧视雷达、激光雷达、微波辐射计。
被动方式传感器:航空摄影机、多光谱扫描仪(MSS)、TM、ETM、HRV、红外扫描仪等。
三、传感器的组成收集器:收集地物的辐射能量。
探测器:将收集的辐射能转变成化学能或电能。
处理器:将探测后的化学能或电能等信号进行处理。
输出器:将获取的数据输出。
四、传感器的工作原理收集、量测和记录来自地面目标地物的电磁波信息的仪器,是遥感技术的核心部分。
根据传感器的工作方式分为:主动式和被动式两种。
主动式:人工辐射源向目标物发射辐射能量,然后接收目标物反射回来的能量,如雷达。
被动式:接收地物反射的太阳辐射或地物本身的热辐射能量,如摄影机、多光谱扫描仪(MSS、TM、ETM、HRV)。
传感器按照记录方式1)非成像方式:探测到地物辐射强度,以数字或者曲线图形表示。
如:辐射计、雷达高度计、散射计、激光高度计等。
2)成像方式:地物辐射(反射、发射或两个兼有)能量的强度用图象方式表示。
如:摄影机、扫描仪、成像雷达。
五、摄影型传感器1、航空摄影机:是空中对地面拍摄像片的仪器,它通过光学系统采用感光材料记录地物的反射光谱能量。
记录的波长范围以可见光~近红外为主。
2、成像原理:由于地物各部分反射的光线强度不同,使感光材料上感光程度不同,形成各部分的色调不同所致。
涉及的概念◆主光轴:通过物镜中心并与主平面(或焦平面)垂直的直线称为主光轴。
遥感ENVI实验报告

遥感ENVI实验报告一、实验目的本实验的目的是学习和掌握ENVI(Environment for Visualizing Images)软件在遥感图像处理方面的应用。
通过本次实验,我们将了解遥感图像的基本概念和原理,并学习使用ENVI软件进行图像预处理、分类和地物提取。
二、实验要求1.学习ENVI软件的基本操作和功能;2.能够对遥感图像进行预处理,如辐射校正和大气校正;3.能够对遥感图像进行分类,如最大似然分类和支持向量机分类;4.能够进行地物提取,如植被指数计算和特征提取。
三、实验步骤和结果1.图像预处理首先,我们导入了一幅Landsat 8卫星遥感图像,并进行了辐射校正和大气校正。
辐射校正是将图像中的DN(数字化值)转换为辐射度值,以便进行后续的大气校正和分类。
大气校正是根据大气传输模型对图像进行校正,以消除大气影响。
经过预处理后,我们得到了一幅处理后的图像。
2.图像分类接下来,我们使用ENVI软件进行了图像分类。
我们采用了最大似然分类和支持向量机分类两种方法进行分类。
最大似然分类是一种统计分类方法,通过最大化每类像素的似然度来划分不同类别,得到分类结果。
支持向量机分类是一种基于机器学习的分类方法,通过训练样本来构建分类模型,并用于对图像中的未分类像素进行分类。
3.地物提取最后,我们对图像进行了地物提取。
我们计算了该图像的植被指数,并使用阈值法将植被像素提取出来。
植被指数是通过计算不同波段之间的光谱差异来反映植被覆盖程度的指标。
我们还对植被像素进行了形状和纹理特征的提取,以获取更具有区分度的特征。
实验结果显示,经过图像预处理和分类,我们得到了一幅分类结果图。
通过该图像,我们可以清楚地看到不同地物类别的分布情况。
同时,通过地物提取,我们成功提取出了图像中的植被像素,并获得了植被的形状和纹理特征。
四、实验总结通过本次实验,我们学习和掌握了ENVI软件在遥感图像处理方面的应用。
我们了解了遥感图像的基本概念和原理,并学会了使用ENVI软件进行图像预处理、分类和地物提取。
遥感原理及应用实验报告-V1

