高二下学期第一次月考数学(文)试题
湖南衡阳第八中学高二下学期第一次月考试题数学(文)Word版含答案

数学(文科)试题
命题人:刘慧英 审题人:刘一坚
考试时间:120分钟 考试总分:150分
一、选择题:本大题共12小题,每小题5分,共60分
1.设集合,集合,则
A. B. C. D.
2.已知复数 ,则复数z在复平面对应的点位于()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
A. B. C. D.
二、填空题:本大题共4小题,每小题5分,共20分
13.已知向量 , ,若 ,则 =
14.函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(-2,2]上,
f(x)= 则f(f(15))的值为.教育精品
15.已知满足约束条件: ,则的最大值是
16.函数 图象上不同两点 处切线的斜率分别是 规定 ( 为线段 的长度)叫做曲线 在点 与 之间的“平方弯曲度”,给出以下命题:教育精品
.
18.(1)
(2)
19.(1)广场舞者的平均年龄为 所以广场舞者的平均年龄大约为54岁;
(2)记事件 为“从年龄在 内的广场舞者中任取2名,选中的两人中恰有一人年龄在 内。由直方图可知,年龄在 内的有2人,分别记为 ,在 内的有4人,分别记为 ,现从这6人中任选两人,所有可能基本事件有:教育精品
, ,共15个,
17.(本题10分)已知数列是公差为1的等差数列,其前8项的和.
求数列的通项公式;求数列 的前项和.
18.(本题12分)已知命题
(1)若命题 为真命题,求实数m的取值范围;
(2)若命题“ 或 ”为真命题,命题“ 且 ”为假命题,求实数m的取值范围.
19.(本题12分)广场舞是现代城市群众文化、娱乐发展的产物,也是城市精神文明建设成果的一个重要象征.年某校社会实践小组对某小区广场舞的开展状况进行了年龄的调查,随机抽取了40名广场舞者进行调查,将他们年龄分成6段:,,,,,[70,80]后得到如图所示的频率分布直方图.教育精品
河北省冀州中学2013-2014学年高二下学期第一次月考 数学文试题 Word版含答案

高二下学期第一次月考数学试卷(文)命题人:曹泽纪一、选择题,本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个项是符合题目要求的。
1.cos 300°的值是( )A.12 B .-12 C.32 D .-322.若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( ).A .π2B .2π3C .3π2D .5π33.函数f (x )=sin ⎝⎛⎭⎪⎫x -π4的图象的一条对称轴是( ).A .x =π4B .x =π2C .x =-π4D .x =-π24.要得到y =cos ⎝⎛⎭⎪⎫2x +π3的图象,只需将y =sin 2x 的图象( ).A .向左平移5π12个单位长度B .向右平移5π12个单位长度C .向左平移5π6个单位长度D .向右平移5π6个单位长度5.设函数f (x )=⎩⎨⎧log 2x , x >0,log 12(-x ),x <0.若f (a )>f (-a ),则实数a 的取值范是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)6.如图:函数y =xsin x 在[-π,π上的图像是( )7.设41)4tan(,52)tan(=-=+πββα ,则)4tan(πα+的值是( )A.183B. 223C. 1813D. 2213 8.已知|log |)(3x x f =,则下列不等式成立的是 ( )A .)2()21(f f >B .)3()31(f f >C .)31()41(f f > D .)3()2(f f >9、已知()f x 在R 上是奇函数,且)()2(x f x f -=+.2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则( )A.-2B.2C.-98D.9810.已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增. 若实数a满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是( )A .[1,2]B .10,2⎛⎤⎥⎝⎦C .1,22⎡⎤⎢⎥⎣⎦D .(0,2]11.给出下列命题:①在区间(0,)+∞上,函数1y x -=,12y x =,2(1)y x =-,3y x =中有三个是增函数;②若log 3log 30m n <<,则01n m <<<;③若函数()f x 是奇函数,则(1)f x -的图象关于点(1,0)A 对称;④已知函数233,2,()log (1),2,x x f x x x -⎧≤=⎨->⎩则方程 1()2f x =有2个实数根,其中正确命题的个数为 ( ) (A )1 (B )2 (C )3 (D )412.在△ABC 中,内角A ,B ,C 的对边边长分别是a ,b ,c.若a 2-b 2=3bc , sin C =23sin B ,则A =( ).A .30°B .60°C .120°D .150°二、填空题,本大题共4小题,每小题5分.把答案填在答题卡相应位置。
新疆高二下学期第一次月考数学试题(解析版)

高二下学期第一次月考数学试题一、单选题1.某物体的运动路程s (单位:m )与时间t (单位:s )的关系可用函数表示,则该()21s t t t =++物体在s 时的瞬时速度为( ) 1t =A .0m/s B .1m/s C .2m/s D .3m/s【答案】D【分析】根据瞬时速度的概念即可利用平均速度取极限求解. 【详解】该物体在时间段上的平均速度为[]1,1t +∆,当无限趋近于0时,无限趋()()()()()22111111113t t s t s s t t t t+∆++∆+-+++∆-∆===+∆∆∆∆Δt 3t +∆近于3,即该物体在s 时的瞬时速度为3m/s . 1t =故选:D2.曲线在点(1,-2)处的切线的倾斜角为( ) 43y x x =-A .B .C .D .6π4π3π23π【答案】B【分析】根据导数的几何意义求解.【详解】因为,所以,故所求切线的倾斜角为.343y x '=-11x y ='=4π故选:B .3.函数的单调递增区间为( )21=ln 22y x x -+A . B .C .D .()1,1-()0,1[)1,+∞()0,∞+【答案】C【分析】先对函数求导,然后令导函数大于0解出不等式,并结合函数的定义域,即可得到本题答案.【详解】因为,所以,21=ln 22y x x -+211x y x x x -'=-=令,得或,0y >'A A A A 1x <-1x >又函数的定义域为,所以函数的单调递增区间为, {}0x x >[1,)+∞故选:C4.若函数在区间上单调递增,则实数k 的取值范围是( )()331f x x kx =-+()1,+∞A . B . C . D .(),1-∞(],1-∞[)1,-+∞[)1,+∞【答案】B【分析】利用函数在区间上的导函数为非负数,列不等式,解不等式即可求得的取值()f x (1,)+∞k 范围.【详解】由题意得,在区间上恒成立, 22()333()0f x x k x k '=-=-≥(1,)+∞即在区间上恒成立,2k x ≤(1,)+∞又函数在上单调递增,得, 2y x =(1,)+∞21x >所以,即实数的取值范围是. 1k ≤k (,1]-∞故选:B5.已知函数的导函数图象如下图所示,则原函数的图象是( )()y f x =()y f x '=()y f x =A .B .C .D .【答案】B【分析】根据函数的单调性与导数的关系以及导数的变化可得结果.【详解】由图可知,当时,,则函数在上为增函数, 11x -<<()0f x ¢>()f x ()1,1-当时,单调递增,故函数在上的增长速度越来越快,10x -<<()f x '()f x ()1,0-当时,单调递减,故函数在上的增长速度越来越慢. 01x <<()f x '()f x ()0,1B 选项中的图象满足题意. 故选:B.6.函数在区间上的最大值为( ) ()cos sin f x x x x =-[]π,0-A .1 B .C .D .π323π2【答案】B【分析】求出函数的导数,判断函数的单调性,即可求得答案. 【详解】由题意得, ()cos sin cos sin f x x x x x x x '=--=-当时,,,[]π,0x ∈-sin 0x ≤()0f x '≤所以在区间单调递减,故函数最大值为, ()f x []π,0-()ππf -=故选:B7.“一笔画”游戏是指要求经过所有路线且节点可以多次经过,但连接节点间的路线不能重复画的游戏,下图是某一局“一笔画”游戏的图形,其中为节点,若研究发现本局游戏只能以为起,,A B C A 点为终点或者以为起点为终点完成,那么完成该图“一笔画”的方法数为( )C C AA .种B .种C .种D .种6122430【答案】C【分析】采用分步乘法可计算得到以为起点,为终点的方法数,再利用分类加法计数原理求得A C 结果.【详解】以为起点时,三条路线依次连接即可到达点,共有种选择;自连接到A B 326⨯=B C 时,在右侧可顺时针连接或逆时针连接,共有种选择,C 2以为起点,为终点时,共有种方法;∴A C 6212⨯=同理可知:以为起点,为终点时,共有种方法;C A 12完成该图“一笔画”的方法数为种.∴121224+=故选:C.8.过去的一年,我国载人航天事业突飞猛进,其中航天员选拔是载人航天事业发展中的重要一环.已知航天员选拔时要接受特殊环境的耐受性测试,主要包括前庭功能、超重耐力、失重飞行、飞行跳伞、着陆冲击五项.若这五项测试每天进行一项,连续5天完成.且前庭功能和失重飞行须安排在相邻两天测试,超重耐力和失重飞行不能安排在相邻两天测试,则选拔测试的安排方案有( ) A .24种 B .36种C .48种D .60种【答案】B【分析】根据特殊元素“失重飞行”进行位置分类方法计算,结合排列组合等计数方法,即可求得总的测试的安排方案种数.【详解】①若失重飞行安排在第一天则前庭功能安排第二天,则后面三天安排其他三项测试有种安排方法,33A 6=此情况跟失重飞行安排在第五天则前庭功能安排第四天安排方案种数相同;②若失重飞行安排在第二天,则前庭功能有种选择,超重耐力在第四、第五天有种选择,剩12C 12C 下两种测试全排列,则有种安排方法,22A 112222C C A 8=此情况与失重飞行安排在第四天方安排方案种数相同;③若失重飞行安排在第三天,则前庭功能有种选择,超重耐力在第一、第五天有种选择,剩12C 12C 下两种测试全排列,则有种安排方法;22A 112222C C A 8=故选拔测试的安排方案有种. 6282836⨯+⨯+=故选:B.二、多选题9.某高一学生想在物理、化学、生物、政治、历史、地理这六门课程中选三门作为选科科目,则下列说法正确的有( )A .若不选择政治,选法总数为种25C B .若物理和化学至少选一门,选法总数为1225C C C .若物理和历史不能同时选,选法总数为种3164C C -D .若物理和化学至少选一门,且物理和历史不同时选,选法总数为种 121244(C C C )-【答案】AC【分析】根据组合数性质判断A ;若物理和化学至少选一门,分物理和化学选一门和物理和化学都选,求出选法数,判断B ;物理和历史不能同时选,即六门课程中任意选3门减去物理和历史同时选的选法数,判断C ;物理和化学至少选一门,且物理和历史不同时选,分三种情况考虑,求得选法数,判断D.