语音信号的特征分析共77页文档

合集下载

语音信号的时域特征分析

语音信号的时域特征分析

中北大学课程设计说明书学生姓名:蒋宝哲学号: 24学生姓名:瓮泽勇学号: 42学生姓名:侯战祎学号: 47学院:信息商务学院专业:电子信息工程题目:信息处理实践:语音信号的时域特征分析指导教师:徐美芳职称: 讲师2013 年 6 月 28 日中北大学课程设计任务书2012-2013 学年第二学期学院:信息商务学院专业:电子信息工程学生姓名:蒋宝哲学号: 24 学生姓名:瓮泽勇学号: 42 学生姓名:侯战祎学号: 47 课程设计题目:信息处理实践:语音信号的时域特征分析起迄日期: 2013年6 月7日~2013年6月 28 日课程设计地点:学院楼201实验室、510实验室、608实验室指导教师:徐美芳系主任:王浩全下达任务书日期: 2013 年 6 月 7 日课程设计任务书课程设计任务书语音信号的采集与分析摘要语音信号的采集与分析技术是一门涉及面很广的交叉科学,它的应用和发展与语音学、声音测量学、电子测量技术以及数字信号处理等学科紧密联系。

其中语音采集和分析仪器的小型化、智能化、数字化以及多功能化的发展越来越快,分析速度较以往也有了大幅度的高。

本文简要介绍了语音信号采集与分析的发展史以及语音信号的特征、采集与分析方法,并通过PC机录制自己的一段声音,运用Matlab进行仿真分析,最后加入噪声进行滤波处理,比较滤波前后的变化。

关键词:语音信号,采集与分析, Matlab0 引言通过语音传递倍息是人类最重要、最有效、最常用和最方便的交换信息的形式。

语言是人类持有的功能.声音是人类常用的工具,是相互传递信息的最主要的手段。

因此,语音信号是人们构成思想疏通和感情交流的最主要的途径。

并且,由于语言和语音与人的智力活动密切相关,与社会文化和进步紧密相连,所以它具有最大的信息容量和最高的智能水平。

现在,人类已开始进入了信息化时代,用现代手段研究语音信号,使人们能更加有效地产生、传输、存储、获取和应用语音信息,这对于促进社会的发展具有十分重要的意义。

第08章 语音信号特征参数

第08章 语音信号特征参数

第八章语音信号特征参数8.1 概述语音信号是十分复杂的非平稳信号,它不仅包含语义信息,还有个人特征信息,对其特征参数的研究是语音识别的基础。

换句话说,特征参数应能完全、准确地表达语音信号。

那么特征参数也应能完全、准确地表达语音信号所携带的全部信息。

实验语音学的研究从语音信号本质上给出的特征参数是科学的、合理的,但是不完全的。

在元音的特征研究较深入,对辅音的研究相对较弱,对辅音、元音之间的过渡就更弱,而这一部分恰好是含信息量最大、最难处理的。

本章介绍语音信号的九种特征参数及其提取算法,是从不同的角度对语音信号研究的结果,是可行的、有效的,但不是万能的。

值得提请读者注意的是,某些算法对一些应用表现很好,但对另一些应用可能表现不佳。

应该说我们对语音信号的本质认识还不够深入,也就是我们对语音信号的发音机理、心理,听觉机理、心理,语义的社会性等方面缺乏深入研究,更谈不上多学科综合研究。

尽管如此,现有的这些特征参数在语音识别中起着重要作用。

8.2基音周期Equation Chapter 8 Section 2基音周期(Pitch)(或基音频率)是指发浊音时声带震动所引起的周期性,基音周期也F的倒数,它不仅是语音信号分析的一个重要参数,也是语音产生的数字是声带振动频率模型中激励源的一个重要参数,它携带着非常重要的具有辨意信息,因此它的检测和估计是语音处理中一个十分重要的问题[1]。

基音检测的主要困难在于:(1)语音信号变化十分复杂,声门激励波形并不是一个完全周期的序列,在语音的头、尾部并不具有声带振动那样的周期性,有些清浊音的过渡帧是很难判断它应属于周期性还是非周期性,从而也就无法估计出基音周期。

