第7章 FIR数字滤波器设计

合集下载

数字信号处理第三版第七章

数字信号处理第三版第七章

对称,是满足式(7.1.9)的一组解,
因为cos[ω(n-τ)]关于n=τ偶对称,所以要求τ和h(n)满
足如下条件:

()
,
N1

2
2
h(n)h(N1n), 0≤ n≤ N1
(7.1.10)
2. 线性相位FIR滤波器幅度特性Hg(ω)的特点 实质上,幅度特性的特点就是线性相位FIR滤波
因为cos[ω(n-τ)]关于ω=0, π, 2π三点偶对称,所以由 式(7.1.11)可以看出,Hg(ω)关于ω=0, π, 2π三点偶对称。 因此情况1可以实现各种(低通、高通、带通、带阻)滤 波器。
情况2: h(n)=h(N-n-1), N为偶数。
仿照情况1的推导方法得到:
H ( e j ) H g () e j = N 1 h ( n ) e j n e j M 2 h ( n )c o s (( n ) )
第7章 有限脉冲响应数字滤波器的设计
7.1 线性相位FIR数字滤波器的条件和特点 7.2 利用窗函数法设计FIR滤波器 7.3 利用频率采样法设计FIR滤波器 7.4 利用等波纹最佳逼近法设计FIR滤波器 7.5 IIR和FIR数字滤波器的比较 7.6 几种特殊类型滤波器简介 7.7 滤波器分析设计工具FDATool
用情况3的推导过程可以得到:
M
Hg() 2h(n)sin[(n)] n0
(7.1.13)
N是偶数,τ=(N-1)/2=N/2-1/2。所以,当ω=0, 2π时,
sin[ω(n-τ)]=0;当ω=π时,sin[ω(n-τ)]=(-1)n- N/2, 为峰值点。而且sin [ω(n-τ)]关于过零点ω=0和
如何减少吉布斯效应的影响,设计一个满足要求的FIR滤波器呢? 直观上,增加矩形窗口的宽度(即加大N)可以减少吉布斯效应 的影响。N 时, 在主瓣附近, WRg(ω)近似为:

数字信号处理实验FIR数字滤波器的设计

数字信号处理实验FIR数字滤波器的设计

数字信号处理实验:FIR数字滤波器的设计1. 引言数字滤波器是数字信号处理的关键技术之一,用于对数字信号进行滤波、降噪、调频等操作。

FIR (Finite Impulse Response) 数字滤波器是一种常见的数字滤波器,具有线性相应和有限的脉冲响应特性。

本实验旨在通过设计一个FIR数字滤波器来了解其基本原理和设计过程。

2. FIR数字滤波器的基本原理FIR数字滤波器通过对输入信号的每一个样本值与滤波器的冲激响应(滤波器的系数)进行线性加权累加,来实现对信号的滤波。

其数学表达式可以表示为:y(n) = b0 * x(n) + b1 * x(n-1) + b2 * x(n-2) + ... + bN * x(n-N)其中,y(n)表示滤波器的输出,x(n)表示滤波器的输入信号,b0~bN表示滤波器的系数。

FIR数字滤波器的脉冲响应为有限长度的序列,故称为有限冲激响应滤波器。

3. FIR数字滤波器的设计步骤FIR数字滤波器的设计主要包括以下几个步骤:步骤1: 确定滤波器的阶数和截止频率滤波器的阶数决定了滤波器的复杂度和性能,而截止频率决定了滤波器的通带和阻带特性。

根据实际需求,确定滤波器的阶数和截止频率。

步骤2: 选择滤波器的窗函数窗函数是FIR滤波器设计中常用的一种方法,可以通过选择不同的窗函数来实现不同的滤波器特性。

常用的窗函数有矩形窗、汉宁窗、汉明窗等。

根据实际需求,选择合适的窗函数。

步骤3: 计算滤波器的系数根据选择的窗函数和滤波器的阶数,使用相应的公式或算法计算滤波器的系数。

常见的计算方法有频率采样法、窗函数法、最小二乘法等。

步骤4: 实现滤波器根据计算得到的滤波器系数,可以使用编程语言或专用软件来实现滤波器。

步骤5: 评估滤波器性能通过输入测试信号,观察滤波器的输出结果,评估滤波器的性能和滤波效果。

常见评估指标有滤波器的幅频响应、相频响应、群延迟等。

4. 实验步骤本实验将以Matlab软件为例,演示FIR数字滤波器的设计步骤。

第七章_有限长单位冲激响应(FIR)数字滤波器的设计

第七章_有限长单位冲激响应(FIR)数字滤波器的设计
j e H d ( e j ) 0
| | c
c | |
表示其群时延
2.冲激响应序列
1 j jn hd ( n) H ( e ) e d d 2 1 c j jn e e d c 2 s in[(n ) c ] (n ) c s in[(n ) c ] c (n )
• H (0) 0 ,
0,2 奇对称,关于 偶对称. • H ( ) 关于
可用于设计:
•高通滤波器 •带通滤波器 4种不同的幅度特性中,以第一种幅度特性最好,因而在FIR滤 波器的设计中,通常都采用第一种幅度特性。称第一类FIR滤波 器。
h( n) 偶对称,N为奇数
7.1.3 线性相位FIR数字滤波器的零点分布特点
且 h( n) 关于 N 1 偶对称或奇对称
2 偶对称 h(n) h( N n 1)
奇对称 h(n) h( N n 1)
1. h( n)为偶对称
H ( z ) h( n) z
n 0 N 1 n N 1 n 0
h( N n 1) z n
WR ( ) 为矩形窗频率响应幅度函数 8 主瓣宽度 N 第一旁瓣比主瓣低 31dB
4 N
0
WHan (Biblioteka )4 N4.海明窗 5.布莱克曼窗