【详解】对于A, 若不选择政治,选法总数为种,正确;3255C C =对于B ,若物理和化学选一门,选法总数为, 1224C C 若物理和化学都选,则选法数有种,2124C C 故物理和化学至少选一门,选法总数为种,而,B 错误;12212424C C C C 16+=1225C C 20=对于C, 若物理和历史不能同时选,即六门课程中任意选3门有种选法,36C 减去物理和历史同时选的选法数,故选法总数为种,C 正确;14C 3164C C -对于D,当物理和化学中只选物理时,有种选法; 23C 当物理和化学中只选化学时,有种选法; 24C 当物理和化学中都选时,有种选法,13C 故物理和化学至少选一门,且物理和历史不同时选,选法总数为种,而,D 错误,221343C +C +C =12121244C C C 8-=故选:AC 10.下列等式正确的是( )A .B .()111A A m m n n n +++=()()!2!1n n n n =--C .D .A C !mm n nn =11A A m m n n n m+=-【答案】ABD【分析】利用排列数公式、组合数公式,逐项计算判断作答.【详解】对于A ,,A 正确;()11!(1)!(1)()![(1)(1)]!1A A mm n n n n n n n m n m +++=+⋅=-+-++=对于B ,,B 正确; ()()!(1)!(1)(2)!2!1(1)1n n n n n n n n n n n ⋅--⋅-===----对于C ,,而与不一定相等,则与不一定相等,C 不正确;A C !m m nnm =!m !n A !m n m A !m n n 对于D ,,D 正确. 111!!A A (1)!()!m m n n n n n m n m n m n m +⋅==-----=故选:ABD11.如图是函数的导函数的图像,则下列判断正确的是( )()y f x =()f x 'A .在区间上,单调递增 ()2,1-()f xB .在区间上,单调递增 ()1,2()f xC .在区间上,单调递增 ()4,5()f xD .在区间上,单调递增 ()3,2--()f x 【答案】BC【分析】当,则单调递增,当,则单调递减,据此可得答案. ()0f x ¢>()f x ()0f x '<()f x 【详解】由题图知当时,,()()1245,,,x x ∈∈()0f x ¢>所以在区间上,单调递增,BC 正确; ()()1245,,,()f x 当时,,当时,,所以在区间上,单调递减.()2,1x ∈--()0f x '<()1,1x ∈-()0f x ¢>()2,1--()f x 在上递增,A 错误;()1,1-当时,,所以在区间上,单调递减,D 错误; ()3,2x ∈--()0f x '<()3,2--()f x 故选:BC12.已知函数,则( ) 321()()3f x x ax x a =+-∈R A .当时,函数的极大值为0a =()f x 23-B .若函数图象的对称中心为,则 ()f x (1,(1))f 1a =-C .若函数在上单调递增,则或 ()f x R 1a ≥1a ≤-D .函数必有3个零点 ()f x 【答案】BD【分析】根据函数极大值的定义,结合函数的导数的性质、函数零点的定义逐一判断即可.【详解】A 项:当时,,则,所以在单调递增,在0a =31()3f x x x =-2()1f x x '=-()f x (,1)-∞-单调递减,在单调递增,所以极大值为,故错误; (1,1)-(1,)+∞()f x 12(1)133f -=-+=B 项:因为函数图象的对称中心为,()f x (1,(1))f所以有,故正确;()()()()21121101f x f x f a x a ++-=⇒+=⇒=-C 项:恒成立,显然必有两根,则2()210f x x ax =+-≥'()0f x '=()121212,,10x x x x x x <⋅=-<()f x 在递减,故错误;()12,x x D 项:必有2相异根,且非零,()2221111001010333f x x ax x x x ax x ax ⎛⎫=+-=⇒=+-=+-= ⎪⎝⎭或,故必有3个零点,故正确. ()f x 故选择:BD三、填空题13.已知函数,则在处的切线方程为___________.()e sin 2xf x x =-()f x ()()0,0f 【答案】10x y +-=【分析】由导数的几何意义求切线的斜率,利用点斜式求切线方程.【详解】因为,()e sin 2xf x x =-所以,,()00e sin 01f =-=()e 2cos 2xf x x =-'所以,()00e 2cos 01f =-=-'切线方程为, 即. ()10y x -=--10x y +-=故答案为:.10x y +-=14.函数有极值,则实数的取值范围是______.()322f x x x ax a =-++a 【答案】1(,3-∞【分析】求出函数的导数,再利用存在变号零点求出a 的范围作答.()f x '()f x '【详解】函数定义域为R ,求导得:,()322f x x x ax a =-++2()32f x x x a '=-+因为函数有极值,则函数在R 上存在变号零点,即有两个不等实根, ()f x ()f x '()0f x '=即有方程有两个不等实根,于是得,解得,2320x x a -+=4120a ∆=->13a <所以实数的取值范围是.a 1(,)3-∞故答案为:1(,)3-∞15.某公司新开发了4件不同的新产品,需放到三个不同的机构A ,B ,C 进行测试,每件产品只能放到一个机构里,则所有测试的情况有________种(结果用具体数字表示). 【答案】81【分析】利用分步乘法原理求解即可【详解】由题意可知,每一个新产品都有3种放法,所以由分步乘法原理可得 4件不同的新产品共有种放法, 333381⨯⨯⨯=故答案为:8116.已知,则_________.233A C 0!4m -+=m =【答案】2或3【分析】利用排列数公式,组合数公式进行计算即得.【详解】,233A C 0!4m -+= ,又,3A 6m∴=323216⨯=⨯⨯=所以或. 2m =3m =故答案为:2或3.四、解答题17.求下列函数的导数. (1); ln(21)y x =+(2); sin cos xy x=(3). 1()23()()y x x x =+++【答案】(1) 221y x '=+(2) 21cos y x'=(3) 231211y x x =++'【分析】利用导数的运算法则求解. 【详解】(1)解:因为, ln(21)y x =+所以; 221y x '=+(2)因为, sin cos xy x=所以; ()2222cos sin 1cos cos x xy xx +'==(3)因为, 1()23()()y x x x =+++,326116x x x =+++所以.231211y x x =++'18.已知函数.()322f x x ax b =-+(1)若函数在处取得极小值-4,求实数a ,b 的值; ()f x 1x =(2)讨论的单调性.()f x 【答案】(1) 33a b =⎧⎨=-⎩(2)答案不唯一,具体见解析【分析】(1)根据求导和极值点处导数值为0即可求解;(2)求导,分类讨论的取值即可求解. a 【详解】(1),则 ()262f x x ax '=-()()1014f f ⎧=⎪⎨=-'⎪⎩即解得,经验证满足题意,62024a a b -=⎧⎨-+=-⎩33a b =⎧⎨=-⎩(2)()()26223f x x ax x x a '=-=-令解得或 ()0f x '=0x =3a x =1°当时,在上单调递增0a =()f x ()∞∞-,+2°当时,在,上单调递增,上单调递减a<0()f x ,3a ⎛⎫-∞ ⎪⎝⎭()0∞,+,03a ⎛⎫ ⎪⎝⎭3°当时,在,(上单调递增,上单调递减0a >()f x ()0∞-,,3a ⎛⎫+∞ ⎪⎝⎭0,3a ⎛⎫ ⎪⎝⎭19.已知函数.()e 2x f x ax a =++(1)若为的一个极值点,求实数a 的值并此函数的极值; 0x =()f x (2)若恰有两个零点,求实数a 的取值范围. ()f x 【答案】(1),极小值为,无极大值12a =-12(2) ,⎛-∞ ⎝【分析】(1)由求得,结合函数的单调性求得的极值. ()00f '=a ()f x (2)由分离常数,利用构造函数法,结合导数求得的取值范围. ()0f x =a a 【详解】(1),依题意,()e 2x f x a '=+()10120,2f a a =+==-'此时,所以在区间递减;()e 1xf x '=-()f x ()()(),0,0,f x f x '-∞<在区间递增. ()()()0,,0,f x f x '+∞>所以的极小值为,无极大值. ()f x ()110122f =-=(2)依题意①有两个解,()e 20x f x ax a =++=,所以不是①的解,121e 02f -⎛⎫-=> ⎪⎝⎭12x =-当时,由①得,12x ≠-e 21xa x =-+构造函数,()e 1212x g x x x ⎛⎫=-≠- ⎪+⎝⎭,()()()()22e 212e 21e 2121x xx x x g x x x +--'=-=-⋅++所以在区间递增;()()111,,,,0,222g x g x ⎛⎫⎛⎫'-∞--> ⎪ ⎪⎝⎭⎝⎭在区间递减.()()1,,0,2g x g x ⎛⎫'+∞< ⎪⎝⎭当时,;当时,,12x <-()0g x >12x >-()0g x <与的图象有两个交点, 121e 22g ⎛⎫=-= ⎪⎝⎭y a =()y g x =则需a <综上所述,的取值范围是. a ,⎛-∞ ⎝【点睛】根据极值点求参数,要注意的是由求得参数后,要根据函数的单调区间进行验()00f x '=证,因为导数为零的点,不一定是极值点.利用导数研究函数的零点,可以考虑分离常数法,通过分离常数,然后利用构造函数法,结合导数来求得参数的取值范围.20.已知一条铁路有8个车站,假设列车往返运行且每个车站均停靠上下客,记从车站上车到A B 车站下车为1种车票().A B ≠(1)该铁路的客运车票有多少种?(2)为满足客运需要,在该铁路上新增了个车站,客运车票增加了54种,求的值.n n 【答案】(1)56(2)3【分析】根据条件利用排列公示建立方程就可以解决.【详解】(1)铁路的客运车票有.288756A =⨯=(2)在新增了个车站后,共有个车站,因为客运车票增加了54种,则, n 8n +285654n A +-=所以,解得.28(8)(7)110n A n n +=++=3n =21.现有如下定义:除最高数位上的数字外,其余每一个数字均比其左边的数字大的正整数叫“幸福数”(如346和157都是三位“幸福数”).(1)求三位“幸福数”的个数;(2)如果把所有的三位“幸福数”按照从小到大的顺序排列,求第80个三位“幸福数”.【答案】(1)个84(2)589【分析】(1)由幸福数的定义结合组合公式求解即可;(2)分类讨论最高位数字,由组合公式结合分类加法计数原理得出第80个三位“幸福数”.【详解】(1)根据题意,可知三位“幸福数”中不能有0,故只需在数字1,2,3,…,9中任取3个,将其从小到大排列,即可得到一个三位“幸福数”,每种取法对应1个“幸福数”,则三位“幸福数”共有个.39C 84=(2)对于所有的三位“幸福数”,1在最高数位上的有个, 28C 28=2在最高数位上的有个,27C 21=3在最高数位上的有个,2615C =4在最高数位上的有个,25C 10=5在最高数位上的有个.24C 6=因为,28211510680++++=所以第80个三位“幸福数”是最高数位为5的最大的三位“幸福数”,为589.22.为响应国家提出的“大众创业万众创新”的号召,小王大学毕业后决定利用所学专业进行自主创业,生产某小型电子产品.经过市场调研,生产该小型电子产品需投入年固定成本2万元,每生产x 万件,需另投入流动成本万元.已知在年产量不足4万件时,,在年产量不小()W x ()3123W x x x =+于4万件时,.每件产品售价6元.通过市场分析,小王生产的产品当年能全部售()64727W x x x=+-完.(1)写出年利润(万元)关于年产量(万件)的函数解析式.(年利润=年销售收入-年固定成()P x x 本-流动成本.)(2)年产量为多少万件时,小王在这一产品的生产中所获年利润最大?最大年利润是多少? 【答案】(1); ()3142,0436425,4x x x P x x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩(2)当年产量为8万件时,所获年利润最大,为9万元.【分析】(1)分以及,分别求解得出表达式,写成分段函数即可;04x <<4x ≥()P x (2)当时,求导得出.然后根据基本不等式求出时,的最值,04x <<()max 10()23P x P ==4x ≥()P x 比较即可得出答案.【详解】(1)由题意,当时,;当时,04x <<()33116224233x x x x x P x ⎛⎫=--+=-+- ⎪⎝⎭4x ≥. ()64646272725P x x x x x x ⎛⎫=--+-=-- ⎪⎝⎭所以. ()3142,0436425,4x x x P x x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩(2)当时,,令,解得.04x <<()24P x x '=-+()0P x '=2x =易得在上单调递增,在上单调递减,所以当时,()P x ()0,2()2,404x <<. ()max 10()23P x P ==当时,, 4x ≥()6425259P x x x ⎛⎫=-+≤-= ⎪⎝⎭当且仅当,即时取等号. 64x x=8x =综上,当年产量为8万件时,所获年利润最大,为9万元.。