(2)要从语音信号中去除声道影响,或者直接去除仅和声带振动有关的音源信息并非容易的事,例如声道共振峰有时会严重影响音源的谐波结构。

(3)在浊音段很难精确地确定每个基音周期的开始和结束位置,这不仅因为语音信号本身是准周期的(即音调是有变化的),而且因为波形的峰或过零受共振峰结构、噪声等影响。

语音信号处理第3章 语音信号分析方法

语音信号处理第3章 语音信号分析方法

如果aN~=0,则IIR滤波器的阶数为N。
IIR滤波器的差分方程表示为:
y ( n)
m 0
bm x(n m) am y(n m)
m 1
M
N
设计经典数字滤波器的步骤:
(1)将设计指标归一化处理,即通带截止频率Wp 和阻带截止频率Ws。
(2)根据归一化频率,确定最小阶数N 和频率参数 Wn。可供选用的阶数选择函数有:buttord, cheb1ord,cheb2ord,ellipord 等。
(3)运用最小阶数N 设计模拟低通滤波器原型,用 到的函数有:butter, chebyl,cheby2, ellip 。
(4)用freqz(b,a,N,fs) 函数验证设计结果。
(5)用filter(b,a,x)函数实现滤波功能。
直接设计数字滤波器的MATLAB函数: [N,wn]=buttord(wp,ws,Rp,Rs) %数字频率采用标 准化频率,取值范围为0~1之间,标准化频率1对 应的数字频率为π,对应的模拟频率为采样频率 的一半。设计带通滤波器时,wp=[wp1,wp2]; ws=[ws1,ws2] [b,a]=butter(N,wn,’ftype’) %N为滤波器的阶数, wn为滤波器的截止频率(0~1),“ftype”为滤 波器的类型:‘high’为高通,‘stop’为带阻, 截止频率为wn=[w1,w2];缺省时为低通和带通滤 波器
[N,Wn]=buttord(wp1,ws1,Rp,Rs);
[b,a] = butter(N,Wn);%确定传递函数的分子、分母系数
[h,f]=freqz(b,a,Nn,Fs);
plot(f,20*log(abs(h)))
%生成频率响应参数

第三章-语音信号的特征分析讲解讲解学习

第三章-语音信号的特征分析讲解讲解学习

Magnitude (dB)
40 20
0 -20 -40 -60 -80 -100
0 50
Frequency domain
0.2
Fre0q.u4ency do0m.6ain
0.8
Normalized Frequency ( rad/sample)
0
-50
-100
-150 0
40 30 20 10
0 -10 -20
1 0.8 0.6 0.4 0.2
0 0
rectangular hamming hanning bartlett
50
100
150
200
250
❖ 几种不同的窗函数波形与频谱的比较
1
Hamming 0.8 哈明窗 0.6
Amplitude
0.4
0.2
0
1
Hanning 0.8
汉宁窗
0.6
Amplitude
0.4
0.2
0
1
矩形窗
0.8
Amplitude
0.6
0.4
0.2
0
Time domain
10
20 Tim3e0domain40
50
60
Samples
10
20 Tim3e0domain40
50
60
Samples
10
20
30
40
50
பைடு நூலகம்
60
Samples
Magnitude (dB)
Magnitude (dB)
帧和加窗的概念
❖ 短时分析将语音流分为一段一段来处理,每一段称 为一“帧”;

语音信号的时域及频域特征

语音信号的时域及频域特征
10
(12)
当短时谱为使用 DFT 计算时,可以证明窗函数和插值函数需要满足一下条件:
r
h(n r ) w(r n pN ) ( p)

(13)
例如,我们可以特别地选择 W ( n) 为窗长为 N 的三角窗,而 h[ n] 为矩形窗,
1 n [0, N 1] h[ n] 0 其它
第一章 语音信号的时域及频域特征
1. 语音信号的主要特点
1.1. 语音信号带宽
语音信号的带宽约为 5KHz , 主要能量集中在低频段。 上图为一段语音信号语谱图。
1
1.2. 语音信号是典型的随机信号
1)人的每次发音过程都是一个随机过程。很难得到两次完全相同的发音样本。 2)在信号处理中,通常假设语音信号是短时平稳的。例如,可以认为在语音的浊 音段部分,语音的二阶矩统计量是平稳的(在 5~10mS 内),即二阶矩平稳,或称为宽平 稳。
2
2. 语音信号的时域波形
图 1.
语音信号的波形(shi4)
3
图 2. 语音信号波形(shi4)的局部细节
4
2.1. 语音时域信号特征
2.1.1. 语音时域信号的特点
1)清音段:能量低,过零率高,波形特点有点像随机的噪声。这部分信号常与语 音的辅音段对应。 2)浊音段:能量高,过零率低,波形具有周期性特点。所谓的短时平稳性质就是 处于这个语音浊音(元音)段中。 3)过渡段:一般是指从辅音段向元音段信号变化之间的部分。信号变化快,是语 音信号处理中最复杂、困难的部分。
r 取值为周期时刻采样分析短时谱,间隔为
h(n)
w( n)
T N 2。

N
h( n )
w(n)

语音信号的识别与分析技术

语音信号的识别与分析技术

语音信号的识别与分析技术语音信号是我们日常交流中最为普遍和基础的通信手段,随着科技的不断发展,越来越多的人工智能设备和人机交互系统也采用语音作为信息输入和输出的方式,语音信号的识别与分析技术也越来越成为了一个重要的研究领域。