遥感原理及应用实验报告-V1遥感原理及应用实验报告遥感是指通过对地球表面的遥感器获取数据,对地球资源和环境进行监测和研究的一种技术。
在遥感中,主要采用遥感仪器和卫星发射器等装置,并通过遥感技术对获取的数据进行处理和分析,以实现对地球表面的监控和感知。
本实验中我们通过学习遥感原理,并运用相关仪器进行实验,以更深入地了解遥感技术的基本原理和应用。
实验过程实验步骤如下:1.准备工作首先,我们需要进行一些准备工作,包括将遥感仪器和其他相关设备准备好,同时还需要校准测量设备,以确保实验数据的准确度。
2.选择实验区域接下来,我们需要选择一个适合的实验区域,以便进行实验。
在这一步中,我们可以通过查阅相关资料和地图来选择一个地点,并记录其经纬度信息。
3.数据采集在实验区域确定之后,我们开始进行数据采集。
这一步需要使用遥感仪器,并通过其收集特定范围内的地表数据。
我们需要测量并记录数据,以便后续分析。
4.数据处理和分析一旦完成了数据采集,我们需要对其进行处理和分析,以提取出对应的信息。
在处理和分析过程中,我们可以使用一些常用的遥感软件和算法,如NDVI算法,来实现数据处理和分析。
我们可以通过查看结果图像,了解地表状况,如地表覆盖情况、土地利用状态、植被生长情况等信息。
实验结果通过本次实验,我们了解了遥感技术的基本原理,并掌握了遥感仪器和软件的使用方法。
通过数据采集和分析,我们可以得到该实验区域的地表信息,如地表覆盖情况、土地利用状态、植被分布情况等。
结论综上所述,遥感技术是一种重要的地球监测和研究技术,可以通过遥感仪器和软件等工具对地表进行监测和分析,为环境保护、农业生产、城市规划、自然资源管理等提供重要支持。
本次实验通过学习遥感原理和仪器的使用方法,为我们了解遥感技术及其应用提供了重要基础。
遥感实验报告

一、实验1中的can_tmr.img图像是什么影像?包含哪几个波段,各自的中心波长是多少?答:实验1中的can_tmr.img图像是LandsatTM影像;包含TM Band1,TM Band2,TM Band3,TM Band4,TM Band5,TM Band7 共6个波段;各自的中心波长是(0.485000,0.560000,0.660000,0.830000,1.650000,2.215000)二、根据感兴趣区can_tm1.roi文件对can_tmr.img图像进行裁剪后,各波段最大、最小、平均值和标准差是多少?答:在ENVI主菜单中选择File--Open image file,打开can_tmr.img图像。
加载真彩色波段图像,如下图:在ENVI主菜单中选择Basic Tools--Region of Interest--ROI Tool,弹出对话框ROI Tool。
如下图:在对话框ROI Tool的File菜单下,选择Restore ROIs,然后在出现的Enter ROI Filenames对话框中,选择can_tm1.roi文件,打开。
如下图:点击感兴趣名,然后点击ROI Tool对话框中Stats,出现ROI Statistics Result 窗口,显示被显示图像相应文件的平均波谱(白色)、最大和最小波谱(红色,各波段的最小和最大值)、标准差波谱(绿色,+/-1标准差),如下图:保存,将结果显示如下:整理为:基本波段最大值最小值平均值标准差Band1 62 1 14.433485 5.620598 Band2 91 2 20.382735 7.490318 Band3 100 1 21.308905 9.079419 Band4 100 3 31.980554 9.649808 Band5 87 1 24.985552 9.816744 Band6 65 0 18.549205 7.761124三、在Landsat TM 图像can_tmr.img上,提取典型地物光谱,制作反射光谱曲线图。
第三章遥感成像原理与遥感图像特征