2022-2023学年四川省内江市高二年级下册学期第一次月考数学(文)试题【含答案】

2022-2023学年四川省内江市高二下学期第一次月考数学(文)试题一、单选题1.命题“”的否定是( )20,10x x ∃>->A .B .20,10x x ∃≤->20,10x x ∃>-≤C .D .20,10x x ∀>-≤20,10x x ∀≤->【答案】C【分析】由特称命题的否定是全称命题即可得出答案.【详解】命题“”的否定是:.20,10x x ∃>->20,10x x ∀>-≤故选:C.2.椭圆的离心率是( )22124x y +=A B C D 【答案】A【分析】根据题意求,再求离心率即可.,,a b c【详解】由题意可得:y 轴上,则2,a b ==c ==故椭圆的离心率是22124x y +=c e a =故选:A.3.下列说法正确的是( )A .若为假命题,则p ,q 都是假命题p q ∨B .“这棵树真高”是命题C .命题“使得”的否定是:“,”R x ∃∈2230x x ++<R x ∀∈2230x x ++>D .在中,“”是“”的充分不必要条件ABC A B >sin sin A B >【答案】A【分析】若为假命题,则p ,q 都是假命题,A 正确,“这棵树真高”不是命题,B 错误,否定是:p q ∨“,”,C 错误,充分必要条件,D 错误,得到答案.R x ∀∈2230x x ++≥【详解】对选项A :若为假命题,则p ,q 都是假命题,正确;p q ∨对选项B :“这棵树真高”不是命题,错误;对选项C :命题“使得”的否定是:“,”,错误;R x ∃∈2230x x ++<R x ∀∈2230x x ++≥对选项D :,则,,故,充分性;若,则A B >a b >22a b R R >sin sin A B >sin sin A B >,,则,必要性,故是充分必要条件,错误.2sin 2sin R A R B ⋅>⋅a b >A B >故选:A4.在如图所示的正方体中,异面直线与所成角的大小为( )1111ABCD A B C D -1A B 1B CA .30°B .45°C .60°D .90°【答案】C【分析】根据异面直线所成角的定义及正方体的特征求解【详解】连接,,如图,1A D DB因为正方体中,11//A D B C 所以就是与所成的角,1BA D ∠1A B 1B C 在中,.1BA D 11A D A B BD ==∴.160BA D ∠=︒故选:C5.已知双曲线的两条渐近线相互垂直,焦距为,则该双曲线的虚轴长为()222210,0x y a b a b -=>>12( )A .B .C .D .6【答案】B【分析】分析可得,求出的值,即可得出双曲线的虚轴长.b a =b 【详解】双曲线的渐近线方程为,()222210,0x y a b a b -=>>b y x a =±由题意可知,可得,所以,,则1b ba a -⋅=-b a =6c ===b =因此,该双曲线的虚轴长为2b =故选:B.6.若直线与焦点在x 轴上的椭圆总有公共点,则n 的取值范围是( )2y mx =+2219x y n +=A .B .C .D .(]0,4()4,9[)4,9[)()4,99,∞⋃+【答案】C【分析】由题得直线所过定点在椭圆上或椭圆内,代入椭圆得到不等式,再结合椭圆焦点在()0,2轴上即可.x 【详解】直线恒过定点,若直线与椭圆总有公共点,2y mx =+()0,2则定点在椭圆上或椭圆内,,解得或,()0,241n ∴≤4n ≥0n <又表示焦点在轴上的椭圆,故,,2219x y n += x 09n <<[)4,9n ∴∈故选:C.7.已知,分别为双曲线的左、右焦点,为双曲线右支上一点,满足,1F 2F 22145x y -=M 12MF MF ⊥则的面积为( )12F MF △A .B .CD .510【答案】A 【分析】由可以求得M 在以原点为圆心,焦距为直径的圆周上,写出圆的方程,与双曲12MF MF ⊥线的方程联立求得M 的坐标,进而得到所求面积.【详解】设双曲线的焦距为,则.2c 2459c =+=因为,所以为圆与双曲线的交点.12MF MF ⊥M 229x y +=联立,解得,22229145x y x y ⎧+=⎪⎨-=⎪⎩53y =±所以的面积为.12F MF △156523⨯⨯=故选:A.【点睛】本题考查与双曲线有关的三角形面积最值问题,利用轨迹方程法是十分有效和简洁的解法.8.已知椭圆的左、右焦点分别为,过坐标原点的直线交于两点,2222:1(0)x y E a b a b +=>>12,F F E ,P Q 且,且,则椭圆的标准方程为( )22PF F Q⊥2224,6PF Q S PF F Q =+= E A .B .22143x y +=22154x y +=C .D .22194x y +=22195x y +=【答案】C【分析】根据椭圆的定义可求,结合三角形的面积可求,进而可得答案.3a =c 【详解】如图,连接,由椭圆的对称性得四边形为平行四边形,11,PF QF 12PFQF 所以,得.222126PF F Q PF PF a +=+==3a =又因为,所以四边形为矩形,设,22PF F Q ⊥12PFQF 22,==PF m QF n 则,所以得或;2142PF QS mn == 6,8,m n mn +=⎧⎨=⎩ 42m n =⎧⎨=⎩24m n =⎧⎨=⎩则,12F F =2224c b ac ==-=椭圆的标准方程为.E 22194x y +=故选:C.9.当双曲线的焦距取得最小值时,双曲线M 的渐近线方程为222:1(20)26x y M m m m -=-≤<+( )A .y =B .y =xC .y =±2xD .y =±x12【答案】C【解析】求得关于的函数表达式,并利用配方法和二次函数的性质得到取得最小值时的值,2c m m 进而得到双曲线的标准方程,根据标准方程即可得出渐近线方程【详解】由题意可得c 2=m 2+2m +6=(m +1)2+5,当m =-1时,c 2取得最小值,即焦距2c 取得最小值,此时双曲线M 的方程为,所以渐近线方程为y =±2x .2214y x -=故选:C .【点睛】本题考查双曲线的标准方程与几何性质,属基础题,掌握双曲线的基本量的关系是,,a b c 关键.由双曲线的方程:的渐近线可以统一由得出.22(0,0)Ax By AB λλ+=<≠220Ax By +=10.已知,是椭圆C 的两个焦点,P 为C 上一点,,若C ,则1F 2F 122PF PF =( )12F PF ∠=A .B .C .D .150︒120︒90︒60︒【答案】B【分析】根据椭圆的定义,结合余弦定理、椭圆离心率的公式进行求解即可.【详解】解:记,,由,及,得,,又由余弦定11r PF =22r PF =122r r =122r r a +=143r a =223r a=理知,得.2221212122cos 4r r r r F PF c +-⋅∠=222122016cos 499a a F PF c -⋅∠=由,从而,∴.c e a ==2279c a =2212168cos 99a a F PF ⋅∠=-121cos 2F PF ∠=-∵,∴.120180F PF ︒<∠<︒12120F PF ∠=︒故选:B11.吹奏乐器“埙”(如图1)在古代通常是用陶土烧制的,一种埙的外轮廓的上部是半椭圆,下部是半圆.半椭圆(,且为常数)和半圆组成的曲线22221y x a b +=0y ≥0a b >>()2220x y b y +=<如图2所示,曲线交轴的负半轴于点,交轴的正半轴于点,点是半圆上任意一点,C C x A y G M 当点的坐标为时,的面积最大,则半椭圆的方程是()M 12⎫-⎪⎪⎭AGM A .B .()2241032x y y +=≥()22161093x y y +=≥C .D .()22241033x y y +=≥()22421033x y y +=≥【答案】D【分析】由点在半圆上,可求,然后求出G ,A ,根据已知的面积最大的条12M ⎫-⎪⎪⎭b AGM 件可知,,即,代入可求,进而可求椭圆方程OM AG ⊥1OM AGk k ⋅=-a 【详解】由点在半圆上,所以,12M ⎫-⎪⎪⎭b=(0,),(,0)G a A b -要使的面积最大,可平行移动AG ,当AG 与半圆相切于时,M 到直线AG 的AGM 12M ⎫-⎪⎪⎭距离最大, 此时,即,OM AG ⊥1OM AGk k ⋅=-又,OM AG ak k b ===1,a a b =-∴==所以半椭圆的方程为()22421033x y y +=≥故选:D12.已知,为椭圆与双曲线的公共焦点,1F 2F ()221112211:10x y C a b a b +=>>()222222222:10,0x y C a b a b -=>>是它们的一个公共点,且,,分别为曲线,的离心率,则的最小值为M 12π3F MF ∠=1e 2e 1C 2C 12e e ( )ABC .1D .12【答案】A【分析】由题可得,在中,由余弦定理得112212MF a a MF a a =+⎧⎨=-⎩12MF F △,结合基本不等式得,即可解决.2221212122cos3F F MF MF MF MF π=+-⋅⋅222121243c a a a =+≥【详解】由题知,,为椭圆与双曲线的1F 2F ()221112211:10x y C a b a b +=>>()222222222:10,0x y C a b a b -=>>公共焦点,是它们的一个公共点,且,,分别为曲线,的离心率,M 123F MF π∠=1e 2e 1C 2C 假设,12MF MF >所以由椭圆,双曲线定义得,解得,12112222MF MF a MF MF a +=⎧⎨-=⎩112212MF a a MF a a =+⎧⎨=-⎩所以在中,,由余弦定理得12MF F △122F F c =,即222121212π2cos3F F MF MF MF MF =+-⋅⋅,()()()()22212121212π42cos3c a a a a a a a a =++--+⋅-化简得,2221243=+c a a 因为,222121243c a a a =+≥所以,212c a a ≥=12≥e e 当且仅当时,取等号,12a =故选:A二、填空题13.过椭圆的一个焦点的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点2241x y +=1F 构成的的周长为__________2F 【答案】4【分析】先将椭圆的方程化为标准形式,求得半长轴的值,然后利用椭圆的定义进行转化即可求a 得.