语音信号的识别可以分为语音识别和说话人识别两种。

语音识别是指将说话人说的语音信号转化为文本或命令等符号组合的技术,它是现代人机交互和自然语言处理的基础;而说话人识别是指通过对语音信号中的说话人身份进行识别,从而实现区分不同说话人的功能。

语音信号的分析则是指对说话人语音信号的声学和语言特征进行分析,以提取有效信息的技术。

从声学角度来说,语音信号的分析可以分别在时域和频域上进行。

在时域上,可以利用数字信号处理技术对语音信号进行连续采样,并对其物理特性(如频率、振幅、波形等)进行分析;在频域上,可以将语音信号转化为频域信号,并利用现代声学理论对其进行分析。

在语言学角度来说,语音信号分析的主要任务是对语音信号中的语言信息进行抽取和处理。

语音信号中的语言信息包括音位、音节、单词和语调等。

而对于这些语言信息的抽取和处理,则需要运用到语言学理论、音韵学和自然语言处理等相关技术。

除了语音识别和说话人识别以外,语音信号的识别和分析技术还能够应用于很多其他领域。

例如,通过语音识别技术的应用,可以实现智能家居、手写识别、虚拟助手等人工智能设备的语音交互功能;通过说话人识别技术的应用,可以实现声纹识别、安全认证等方面的应用;而通过语音分析技术的应用,则可以实现情感分析、语音合成等应用。

尽管语音信号的识别和分析技术在很多领域得到了广泛的应用,但是在实际应用中仍然存在一些困难和挑战。

例如,现有的语音识别技术在语音噪声和口音干扰比较大的情况下准确率较低,而现有的说话人识别技术在多说话人同时发言的情况下也容易出现识别困难;而对于语音信号的分析,则由于人类语言的复杂性和多样性,其分析也面临着很大的挑战。

总体来说,语音信号的识别与分析技术已经逐渐成为了计算机科学和人工智能领域中的研究重点之一,随着机器学习和深度学习等技术的不断进步和应用,我们期待这一领域在未来的进一步发展。

第3章 语音信号分析(全)

第3章 语音信号分析(全)


x1 (n) x2 (n)

D

L


D
ˆ y ( n)
1

ˆ ˆ x1 (n) x2 (n)

ˆ ˆ y1 (n) y2 (n)

x(n)
ˆ x ( n)

y1 (n) y2 (n)
y(n)
b)同态系统的组成

D1
D 是特征子系统 L
是线性子系统
振 幅
· ·· · · · · ·· · ·· ·· ·
x(n)= x(nT):取样值 时间 采样周期(T)
第3章 语音信号分析

量化: 幅值方向的离散化

量化信噪比
SNR(dB) 6.02 B 7.2
其中,B表示量化字长 B=7bit时,SNR=35dB,可以满足一般通信系统 的要求。
Fn (k )
N k 1 m 0

x ( m) x ( m k )
n n
(0 k K )
第3章 语音信号分析
极小值
图3-9 与图3-5有相同语音段的AMDF函数的例子
第3章 语音信号分析

短时平均幅度差函数的作用 求语音序列的基音周期 用于区分语音中的清音段和浊音段
0 m N 1 K
m 0 ~ ( N 1 K ) m 其他值
第3章 语音信号分析
图3-6 修正短时自相关函数计算中窗口长度的说明
第3章 语音信号分析
3.3.4 短时平均幅度差函数

平均幅度差函数( AMDF) Average Magnitude Difference Function 短时平均幅度差函数的定义

第三章 语音信号的特征分析讲解

第三章 语音信号的特征分析讲解

电话语音(固网电话通信频带为300-3400Hz) 可以基本保持语义,不影响人对语音的感知 质量不是很好,有时候会有变音

宽带语音信号:fs =16000Hz
一般对语音质量要求较高的场合 再提高采样频率也不会对语音质量有太多贡献
量化精度
量化所用比特越大,声音质量越好 声音质量也跟量化算法有关,比如同样用8bit量化, 非均匀量化(µ-律或A-律)就比均匀量化好很多
对于语音识别系统而言,用于电话用户时要求技术指标与语音编码器相 同,如果对于更高的要求场合,则fH=4500Hz或8000Hz, fL=60Hz,
fs=10KHz或20KHz
帧和加窗的概念
短时分析将语音流分为一段一段来处理,每一段称 为一“帧”; 帧长:10~30; 帧移:0~1倍帧长,帧与帧之间的平滑过渡; 语音识别中常用的帧长为20~30ms,帧移为10ms
几种常见的窗函数的波形
Matlab中,可以通过help window命令来查看怎么产生不同的窗
1
0.8
rectangular hamming hanning bartlett
0.6
0.4
0.2
0
0
50
100
150
200
250

几种不同的窗函数波形与频谱的比较
Time domain 40 Frequency domain 1 20 0.8 0
1
Hanning
Amplitude
0.8
0
汉宁窗
0.6
Magnitude (dB)
Time domain 30 40 Samples
-50
0.4
-100 0.2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档