一、遥感图像特征
(4)地面分辨率的计算
摄影方式:
Rg Rs f H
Rs:胶片的分辨率和摄影镜头的分辨率所构成的系统 分辨率,单位线对/mm
6.5km/s,在扫描一次的时间里卫星正好向前移动474m,因此扫描线正
好衔接。
0.5~0.6μm 0.6~0.7μm
扫描方向
.m 1
m
2
...k m 3
...m 4
5
0.7~0.8μm
0.8~1.1μm
卫
星
10.4~12.6μm 前 进
方
向
6
成像板
一、遥感图像特征
一般来说:遥感系统的空间分辨率越高,其识别 物体的能力越强。但实际上每一目标在图像上的可 分辨程度,不完全决定于空间分辨率的具体值,而 是和它的形状、大小,以及它与周围物体亮度、结 构的相对差有关(反差)。例如MSS的空间分辨率 为79m,但是宽仅10-20m的铁路,公路,当它们通 过沙漠、水域、草原等背景光谱较单调或与道路光 谱差异大的地区,往往清晰可辨。
一、遥感图像特征
(3)瞬时视场(IFOV)
指遥感器内单个探测元件的受光角度或观测视野。单位为
毫弧度(mrad)。
S
S ➢IFOV越小,最小可分辨单元越小,空间分辨率越高。 f
f ➢IFOV取决于遥感器光学系统和探测器的大小。
➢一个瞬S:时探视测场元内件的的信边息长,表示一个像元。
➢在任何H:一遥个感给平定台的的瞬航时高视场内,往往包含着不止一种地面H
遥感的基本概念、基础和遥感图像特征

地物反射和辐射不同波长的电磁波的特性称为地物波 谱特性。其测量是由传感器(如分光光度计、光谱仪、
摄谱仪等)来完成的,其工作原理就是测量地物的反射 辐射度,经光电管转化为电流强度读出。
反射辐射度由三部分组成:太阳经大气衰减后照射地 面,经地物反射后,又经大气第二次衰减进入传感器的 能量;地面物体本身发射辐射的能量经大气后进入传感 器;大气散射和辐射的能量。
1、遥感(Remote Sensing)
——遥感平台
同,因而具有反射和辐射不同波长的电磁波的特性”。 换句话说,遥感是一种利用物体反射或辐射电磁波的固 有特性,通过观测电磁波、识别物体以及物体存在环境 条件的技术。
观测电磁波的装置是传感器。
1、遥感(Remote Sensing)
——遥感的基本概念和基础
太阳辐射(即太阳光)和地球辐射是遥感过程地物
反射电磁波的主要来源。
遥感的基本概念、基础和遥感 图像特征
1、遥感(Remote Sensing)
遥感的基本概念和基础 遥感平台 遥感成像与遥感图像特征 遥感信息的获取和监测系统 遥感图像的处理
1、遥感(Remote Sensing) ——遥感的基本概念和基础
所谓遥感,通常指的是通过某种传感器装置,在不与 研究对象直接接触的情况下,获得其特征信息,并对这 些信息进行提取、加工、表达和应用的一门科学技术。
遥感图像目标地物识别特征

遥感图像目标地物识别特征:(1)色调:全色遥感图像中从白到黑的密度比例叫色调(也叫灰度)。
如海滩的砂砾色调标志是识别目标地物的基本依据,依据色调标志,可以区分出目标地物。
(2)颜色:是彩色遥感图像中目标地物识别的基本标志。
日常生活中目标地物的颜色:遥感图像中目标地物的颜色:地物在不同波段中反射或发射电磁辐射能量差异的综合反映。
彩色遥感图像上的颜色:真\假彩色。
真彩色图像上地物颜色能真实反映实际地物颜色特征,符合人的认知习惯。
目视判读前, 需了解图像采用哪些波段合成,每个波段分别被赋予何种颜色。
(3)阴影:遥感图像上光束被地物遮挡而产生的地物的影子。
根据阴影形状、大小可判读物体的性质或高度。
不同遥感影像中阴影的解译是不同的。
(4)形状:目标地物在遥感图像上呈现的外部轮廓。
遥感图像上目标地物形状:顶视平面图。
解译时须考虑遥感图像的成像方式。
(5)纹理(texture):内部结构,指遥感图像中目标地物内部色调有规则变化造成的影像结构。
如航空像片上农田呈现的条带状纹理。
纹理可以作为区别地物属性的重要依据。
(6)大小:指遥感图像上目标物体的形状、面积与体积的度量。
判读地物大小时必须考虑图像的比例尺。
影响图像上物体大小的因素有地面分辨率,物体本身亮度与周围亮度的对比关系。
(7)位置:只目标地物分布的地点。
位置分为地理位置、相对位置。
依据遥感图像周框注记的地理经纬度位置,可以推断出区域所处的温度带,依据相对位置,可以为具体目标地物解译提供重要判据。
(8)图型:目标地物有规律的排列而成的图形结构。
(9)相关布局:多个目标地物只讲的空间配置关系。
可以推断目标地物的属性。
《遥感技术》实验报告