【详解】解:椭圆方程可化为,显然焦点在y 轴上,,22114x y +=1a =根据椭圆定义,121222AF AF a BF BF a+=+=,所以的周长为.2ABF 121244AF AF BF BF a +++==故答案为4.14.若命题“,”为假命题,则a 的取值范围是______.x ∀∈R 210ax ax ++≥【答案】(,0)(4,)-∞+∞ 【分析】先求得命题为真时的等价条件,取补集即可得到为假命题时的参数取值范围.【详解】当时,命题为“,”,该命题为真命题,不满足题意;0a =x ∀∈R 10≥当时,命题,可得到,解得,0a ≠R x ∀∈210ax ax ++≥2Δ400a a a ⎧=-≤⎨>⎩04a <≤故若命题“,”是假命题,则R x ∀∈210ax ax ++≥(,0)(4,)a ∈-∞+∞ 故答案为:(,0)(4,)-∞+∞ 15.已知椭圆C :,,为椭圆的左右焦点.若点P 是椭圆上的一个动点,点A 的坐2212516x y +=1F 2F 标为(2,1),则的范围为_____.1PA PF +【答案】[10【分析】利用椭圆定义可得,再根据三角形三边长的关系可知,当共线时即1210PF PF =-2,,A P F 可取得最值.1PA PF +【详解】由椭圆标准方程可知,5,3a c ==12(3,0),(3,0)F F -又点P 在椭圆上,根据椭圆定义可得,所以12210PF PF a +==1210PF PF =-所以1210PA PF PA PF +=+-易知,当且仅当三点共线时等号成立;222AF PA PF AF -≤-≤2,,A P F=10+即的范围为.1PA PF +[10+故答案为:[1016.己知,是双曲线C 的两个焦点,P为C 上一点,且,,若1F 2F 1260F PF ∠=︒()121PF PF λλ=>C ,则的值为______.λ【答案】3【分析】根据双曲线的定义及条件,表示出,结合余弦定理求解即可.12,PF PF 【详解】由及双曲线的定义可得,12(1)PF PF λλ=>122(1)2PF PF PF aλ-=-=所以,,因为,在中,221aPF λ=-121a PF λλ=-1260F PF ∠=︒12F PF △由余弦定理可得,222222442242cos 60(1)(1)11a a a ac λλλλλλ=+-⨯⋅⋅︒----即,所以,2222(1)(1)c a λλλ-=-+2222217(1)4c e a λλλ-+===-即,解得或(舍去).231030λλ-+=3λ=13λ=故答案为:3三、解答题17.已知,,其中m >0.2:7100p x x -+<22430q :x mx m -+<(1)若m =4且为真,求x 的取值范围;p q ∧(2)若是的充分不必要条件,求实数m 的取值范围.q ⌝p ⌝【答案】(1)()4,5(2)5,23⎡⎤⎢⎥⎣⎦【分析】(1)解不等式得到,,由为真得到两命题均为真,从而求出:25p x <<q :412x <<p q ∧的取值范围;x (2)由是的充分不必要条件,得到是的充分不必要条件,从而得到不等式组,求出实q ⌝p ⌝p q数m 的取值范围.【详解】(1),解得:,故,27100x x -+<25x <<:25p x <<当时,,解得:,故,4m =216480x x +<-412x <<q :412x <<因为为真,所以均为真,p q ∧,p q 所以与同时成立,:25p x <<q :412x <<故与求交集得:,25x <<412x <<45x <<故的取值范围时;x ()4,5(2)因为,,解得:,0m >22430x mx m -+<3m x m <<故,:3q m x m <<因为是的充分不必要条件,所以是的充分不必要条件,q ⌝p ⌝p q即,但,:25:3p x q m x m <<⇒<<:3q m x m <<⇒:25p x <<故或,0235m m <≤⎧⎨>⎩0235m m <<⎧⎨≥⎩解得:,523m ≤≤故实数m 的取值范围是5,23⎡⎤⎢⎥⎣⎦18.求适合下列条件的圆锥曲线的标准方程;(1)短轴长为的椭圆;23e =(2)与双曲线具有相同的渐近线,且过点的双曲线.22143y x -=()3,2M -【答案】(1)或22195x y+=22195y x +=(2)22168x y -=【分析】(1)根据题意求出、、的值,对椭圆焦点的位置进行分类讨论,可得出椭圆的标准a b c 方程;(2)设所求双曲线方程为,将点的坐标代入所求双曲线的方程,求出的值,()22043y x λλ-=≠M λ即可得出所求双曲线的标准方程.【详解】(1)解:由题意可知.23b c a b ⎧=⎪⎪=⎨⎪⎪=⎩32a b c =⎧⎪=⎨⎪=⎩若椭圆的焦点在轴上,椭圆的标准方程为,x 22195x y +=若椭圆的焦点在轴上,椭圆的标准方程为.y 22195y x +=综上所述,所求椭圆的标准方程为或.22195x y +=22195y x +=(2)解:设所求双曲线方程为,()22043y x λλ-=≠将点代入所求双曲线方程得,()3,2-()2223243λ-=-=-所以双曲线方程为,即.22243y x -=-22168x y -=19.已知直棱柱的底面ABCD 为菱形,且,为1111ABCD A B C D-2AB AD BD ===1AA =E 的中点.11B D (1)证明:平面;//AE 1BDC (2)求三棱锥的体积.1E BDC -【答案】(1)证明见解析(2)1【分析】(1)根据平行四边形的判定定理和性质,结合菱形的性质、线面平行的判定定理进行证明即可;(2)根据菱形的性质、直棱柱的性质,结合线面垂直的判定定理、三棱锥的体积公式进行求解即可.【详解】(1)连接AC 交BD 于点,连接,F 1C F 在直四棱柱中,,1111ABCD A B C D -11//AA CC 11=AA CC 所以四边形为平行四边形,即,,11AA C C 11//AC A C 11=AC A C 又因为底面ABCD 为菱形,所以点为AC 的中点,F 点为的中点,即点为的中点,所以,,E 11B D E 11A C 1//C E AF 1C E AF =即四边形为平行四边形,所以,1AFC E 1//AE C F 因为平面,平面,,所以平面;1C F ⊂1BDC AE ⊄1BDC //AE 1BDC (2)在直棱柱中平面,平面,1111ABCD A B C D -1BB ⊥1111D C B A 11A C ⊂1111D C B A 所以,111BB A C ⊥又因为上底面为菱形,所以,1111D C B A 1111B D A C ⊥因为平面,1111111,,B D BB B B D BB =⊂ 11BB D D 所以平面,11A C ⊥11BB D D 因为在中,,ABD △2AB AD BD ===且点为BD 的中点,所以,即FAF ==1C E =所以.11111121332E BDC C BDE BDE V V S C E --==⋅=⨯⨯=△20.已知椭圆E :.()222210x y a b a b +=>>(P (1)求椭圆E 的方程;(2)若直线m 过椭圆E 的右焦点和上顶点,直线l 过点且与直线m 平行.设直线l 与椭圆E 交()2,1M 于A ,B 两点,求AB 的长度.【答案】(1)221168x y +=【分析】(1)由待定系数法求椭圆方程.(2)运用韦达定理及弦长公式可求得结果.【详解】(1)由题意知,,,设椭圆E 的方程为.e =a=b c =222212x y b b +=将点的坐标代入得:,,所以椭圆E 的方程为.P 28b =216a=221168x y +=(2)由(1)知,椭圆E 的右焦点为,上顶点为,所以直线m 斜率为(0,,1k ==-由因为直线l 与直线m 平行,所以直线l 的斜率为,1-所以直线l 的方程为,即,()12y x -=--30x y +-=联立,可得,2211683x y y x ⎧+=⎪⎨⎪=-+⎩231220x x -+=,,,1200∆=>124x x +=1223x x =.==21.已知双曲线.221416x y -=(1)试问过点能否作一条直线与双曲线交于,两点,使为线段的中点,如果存在,()1,1N S T N ST 求出其方程;如果不存在,说明理由;(2)直线:与双曲线有唯一的公共点,过点且与垂直的直线分别交轴、l ()2y kx m k =+≠±M M l x 轴于,两点.当点运动时,求点的轨迹方程.y ()0,0A x ()00,B y M 00(,)P x y 【答案】(1)不能,理由见解析;(2),.22100125x y -=0y ≠【分析】(1)设出直线的方程,与双曲线方程联立,由判别式及给定中点坐标计算判断作答.ST (2)联立直线与双曲线的方程,由给定条件得到,求出的坐标及过点与直线l ()2244m k =-M M 垂直的直线方程,即可求解作答.l 【详解】(1)点不能是线段的中点,N ST 假定过点能作一条直线与双曲线交于,两点,使为线段的中点,()1,1N S T N ST 显然,直线的斜率存在,设直线的方程为,即,ST ST ()11y n x -=-1y nx n =-+而双曲线渐近线的斜率为,即,221416x y -=2±2n ≠±由得,则有,解得,2211416y nx n x y =-+⎧⎪⎨-=⎪⎩()22242(1)(1)160n x n n x n -+----=2(1)14n n n --=-4n =此时,即方程组无解,22224(1)4(4)[(1)16]4169412250n n n n '∆=----+=⨯⨯-⨯⨯<所以过点不能作一条直线与双曲线交于,两点,使为线段的中点.()1,1N S T N ST (2)依题意,由消去y 整理得,221416x y y kx m ⎧-=⎪⎨⎪=+⎩()()22242160k x kmx m ---+=因为,且是双曲线与直线唯一的公共点,2k ≠±M l 则有,即,点M 的横坐标为,()()222Δ(2)44160km k m =-+-+=()2244m k =-244km kkm =--点,,过点与直线垂直的直线为,416(,)k M m m --0km ≠M l 1614()k y x m k m +=-+因此,,,,020k x m =-020y m =-2222002224164(4)110025x y k k m m m --=-==00y ≠所以点的轨迹方程为,.00(,)P x y 22100125x y -=0y ≠22.已知椭圆:上的点到左、右焦点,的距离之和为4.C ()222210x y a b a b +=>>31,2A ⎛⎫ ⎪⎝⎭1F 2F (1)求椭圆的方程.C (2)若在椭圆上存在两点,,使得直线与均与圆相切,问:C P Q AP AQ ()222322x y r ⎛⎫-+-= ⎪⎝⎭()0r >直线的斜率是否为定值?若是定值,请求出该定值;若不是定值,请说明理由.PQ 【答案】(1)22143x y +=(2)是定值,定值为12【分析】(1)由椭圆的定义结合性质得出椭圆的方程.C (2)根据直线与圆的位置关系得出,将直线的方程代入椭圆的方程,由韦达定理得21k k =-AP C 出坐标,进而由斜率公式得出直线的斜率为定值.,P Q PQ 【详解】(1)由题可知,所以.24a =2a =将点的坐标代入方程,得A 31,2⎛⎫⎪⎝⎭22214x y b +=23b =所以椭圆的方程为.C 22143x y +=(2)由题易知点在圆外,且直线与的斜率均存在.A ()()2223202x y r r ⎛⎫-+-=> ⎪⎝⎭AP AQ 设直线的方程为,直线的方程是AP ()1312y k x -=-AQ ()2312y k x -=-由直线与圆相切,AP ()()2223202x y r r ⎛⎫-+-=> ⎪⎝⎭r=r=.=21k k =-将直线的方程代入椭圆的方程,AP C 可得.()()222111113443241230k x k k x k k ++-+--=设,.因为点也是直线与椭圆的交点,(),P P P x y (),Q Q Q x y 31,2A ⎛⎫ ⎪⎝⎭AP 所以,21121412334P k k x k --=+1132P P y k x k =+-因为,所以,21k k =-21121412334Q k k x k +-=+1132Q Q y k x k =-++所以直线的斜率PQ Q P PQ Q Py y k x x -=-()112Q P Q Pk x x k x x -++=-22111111221122111122114123412323434412341233434k k k k k k k k k k k k k k ⎛⎫+----++ ⎪++⎝⎭=+----++()()22111118623424k k k k k --++=12=。
高二数学下学期第一次月考试题 文

高二数学下学期第一次月考试题 文第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z=2(1)1i i-+,则|z|=2.已知x 与y 之间的一组数据:( )A .(2,2) B.(1,2) C.(1.5,0) D (1.5,4)3.设x∈R,则“|x﹣2|<1”是“x 2+x ﹣2>0”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.复数31i i --在复平面上所对应的点在第( )象限 。
A .一 B. 二 C. 三 D. 四5.已知复数z 满足(3+i )z=4﹣2i ,则复数z=( )A .1﹣iB .1+iC .2+iD .2﹣i 6.曲线y=x 3﹣2x+1在点(1,0)处的切线方程为( )A .y=x ﹣1B .y=﹣x+1C .y=2x ﹣2D .y=﹣2x+27.x xe x f -=)(的一个单调递增区间是( ) A .[-1,0] B .[2,8]C .[1,2]D .[0,2]8.下列函数中,在),0(+∞上为增函数的是( )A.x y cos =B.x xe y =C.x x y -=3D.x x y -=ln 9.函数f (x )=x 3+ax 2+3x ﹣9已知f (x )在x=﹣3时取得极值,则a=( )A .2B .3C .4D .5 10.函数2||2e x y x =-在[2,2]-的图象大致为( )11.若32()33(2)1f x x ax a x =++++有极大值和极小值,则a 的取值范围是 ( )A .12a -<<B .2a >或1a <-C .2a ≥或1a ≤-D .12a a ><-或 []12.若函数f (x )=x 2+2x+alnx 在(0,1)上单调递减,则实数a 的取值范围是( )A .a≥0B .a≤0C .a≥﹣4D .a≤﹣4第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.复数1i i -的共轭复数是___________ 14.甲、乙两人各进行一次射击,如果两人击中目标的概率是0.8.计算,至少有1人击中目标的概率15.i 表示虚数单位,则2014211i i i ++++Λ=16.如图是函数y=f (x )的导函数图象,给出下面四个判断:①f(x )在区间[﹣2,1]上是增函数;②x=﹣1是f (x )的极小值点;③f(x )在区间[﹣1,2]上是增函数,在区间[2,4]上是减函数;④x=1是f (x )的极大值点.其中,判断正确的是 .(写出所有正确的编号)三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)通过市场调查,得到某产品的资金投入x (万元)与获得的利润y (万元)的数据,如下表所示:(Ⅰ)画出数据对应的散点图;(Ⅱ)根据上表提供的数据,用最小二乘法求线性回归直线方程a bx y +=^;(Ⅲ)现投入资金10(万元),求估计获得的利润为多少万元.1122211()()ˆ()ˆˆn n i i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx ====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑18.(本小题满分12分)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:喜爱打篮球 不喜爱打篮球 合计 男生5 女生10 合计 50已知在全班50人中随机抽取1人,抽到喜爱打篮球的学生的概率为35. (1)请将上表补充完整(不用写计算过程);(2)能否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由.下面的临界值表供参考:2()p K k ≥ 0.15[. 0.10 0.05 0.025 0.010 0.005 0.001k 2.0722.7063.841[] 5.024 6.635 7.879 10.828 (参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++) 19.(本小题满分12分)(1)实数m 取什么数值时,复数221(2)z m m m i =-+--分别是:(1)实数? (2)虚数? (3)纯虚数?(2)已知11m ni i=-+,(m 、n∈R,i 是虚数单位),求m 、n 的值. 20.(本小题满分12分)已知函数f (x )=x 3﹣12x(1)求函数f (x )的极值;(2)当x∈[﹣3,3]时,求f (x )的最值.21.已知函数d cx bx x x f +++=2331)(的图象过点(0,3),且在)1,(--∞和),3(+∞上为增函数,在)3,1(-上为减函数.(1)求)(x f 的解析式; (2)求)(x f 在R 上的极值.22.已知函数f (x )=lnx+.(Ⅰ)求证:f (x )≥1;(Ⅱ)若x ﹣1>alnx 对任意x >1恒成立,求实数a 的最大值23.(7、9班做)设函数 f(x)=|3x+1|-|x-4|.(1)解不等式f(x)<0(2)若f(x)+4|x-4|>m对一切实数x均成立,求实数m的取值范围。
高二文科数学下学期第一次月考试题

高二文科数学下学期第一次月考试题(考试时间:120分钟 总分:150分)命题人:漳平一中 范思南 审题人:漳平一中 苏新妙一、选择题(每小题5分,共60分)1、已知集合{}R x x x P ∈≤≤=,20|,{}N x x Q ∈=|则Q P ( )A、PB、QC、{}2,1D、{}2,1,02、设有一个回归方程为,43x y -=变量x 增加一个单位,则( )A、y 平均增加3个单位 B、y 平均减少4个单位 C、y 平均减少3个单位D、y 平均增加4个单位3、下面四个平面图形中,顶点数V,边数E和区域数F的关系式是( )A、V+F-E=2 B、V+F-E=1 C、V+F-E=0D、V+F-E=3 4、如果方程03lg 2lg lg )3lg 2(lg lg 2=+++x x 的两根为21,x x 那么21x x ⋅的值为( )A、3lg 2lg B、3lg 2lg + C、61D、-65、二次函数c bx ax y ++=2中,0<⋅c a 则函数的零点个数是( )A、1个B、2个C、0个D、无法确定6、观察下图规律,在其最下面一行的空格内画上合适的图形是( )A、△★○■B、○■△★C、○★△■ D、□●☆▲7、设函数5)(35+++=xcbx ax x f ,3)3(=-f 则=)3(f ( ) A、3B、-3C、2D、78、已知数列{}n a 前n 项和)2(2≥⋅=n a n S n n 且11=a 通过计算432,,a a a ,猜想n a 等于( )A、2)1(2+n B、)1(2+n nC、122-nD、122-n 9、已知复数i m Z 21+= i Z 432-=若21Z Z 为实数 则=m ( ) A、38B、23-C、38- D、2310、下列哪个程序框图能实现交换b a ,两个变量的值( )A B C D11、已知函数)0(42)(2>++=a ax ax x f 若21x x <,021=+x x 则( )A、)()(21x f x f < B、)()(21x f x f =C、)()(21x f x f >D、)(1x f 与)(2x f 的大小不能确定12、函数)2(log 2+-=ax x y a 在),2[+∞恒为正,则实数a 的范围是( )A、10<<aB、21<<aC、251<<a D、32<<a二、填空题(每小题4分,共16分)13、设集合{}m x x M -≤=2| {}),0[3|+∞∈==-x y y N x若φ≠N M ,则实数m 的取值范围为 。
2021-2022学年河南省灵宝市高二年级下册学期第一次月考数学(文)试题【含答案】

2021-2022学年河南省灵宝市高二下学期第一次月考数学(文)试题一、单选题1.复数)z A .-1B .1C .D .i -i【答案】A【分析】利用复数模长与四则运算进行计算即可.【详解】,所以虚部为-1.()()()21i 1i 1i 1i z -==-+-故选:A2.如图5个数据,去掉后,下列说法错误的是( )(,)x y (3,10)D A .相关系数r 变大B .相关指数变大2R C .残差平方和变大D .解释变量x 与预报变量y 的相关性变强【答案】C【分析】去掉离群点D 后,结合散点图对各个选项进行判断得解.【详解】解:由散点图知,去掉离群点D 后,x 与y 的相关性变强,且为正相关,所以相关系数r 的值变大,故选项A 正确;相关指数的值变大,残差平方和变小,故选项B 正确,选项C 错误;2R 解释变量x 与预报变量y 的相关性变强,故选项D 正确.故选:C .3.用反证法证明命题①:“已知,求证:”时,可假设“”;命题332p q +=2p q +≤2p q +>②:“若,则或”时,可假设“或”.以下结论正确的是24x =2x =-2x =2x ≠-2x ≠A .①与②的假设都错误B .①与②的假设都正确C .①的假设正确,②的假设错误D .①的假设错误,②的假设正确【答案】C【详解】分析:利用命题的否定的定义判断即可.详解:①的命题否定为,故①的假设正确.2p q +≤2p q +>或”的否定应是“且”② 的假设错误,2x =-2x =2x ≠-2x ≠所以①的假设正确,②的假设错误,故选C.点睛:本题主要考查反证法,命题的否定,属于简单题. 用反证法证明时,假设命题为假,应为原命题的全面否定.4.关于下面几种推理,说法错误的是( )A .“由金、银、铜、铁可导电,猜想:金属都可以导电.”这是归纳推理B .演绎推理在大前提、小前提和推理形式都正确时,得到的结论不一定正确C .由平面三角形的性质推测空间四面体的性质是类比推理D .“椭圆的面积,则长轴为4,短轴为2的椭圆的面积.”这是演22221(0)x y a b a b +=>>S ab π=2S π=绎推理【答案】B【分析】根据归纳推理和演绎推理以及类比推理的概念逐个判断可得结果.【详解】对于,“由金、银、铜、铁可导电,猜想:金属都可以导电.”这是归纳推理,说法正确;A 对于,演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确,所以说法错误;B 对于,由平面三角形的性质推测空间四面体的性质是类比推理,说法正确;C 对于,“椭圆的面积,则长轴为4,短轴为2的椭圆的面积.”D 22221(0)x y a b a b +=>>S ab π=2S π=这是演绎推理,说法正确.故选:B.【点睛】本题考查了归纳推理和演绎推理以及类比推理的概念,属于基础题.5.在平面内,点到直线的距离公式为()00,x y 0Ax By C ++=d 可求得在空间中,点到平面的距离为( )()2,1,2210x y z ++-=A .BCD .3【答案】B【分析】类比得到在空间,点到直线的距离公式,再求解.()000,x y z ,0Ax By Cz D +++=【详解】类比得到在空间,点到直线的距离公式为()000,x y z ,0Ax By Cz D +++=d所以点到平面的距离为.()2,1,2210x y z ++-=d 故选B【点睛】本题主要考查类比推理,意在考查学生对该知识的理解掌握水平,属于基础题.6.下列使用类比推理正确的是A .