郑州大学水利与环境学院遥感技术实验报告(适用于地理信息系统专业)专业班级: ***********学生姓名: *******学生学号: ***********指导教师: ******实验成绩:***年***月实验一、遥感图像认知与输入/输出的基本操作一、实验要求1.了解遥感卫星数字影像的差异。
2.掌握查看遥感影像相关信息的基本方法。
3.掌握遥感图像处理软件ERDAS的基本视窗操作及各个图标面板的功能。
4.了解遥感图像的格式,学习将不同格式的遥感图像转换为ERDASimg格式,以及将ERDASimg 格式转换为多种指定的格式图像。
5.学习如何输入单波段数据以及如何将多波段遥感图像进行波段组合。
6.掌握在ERDAS系统中显示单波段和多波段遥感图像的方法。
二、实验内容1.遥感图像文件的信息查询。
2.空间分辨率。
3.遥感影像纹理结构认知。
4.色调信息认知。
5.遥感影像特征空间分析。
6.矢量化。
7.遥感图像的格式。
8.数据输入/输出。
9.波段组合。
10.遥感图像显示。
三、实验结果及分析:简述矢量功能在ERDAS中的意义。
矢量功能可以将栅格数据转化为矢量数据。
矢量数据有很多优点:1.矢量数据由简单的几何图元组成,表示紧凑,所占存储空间小。
2.矢量图像易于进行编辑。
3.用矢量表示的对象易于缩放或压缩,且不会降低其在计算机中的显示质量。
四、实验结果及分析:简述不同传感器的卫星影像的特点和目视效果。
SPOT卫星最大的优势是最高空间分辨率达10m,并且SPOT卫星的传感器带有可以定向的发射镜,使仪器具有偏离天底点(倾斜)观察的能力,可获得垂直和倾斜的图像。
因而其重复观察能力由26天提高到1~5天,并在不同的轨道扫面重叠产生立体像对,可以提供立体观测地面、描绘等高线,进行立体绘图的和立体显示的可能性。
CBRES的轨道是太阳同步近极地轨道,轨道高度是778km,卫星的重访周期是26天,其携带的传感器的最高空间分辨率是19.5m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《遥感原理》
实验报告
实验名称:遥感图像特征
专业:地理信息科学
学号:
姓名:
学校:合肥工业大学
1、实验目的
掌握用立体镜观测航空像片的立体观测的方法
2、实验材料
航空立体反光镜
3、实验内容与过程
(1)准备立体镜和像片,分别找出主像点;
(2)将立体镜中央对准左右像片的中缝,使像对主像点连线置于平行于眼基线的直线上,左看左,右看右;
(3)进行立体观察。
在立体镜下移动像片间的距离,直到观察到相应的像点融合为一体获得立体感,并且暂时没有不适感。
4、心得体会
在实际操作时,为取得较好地立体效果,需要确定两像片间的相对位置。
可先用两食指在立体镜下分别指着两张像片的对应像点,然后左右移动食指(连同像片),直至看到两个食指重合在一起,此时就可以看到较好的立体效果。
而且由于长期放置,像片四周可能会卷起或变形,应先手动将其捋的较为平整再进行观察,否则会使观察不清晰,眼睛通过镜片观察像片一分钟以上以适应观测,然后可以看到实验中地物特征会被夸张化,使观察明显。
从我观察的图像中可以看到,山脊突出,河流居民地道路都具有鲜明特征,易于区分;交换像片观察后,发现有些像片特征不是很明显,则需要仔细观看,或者询问老师同学。