“平面内平行于同一直线的两直线平行”类比推出“空间中平行于同一平面的两直线平行”B .“若,则”类比推出“若,则”12x x+=2212x x +=2212x x -=C .“实数,,满足运算”类比推出“平面向量满足运算”a ()()abc a bc =,,a b c ()()a b c a b c ⋅=⋅ D .“正方形的内切圆切于各边的中点”类比推出“正方体的内切球切于各面的中心”【答案】D【分析】根据类比结果进行判断选择.【详解】因为空间中平行于同一平面的两直线位置关系不定,所以A 错;因为“若,则”,所以B 错;12x x -=22112x x x =-≠因为,所以C 错;()()a b c a b c ⋅≠⋅ 因为正方体的内切球切于各面的中心,所以正确.选D.D 【点睛】本题考查线面位置关系判断、向量运算律以及正方体性质,考查基本分析判断能力,属基础题.7.在数学课堂上,张老师给出一个定义在上的函数,甲、乙、丙、丁四位同学各说出了这R ()f x 个函数的一条性质:甲:在上函数单调递减;(],0-∞()f x 乙:在上函数单调递增;[)0,∞+()f x 丙:函数的图像关于直线对称;()f x 1x =丁:不是函数的最小值.()0f ()f x 张老师说:你们四位同学中恰好有三个人说的正确,那么,你认为说法错误的同学是( )A .甲B .乙C .丙D .丁【答案】B【解析】采用反证法判断.【详解】假设甲,乙正确,则丙,丁错误,与题意矛盾所以甲,乙中必有一个错误假设甲错误乙正确,则在上函数单调递增;[)0,∞+()f x 而函数的图像不可能关于直线对称,则丙错误,与题意矛盾;()f x 1x =所以甲正确乙错误;故选:B8.已知下列命题:①回归直线恒过样本点的中心,且至少过一个样本点;ˆˆˆybx a =+(),x y ②两个变量相关性越强,则相关系数r 就越接近于1;③将一组数据的每个数据都加一个相同的常数后,方差不变;④在回归直线方程 中,当解释变量x 增加一个单位时,预报变量平均减少0.5;20.5ˆyx =-ˆy ⑤在线性回归模型中,相关指数表示解释变量对于预报变量的贡献率,越接近于1,表2R x y 2R 示回归效果越好;⑥对分类变量与,它们的随机变量的观测值来说, 越小,“与有关系”的把握程度X Y 2K k k X Y 越大.⑦两个模型中残差平方和越小的模型拟合的效果越好. 则正确命题的个数是( )A .3B .4C .5D .6【答案】B【分析】由回归直线恒过样本中心点,不一定经过每一个点,可判断①;由相关系数的绝对值趋近于1,相关性越强,可判断②;由方差的性质可判断③;由线性回归直线方程的特点可判断④;相关指数R 2的大小,可判断⑤;由的随机变量K 2的观测值k 的大小可判断⑥;残差平方和越小,模型的拟合效果越好,可判断⑦.【详解】对于①,回归直线恒过样本点的中心(),可以不过任一个样本点,故①y b x a ∧∧∧=+x y ,错误;对于②,两个变量相关性越强,则相关系数r 的绝对值就越接近于1,故②错误;对于③,将一组数据的每个数据都加一个相同的常数后,由方差的性质可得方差不变,故③正确;对于④,在回归直线方程2﹣0.5x 中,当解释变量x 每增加一个单位时,y ∧=预报变量平均减少0.5个单位,故④正确;y ∧对于⑤,在线性回归模型中,相关指数R 2表示解释变量x 对于预报变量y 的贡献率,R 2越接近于1,表示回归效果越好,故⑤正确;对于⑥,对分类变量X 与Y ,它们的随机变量K 2的观测值k 来说,k 越大,“X 与Y 有关系”的把握程度越大,故⑥错误;对于⑦,可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,故⑦正确.其中正确个数为4.故选B .【点睛】本题考查命题的真假判断,主要是线性回归直线的特点和线性相关性的强弱、样本数据的特征值和模型的拟合度,考查判断能力,属于基础题.9.在研究某高中高三年级学生的性别与是否喜欢某学科的关系时,总共调查了N 个学生(),其中男女学生各半,男生中60%表示喜欢该学科,其余表示不喜欢;女生中100m,N m *=∈N 40%表示喜欢该学科,其余表示不喜欢.若有99.9%把握认为性别与是否喜欢该学科有关,则可以推测N 的最小值为( )附,22()()()()()n ad bc K a b c d a c b d -=++++()2P K k 0.0500.0100.001k3.8416.63510.828A .400B .300C .200D .100【答案】B【分析】根据题目列出列联表,再根据列联表的数据计算值,进而得到关于的关系式,22⨯2K m 求解即可.【详解】由题可知,男女各人,列联表如下:50m 喜欢不喜欢总计男30m 20m 50m 女20m 30m 50m 总计50m50m100m,()22224100900400=450505050m m m K mm -=⨯⨯⨯有99.9%把握认为性别与是否喜欢该学科有关,,解得,410.828m ∴> 2.707m >,m *∈N ,3m ∴≥.min 300N ∴=故选:B10.已知,且为虚数单位,则的最大值是 ( )C z ∈1,z i i -=35z i--A .B .C .D .5678【答案】B【分析】根据复数的几何意义,可知中对应点的轨迹是以为圆心,为半径1z i -=z Z (0,1)C 1r =的圆,而表示圆上的点到的距离,由圆的图形可得的的最大值.35z i--(3,5)A 35z i--【详解】根据复数的几何意义,可知中对应点的轨迹是以为圆心,为半径1z i -=z Z (0,1)C 1r =的圆.表示圆C 上的点到的距离,|35|z i -- (3,5)A 的最大值是,|35|z i ∴--||516CA r +=+=故选B【点睛】本题主要考查了复数的几何意义,圆的性质,属于中档题.11.如图是瑞典数学家科赫在1904年构造的能够描述雪花形状的图案.图形的作法是:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边.反复进行这一过程,就得到一条“雪花”状的曲线.设原正三角形(图①)的边长为1,把图①,图②,图③,图④中图形的周长依次记为,,,,则=( )1C 2C 3C 4C 4C A .B .C .D .1289649642712827【答案】B【分析】观察图形可得出为首项为,公比为的等比数列,即可求出.{}n C 13C =43【详解】观察图形发现,从第二个图形开始,每一个图形的周长都在前一个的周长的基础上多了其周长的,即,131111433n n n n C C C C ---=+=所以为首项为,公比为的等比数列,{}n C 13C =43.34464339C ⎛⎫∴=⨯=⎪⎝⎭故选:B.12.如图,“大衍数列”:、、、、来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,024812主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.如图是求大衍数列前项和的程序框图.执行该程序框图,输入,则输出的( )n 8m =S =A .B .C .D .4468100140【答案】C【分析】写出程序运行的每一步,即可得出输出结果.【详解】第1次运行, ,不符合 ,继续运行;211,0,0002n n a S -====+=n m ≥第2次运行,,不符合 ,继续运行;22,2,0222n n a S ====+=n m ≥第3次运行,,不符合 ,继续运行;213,4,4262n n a S -====+=n m ≥第4次运行,,不符合,继续运行;24,8,86142n n a S ====+=n m ≥第5次运行,,不符合 ,继续运行;215,12,1412262n n a S -====+=n m ≥第6次运行,,不符合 ,继续运行;26,18,2618442n n a S ====+=n m ≥第7次运行,,不符合 ,继续运行;217,24,2444682n n a S -====+=n m ≥第8次运行,,符合 ,退出运行,输出.28,32,68321002n n a S ====+=n m ≥100S =故选:C.二、填空题13.已知复数的对应点在复平面的第二象限,则||的取值范围是(2)(1)i()z a a a R =-++∈1i a +________.【答案】【分析】根据的几何意义,得的复平面内对应的点,列出不等式组求得,再(2,1)a a -+1a 2-<<结合复数模的计算公式,即可求解.【详解】由题意,复数在复平面内对应的点,(2)(1)i()z a a a R =-++∈(2,1)a a -+因为该点位于第二象限,所以,解得,2010a a -<⎧⎨+>⎩1a 2-<<所以.|1i|a ⎡+=⎣故答案为:.14.甲、乙、丙、丁四位同学中仅有一人申请了北京大学的自主招生考试,当他们被问到谁申请了北京大学的自主招生考试时,甲说:“丙或丁申请了”;乙说:“丙申请了”;丙说:“甲和丁都没有申请”;丁说:“乙申请了”,如果这四位同学中只有两人说的是对的,那么申请了北京大学的自主招生考试的同学是______.【答案】乙【分析】先假设甲乙丙丁中一个人说的是对的然后再逐个去判断其他三个人的说法最后看是否满..足题意,不满足排除.【详解】解:先假设甲说的对,即甲或乙申请了但申请人只有一个,.如果是甲,则乙说“丙申请了”就是错的,丙说“甲和丁都没申请”就是错的,丁说“乙申请了”也是()1错的,这样三个错的,不能满足题意,故甲没申请如果是乙,则乙说“丙申请了”就是错的,丙().2说“甲和丁都没申请”可以理解为申请人有可能是乙,丙,戊,但是不一定是乙,故说法不对,丁说“乙申请了”也是对的,这样说的对的就是两个是甲和丁满足题意..故答案为乙.【点睛】本题考查了合情推理的应用,属于中档题.15.有下列一组不等式:,根据111111111111111111,,,,3424562567826789102+>++>+++>++++> 这一规律,若第2020个不等式为,则__________.11111122m m m n ++++>++ m n +=【答案】6064【分析】由归纳推理得:第个不等式为:,若第2020个不等式为k 111123222k k k ++⋯+>+++,所以,,即可得解.11111122m m m n +++⋯+>++2022m =4042n =【详解】解:因为由,,,,,根据这一111342+>11114562++>1111156782+++>1111116789102++++>⋯规律,则第个不等式为:,k 111123222k k k ++⋯+>+++若第2020个不等式为,11111122m m m n +++⋯+>++即,,22022m k =+=224042n k =+=所以,,2022m =4042n =即,202240426064m m +=+=故答案为:.6064【点睛】本题考查了归纳推理,属于基础题.16.已知变量y 关于x 的回归方程为,其一组数据如表所示:若,则预测y 值可能为2e kx y +=8x =___________.x 23456y1.5e 4.5e 5.5e 6.5e 7e 【答案】8e【分析】由已知回归方程取对数并令,得线性回归方程,根据线性回归直线过中ln z y =2z kx =+心点求得值,然后代入可得预测值.k 8x =【详解】由得:,令,即,2ekx y +=ln 2y kx =+ln z y =2z kx =+因为,2345645x ++++==,1.5 4.5 5.5 6.57ln e ln e ln e ln e ln e 1.5 4.5 5.5 6.57555z ++++++++===将点代入直线方程中,即可得:,(4,5)2z kx =+0.75k =所以回归方程为, 0.752e +=x y 若,则.8x = 0.75828ee ⨯+==y 故答案为:.8e 三、解答题17.在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,xOy C 22cos 12sin x y θθ=+⎧⎨=+⎩θ轴正半轴为极轴建立极坐标系,直线的极坐标方程为.xl cos 4πρθ⎛⎫+= ⎪⎝⎭(1)求直线的直角坐标方程和曲线的普通方程;l C (2)直线与曲线交于两点,设点的坐标为,求的值.l C ,M N P ()0,2-22||||PM PN +【答案】(1)曲线:,直线:;(2).C 22(2)(1)4x y -+-=l 20x y --=32【分析】(1)利用公式消除参数,可得曲线的方程,再利用直角坐标与极坐标22sin cos 1θθ+=θC 的转化公式求得直线的方程;l (2)利用直线参数方程中参数的几何意义求解.【详解】(1)曲线:,直线:C 22(2)(1)4x y -+-=l 20x y --=(2)设:(为参数)l 2x y ⎧=⎪⎪⎨⎪=-⎪⎩t 将的参数方程代入,l 22(2)(1)4x y -+-=得,222)(3)4-+-+=,290t -+=故,12t t +=129t t =,22222121212()2501832PM PN t t t t t t +=+=+-=-=故.2232PM PN +=【点睛】直角坐标方程转为极坐标方程的关键是利用公式,而极坐标方程转化为直角坐cos sin x y ρθρθ=⎧⎨=⎩标方程的关键是利用公式,后者也可以把极坐标方程变形尽量产生,,222tan x y yx ρθ⎧=+⎪⎨=⎪⎩2ρcos ρθ以便转化另一方面,当动点在圆锥曲线运动变化时,我们可以用一个参数来表示动点坐标,sin ρθθ从而利用一元函数求与动点有关的最值问题.18.设实部为正数的复数,且复数在复平面上对应的点在第一、三象限z ()12i z +的角平分线上.(1)求复数;z (2)若为纯虚数,求实数的值.()i1i m z m R -+∈+m 【答案】(1);(2).3i z =-5-【分析】(1)根据待定系数法求解,设且,由题意得到关于的方程组求i(,z a b a b R =+∈0)a >,a b 解即可.(2)根据纯虚数的定义求解即可.【详解】(1)设,,,由题意:①i z a b =+,a b R ∈0a >2210a b +=,得②()()()()12i 12i i 22i z a b a b a b +=++=-++22a b a b -=+①②联立,解得,得.3a =1b =-3i z =-(2),()()i 1i i113i 31i 1i 222m m m m z ----+⎛⎫+=++=++- ⎪+⎝⎭所以且,解得.1302m -+=1102m +-≠5m =-19.近年来,共享单车进驻城市,绿色出行引领时尚.某公司计划对未开通共享单车的县城进行A 车辆投放,为了确定车辆投放量,对过去在其他县城的投放量情况以及年使用人次进行了统计,得到了投放量(单位:千辆)与年使用人次(单位:千次)的数据如下表所示,根据数据绘制投x y 放量与年使用人次的散点图如图所示.x yx1234567y611213466101196(1)观察散点图,可知两个变量不具有线性相关关系,拟用对数函数模型或指数函数lg =+y a b x 模型对两个变量的关系进行拟合,请问哪个模型更适宜作为投放量与年使用(0,0)=⋅>>xy c d c d x人次的回归方程类型(给出判断即可,不必说明理由),并求出关于的回归方程;y y x (2)已知每辆单车的购入成本为元,年调度费以及维修等的使用成本为每人次元,按用户2000.2每使用一次,收费元计算,若投入辆单车,则几年后可实现盈利?18000参考数据:其中,.lg ii v y =117nii v v ==∑y v71i ii x y=∑71i ii x v=∑0.541062.141.54253550.12 3.47参考公式:对于一组数据,,…,其回归直线的斜率和截距的最()11,x y ()22,x y (),n nx y ˆˆa y bx =-小二乘估计公式分别为.121()()()niii nii x x y y bx x ==--=-∑∑ 【答案】(1)适宜,;(2)年.xy c d =⋅0.25ˆ 3.4710x y =⨯6【分析】(1)根据散点图判断,适宜;由两边同时取对数得,设x y c d =⋅xy c d =⋅lg lg lg y c x d =+,则,根据参考数据以及参考公式首先求出的回归直线方程进而求出结lg y v =lg lg v c x d =+v x ,果;(2)将8000代入回归直线方程可得年使用人次,求出每年收益与总投资,则可求出结果.【详解】(1)由散点图判断,适宜作为投放量与年使用人次的回归方程类型.xy c d =⋅x y 由,两边同时取常用对数得.x y c d =⋅()lg lg lg lg x y c d c x d =⋅=+设,则.lg y v =lg lg v c x d =+因为,,,,4x = 1.54v =721140ii x==∑7150.12==∑i ii x v所以.7172217lg 7==-==-∑∑i i i ii x v x vd xx250.1274 1.5470.251407428-⨯⨯==-⨯把代入,得,(4,1.54)lg lg =+v c x d lg 0.54c =所以,所以,ˆ0.540.25vx =+ˆlg 0.540.25y x =+则,0.540.250.25ˆ10 3.4710x x y+⨯==故关于的回归方程为.y x 0.25ˆ 3.4710xy =⨯(2)投入千辆单车,则年使用人次为千人次,80.2583.4710347⨯⨯=每年的收益为(千元),347(10.2)277.6⨯-=总投资千元,800020016000001600⨯==假设需要年开始盈利,则,即,n 277.61600⨯>n 5.76>n 故需要年才能开始盈利.620.已知圆有以下性质:222:C x y r +=①过圆上一点的圆的切线方程是.C ()00,M x y 200x x y y r +=②若不在坐标轴上的点为圆外一点,过作圆的两条切线,切点分别为,则()00,M x y C M C ,A B 垂直,即.OM AB 1AB OM K K ⋅=-(1)类比上述有关结论,猜想过椭圆上一点的切线方程 (不要求证明);2222:1x y C a b +='()00,M x y (2)若过椭圆外一点(不在坐标轴上)作两直线,与椭圆相切于2222:1x y C a b +='()00,M x y M 两点,求证:为定值.,A B AB OM K K ⋅【答案】(1)切线方程是;(2)见解析.00221x x y ya b +=【详解】分析:(1)根据类比推理可得结果;(2)设由(1)得过椭圆上点()()1122,,,A x y B x y 的切线的方程是,同理,又过两点的直线是唯一的,直()11,A x y 1l 11221x x y ya b +=2020221x x y y a b +=,A B 线的方程是,,又,从而可得结果.AB 00221x x y y a b +=2020AB b x k a y =-00OM y k x =详解:(1)过椭圆上一点的的切线方程是()2222:10x y C a b a b =>'+>()00,M x y 00221x x y ya b +=(2)设()()1122,,,A x y B x y 由(1)得过椭圆上点的切线的方程是,()11,A x y 1l 11221x x y ya b +=∵直线过点,1l ()00,M x y ∴1010221x x y y a b +=同理2020221x x y y ab +=又过两点的直线是唯一的,,A B ∴直线的方程是.AB 00221x x y ya b +=∴,2020AB b x k a y =-又,0OM y k x =∴为定值.22002200AB OM b x y b k k a y x a ⋅=-⋅=-点睛:本题主要考查类比推理、圆锥曲线的切线,圆锥曲线的定值问题,属于难题. 探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.21.2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动23没有兴趣.(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?22⨯90%有兴趣没兴趣合计男55女合计(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.附表:.22(),()()()()-==+++++++n ad bc n a b c da b c d a c b d χ【答案】(1)有的把握认为“对冰球是否有兴趣与性别有关”;90%(2).710【分析】(1)根据已知数据得到列联表,根据列联表中的数据计算出,可得结论;2χ(2)由题意得概率为古典概型,根据古典概型概率公式计算可得所求.【详解】(1)根据已知数据得到如下列联表有兴趣没有兴趣合计男451055女301545合计7525100由列联表中的数据可得,()22100451510301003.0305545752533χ⨯⨯-⨯==≈⨯⨯⨯因为,23.030 2.706χ≈>所以有90%的把握认为“对冰球是否有兴趣与性别有关”;(2)记5人中对冰球有兴趣的3人为A 、B 、C ,对冰球没有兴趣的2人为m 、n ,则从这5人中随机抽取3人,所有可能的情况为:(A,m,n ),(B,m,n ),(C,m,n ),(A,B,m ),(A,B,n ),(B,C,m ),(B,C,n ),(A,C,m ),(A,C,n ),(A,B,C ),共10种情况,其中3人都对冰球有兴趣的情况有(A,B,C ),共1种,2人对冰球有兴趣的情况有(A,B,m ),(A,B,n ),(B,C,m ),(B,C,n ),(A,C,m ),(A,C,n ),共6种,所以至少2人对冰球有兴趣的情况有7种,因此,所求概率为.710P =22.写出以下各式的值:()1______;()()22sin 60sin 30sin 30 +-⋅-=______;()()22sin 150sin 120sin 120+-⋅-=______.22sin 15sin 15sinl5+⋅= 结合的结果,分析式子的共同特点,写出能反映一般规律的等式,并证明你的结论.()2()1【答案】(1),,; (2)见解析.141414【分析】利用特殊角的三角函数进行计算()1当,,借助于和差角的三角函数公式进行证明即()2αβ30+=221sin αsin βαsin β4+⋅=()可.【详解】,()()()2211sin 60sin 30sin 304+-⋅-=,()()221sin 150sin 120sin 1204 +-⋅-=,221sin 15sin 15sinl54+⋅=当,,()2αβ30+=221sin αsin βαsin β4+⋅=证明:,则,αβ30+= β30α=-,()()2222sin αsin βαsin βsin αsin 30ααsin 30α∴++⋅=+-⋅-,2211sin α(cos αα)αcos αα22⎛⎫=+⋅ ⎪ ⎪⎝⎭.222222133111sin αcos ααsin αααcos αsin αsin αcos α442444sin =+++-=+=【点睛】本题考查归纳推理,考查三角函数知识,考查学生分析解决问题的能力,属于中档题.。
数学-高二下学期第一次月考模拟卷(原卷版)

2023-2024学年高二数学下学期第一次月考模拟卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(22-23高二下·湖北恩施·期中)已知函数(是的导函数),则( )A .1B .2C .D . 2.(23-24高二上·辽宁朝阳·期末)如图,已知每条线路仅含一条通路,当一条电路从处到处接通时,不同的线路可以有( )A .5条B .6条C .7条D .8条3.(23-24高二下·广西·开学考试)曲线在点处的切线的斜率为( )A .5B .6C .7D .84.(23-24高二下·江苏南京·开学考试)设,若函数有极值点,则的取值范围为( )A .B .C .D . 5.(23-24高三上·山西运城·期末)第33届夏季奥运会预计2024年7月26日至8月11日在法国巴黎举办,这届奥运会将新增2个竞赛项目和3个表演项目.现有三个场地A ,B ,C 分别承担这5个新增项目的比赛,且每个场地至少承办其中一个项目,则不同的安排方法有( )A .150种B .300种C .720种D .1008种6.(23-24高二上·福建福州·期末)已知是函数的导数,且,则不等式的解集为( )A .B .C .D . 7.(23-24高二下·安徽宿州·开学考试)已知,则的值为( )A .-66B .-65C .-63D .-628.(23-24高二上·湖南长沙·期末)若,则( ) A . B . C . D .()()2131ln 2f x f x x x ='-++()f x '()f x ()1f =1212-M N 27ln y x x x =-++()1,6R a ∈()e 21x f x ax =++a a<02a >-102a -<<12a <-()f x '()()f x x ∈R ()(),1,32x f x f >'∀∈=R ()1f x x >-(),2-∞()2,+∞(),3-∞()3,+∞()()627012712x x a a x a x a x -+=++++ 01357a a a a a ++++11221ln ,ln ,4433e abc ===-c b a <<b c a <<c a b <<b a c <<二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.(23-24高二下·河北·开学考试)下列求导运算正确的是( )A .若,则B .C .D . 10.(22-23高二下·江苏连云港·阶段练习)身高各不相同的六位同学站成一排照相,则说法正确的是( )A .A 、C 、D 三位同学从左到右按照由高到短的顺序站,共有120种站法B .A 与同学不相邻,共有种站法C .A 、C 、D 三位同学必须站在一起,且A 只能在C 与D 的中间,共有144种站法D .A 不在排头,B 不在排尾,共有504种站法11.(23-24高二上·浙江杭州·期末)设定义在上的函数的导函数分别为,若且为偶函数,则下列说法中正确的是( )A .B .C .的图象关于对称D .函数为周期函数,且周期为4三、填空题:本题共3小题,每小题5分,共15分.12.(23-24高二上·河南焦作·期末)已知为正整数,且,则 .13.(23-24高二上·山东青岛·期末)的展开式中的系数为 .(用数字作答). 14.(23-24高三下·江苏南通·开学考试)已知a ,b ,c 为某三角形的三边长,其中,且a ,b 为函数的两个零点,若恒成立,则M 的最小值为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)(23-24高二上·山东青岛·期末)已知展开式中,第三项的系数与第四项的系数比为. (1)求的值;(2)求展开式中有理项的系数之和.(用数字作答)()1ln =+y x x 1ln 1y x x '=++()cos sin ππ'=-()2122ln 211x x x x x '⎛⎫-=- ⎪+⎝⎭+()1ln 22'=x xA B C D E F 、、、、、C 5424A A ⋅R (),()f x g x (),()f x g x ''(2)(2)2,()(2)f x g x f x g x ''++-==+(1)y g x =+(1)0g '=(2)(3)(4)0g g g ++=()g x '3x =()f x n 2414A C n n n -=n =81()y x y x ⎛⎫++ ⎪⎝⎭26x y a b <2()f x ax bx c =-+M a b c >+-2(n x 65n16.(15分)(23-24高二上·江苏南通·期末)已知函数. (1)求函数的极值点;(2)记曲线在处的切线为,求证,与有唯一公共点.17.(15分)(23-24高二下·江西·开学考试)某班共有团员14人,其中男团员8人,女团员6人,并且男、女团员各有一名组长,现从中选6人参加学校的团员座谈会.(用数字做答)(1)若至少有1名组长当选,求不同的选法总数;(2)若至多有3名女团员当选,求不同的选法总数;(3)若既要有组长当选,又要有女团员当选,求不同的选法总数.18.(17分)(23-24高二上·安徽·期末)已知函数. (1)若在上单调递增,求的取值范围;(2)试讨论函数的单调性.19.(17分)()2e xx x f x +=()f x ():C y f x =0x =l l C ()()222e x f x x x a =-+()f x []2,7a ()f x(23-24高二下·广西·阶段练习)固定项链的两端,在重力的作用下项链所形成的曲线是悬链线.1691年,莱布尼茨等得出“悬链线”方程为,其中为参数.当时,就是双曲余弦函数,类似地我们可以定义双曲正弦函数.它们与正、余弦函数有许多类似的性质.(1)类比正、余弦函数导数之间的关系,,,请写出,具有的类似的性质(不需要证明);(2)当时,恒成立,求实数的取值范围;(3)求的最小值.e e 2x x c c c y -⎛⎫+ ⎪⎝⎭=c 1c =()e e ch 2x x x -+=()e e sh 2x xx --=()sin cos x x '=()cos sin x x '=-()sh x ()ch x 0x >()sh x ax >a ()()2ch cos f x x x x =--。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江南中学第二学期第一次月考
高二数学(文科)
考试时间:120分钟卷面总分:150分
第I 卷
一、选择题(本大题共12小题,共60分)
1.复数,则z 的虚部为()
A.1
B.i
C.-1
D.-i
2.设函数)(x f 在0x 处可导,则等于()
A.)('0x f
B.)('0x f -
C.)('0x f -
D.)
(0x f --3.一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有()颗.A.3 B.5 C.10 D.27
4.推理过程⇒⇒ac >bd ⇒>共有三个推理步骤,其中错误步骤的个数为(
)
A.0
B.1
C.2
D.3i i z
+=-21
5.用反证法证明命题:“已知a ,b 为实数,则方程02=++b ax x 至少有一个实根”时,要做的假设是()
A.方程02
=++b ax x 没有实根 B.方程02=++b ax x 至多有一个实根
C.方程02=++b ax x 至多有两个实根
D.方程02=++b ax x 恰好有两个实根6.设a 为实数,函数x a ax x x f )2()(2
3-++=的导数是)('x f ,且)('x f 是偶函数,则曲线)(x f y =在原点处的切线方程为(
)A.y =-2x B.y =3x C.y =-3x D.y =4x
7.若函数)(x f 的导函数为x x f sin )('-=,则函数图象在点))4(,4(f 处的切线的倾斜角为()
A.90°
B.0°
C.锐角
D.钝角
8.已知函数x x x f ln sin )(+=,则)1('f 的值为()
A.1-cos1
B.1+cos1
C.cos1-1
D.-1-cos1
9.若定义y y x x -=⊕3,则)(a a a ⊕⊕等于()
A.-a
B.a 3
C.a
D.a
3-10.函数)(x f y =的图象在点))5(,5(f P 处的切线方程是8+-=x y ,则=
+)5(')5(f f (
)A.21 B.1 C.2 D.0
11.设函数)(x f 的导函数为)('x f ,且)1('2)('2f x x x f ⋅+=,则)0('f 等于()
A.0
B.-4
C.-2
D.2
12.设函数)(x f 在定义域内可导,)(x f y =的图象如图所示,则导函数)
('x f y =
可能()
A. B. C. D.
第Ⅱ卷
二、填空题(本大题共4小题,共20分)
13.若复数z 满足i i z -=+1)1((i 是虚数单位),则其共轭复数=______.
14.已知一列数1,1,2,3,5,…根据其规律,下一个数应为______.15.求x
x f 1sin )(3=的导数______.16.函数63315)(23
+--=x x x x f 的单调减区间为______.
三、解答题(本大题共6小题,共70分)17.(1)设复数i m m z )2()1(++-=和复平面内点z 对应,若点z 在直线02=-y x 上,求实数m 的值.
(2)已知i z +=2,计算1
842-+-z z z .18.若0,0,,>>∈y x R y x 且2>+y x .求证:y
x +1和x y +1中至少有一个小于2.19.已知函数54)(2
3+++=bx ax x x f 的图象在1=x 处的切线方程为x y 12-=.z
(1)求函数)(x f 的解析式;
(2)求函数)(x f 在[-3,1]上的最值.
20.已知0>c ,用分析法证明:c c c 211<++-.21.已知函数x
x x f ln 1
1)(+-=(Ⅰ)求)(x f 在点))(,(e f e 处的切线方程;
(Ⅱ)当10<<x 时,若不等式1)(-≤kx x f 恒成立,求k 的取值范围.
22.数列{n a }中,1a >0,1a ≠1,又*+∈+=N n a a a n n n ,1
21.(1)若2
11=a ,求5432,,,a a a a 的值,并归纳出数列{n a }的通项公式;(2)是否存在常数)0(≠p p ,使得{n
a p +
1}为等比数列?若存在,求出其公比;若不存在,请说明理由.
高二数学(文科)
【答案】
1.A
2.C
3.D
4.C
5.A
6.A
7.C
8.B
9.C10.C
11.B12.D
13.i14.815.cos16.(-1,11)
17.解:(1)复数z=(m-1)+(m+2)i和复平面内点Z对应,若点Z在直线2x-y=0上,
所以2(m-1)-(m+2)=0
解得m=4.
(2)z=2+i,所以=====.18.证明:假设与都大于或等于2,
即≥2且≥2,
∵x,y∈R+,故可化为1+x≥2y且1+y≥2x,
两式相加,得x+y≤2,
与已知x+y>2矛盾.
∴假设不成立,即原命题成立.
19.解:(1)f′(x)=12x2+2ax+b,f′(1)=12+2a+b=-12.①
又x=1,y=-12在f(x)的图象上,
∴4+a+b+5=-12.②
由①②得a=-3,b=-18,
∴f(x)=4x3-3x2-18x+5.
(2)f′(x)=12x2-6x-18=0,得x=-1,,
f(-1)=16,f()=-,f(-3)=-76,f(1)=-13.
∴f(x)的最大值为16,最小值为-76.
20.证明:要证原不等式成立,只需证明<,
即证2c+2<4c,
即证<c ,
而c >0,故只需证明c 2-1<c
2而此式成立,
故原不等式得证.
21.解:(I)∵f (x )=x -1+
,
∴f ′(x )=1-
,∴f ′(e )=1-
,∵f (e )=e ,∴f (x )在点(e ,f (e ))处的切线方程为y -e =(1-)(x -e ),即y =(1-)x +1;
(Ⅱ)当0<x <l 时,若不等式f (x )≤kx -1恒成立,可以转化为k -1≥.
令g (x )=xlnx ,则g ′(x )=lnx +1,
<x <1时,g ′(x )>0,函数单调递增,0<x <时,g ′(x )<0,函数单调递减,
∴g (x )的最小值为-,
由0<x <1,g (x )<0,可得
的最大值为-e ,∴k -1≥-e ,
∴k ≥1-e .
22.解:(1)a 2=,a 3=,a 4=,a 5=
,
归纳猜想a n =.
(2)假设存在常数p (p ≠0),使得{1+
}为等比数列,公比为q ,则有1+=q (1+),
因为a n +1=,所以1+
,化简得,,令,
解得p=-1,q=,
经检验符合题意,故存在p=-1,使得{1+}为等比数列,公比为。