n h ( N n 1 ) z n 0
N 1

m N n 1
( N m 1) ( N 1) m ( N 1) 1 h ( m ) z z h ( m ) z z H ( z ) m 0 N 1 N 1
H ( z)
m 0

fir数字滤波器的设计与实现

fir数字滤波器的设计与实现

FIR数字滤波器的设计与实现介绍在数字信号处理中,滤波器是一种常用的工具,用于改变信号的频率响应。

FIR (Finite Impulse Response)数字滤波器是一种非递归的滤波器,具有线性相位响应和有限脉冲响应。

本文将探讨FIR数字滤波器的设计与实现,包括滤波器的原理、设计方法和实际应用。

原理FIR数字滤波器通过对输入信号的加权平均来实现滤波效果。

其原理可以简单描述为以下步骤: 1. 输入信号经过一个延迟线组成的信号延迟器。

2. 延迟后的信号与一组权重系数进行相乘。

3. 将相乘的结果进行加和得到输出信号。

FIR滤波器的特点是通过改变权重系数来改变滤波器的频率响应。

不同的权重系数可以实现低通滤波、高通滤波、带通滤波等不同的滤波效果。

设计方法FIR滤波器的设计主要有以下几种方法:窗函数法窗函数法是一种常用简单而直观的设计方法。

该方法通过选择一个窗函数,并将其与理想滤波器的频率响应进行卷积,得到FIR滤波器的频率响应。

常用的窗函数包括矩形窗、汉宁窗、哈密顿窗等。

不同的窗函数具有不同的特性,在设计滤波器时需要根据要求来选择合适的窗函数。

频率抽样法频率抽样法是一种基于频率抽样定理的设计方法。

该方法首先将所需的频率响应通过插值得到一个连续的函数,然后对该函数进行逆傅里叶变换,得到离散的权重系数。

频率抽样法的优点是可以设计出具有较小幅频纹波的滤波器,但需要进行频率上和频率下的补偿处理。

最优化方法最优化方法是一种基于优化理论的设计方法。

该方法通过优化某个性能指标来得到最优的滤波器权重系数。

常用的最优化方法包括Least Mean Square(LMS)法、Least Square(LS)法、Parks-McClellan法等。

这些方法可以根据设计要求,如通带波纹、阻带衰减等来得到最优的滤波器设计。

实现与应用FIR数字滤波器的实现可以通过硬件和软件两种方式。

硬件实现在硬件实现中,可以利用专门的FPGA(Field-Programmable Gate Array)等数字集成电路来实现FIR滤波器。

7第七章-FIR数字滤波器的设计

7第七章-FIR数字滤波器的设计

30
the infinite sequence hd(n) -∞≤n≤∞
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
-30
-20
-10
0
10
20
30
the truncating sequence hd(n) -M ≤ n ≤ M
M=(N-1)/2
1 0.9ห้องสมุดไป่ตู้0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
4.FIR滤波器具有线性相位的条件
FIR滤波器具有准确的线性 相位的条件是:
FIR滤波器的单位冲激响应 (n)为因果、有限长、 h 实数、且满足以下任一 条件:
偶对称:h(n) h( N 1 n) 奇对称:h(n) h( N 1 n) N 1 其对称中心在n 处。 2
0
5
10
15
20
25
10
Magnitude (dB)
0 -10 -20 -30 -40 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Normalized Frequency ( rad/sample) 0.9 1
带通希尔伯特滤波器
0
Phase (degrees)
-500 -1000 -1500 -2000
(2)在通带和阻带内出现波动,并在截止频 率 c 2 的两边出现最大尖峰值; N
(3)主瓣附近窗的频率响应为:
N N sin( ) sin( ) 2 2 N Sa ( N ) RN ( ) 2 sin( ) 2 2
随着N的加大,振荡变密,主瓣变窄;主瓣 与旁瓣的幅度亦有所加大,但主瓣与旁瓣的 相对比例不变(吉布斯现象)。

fir数字滤波器设计实验报告

fir数字滤波器设计实验报告

fir数字滤波器设计实验报告FIR数字滤波器设计实验报告概述数字滤波器是数字信号处理中的重要组成部分,广泛应用于音频、图像、视频等领域。

其中,FIR数字滤波器是一种常见的数字滤波器,具有线性相位、稳定性好、易于实现等优点。

本实验旨在设计一种基于FIR数字滤波器的信号处理系统,实现对信号的滤波和降噪。

实验步骤1. 信号采集需要采集待处理的信号。

本实验采用的是模拟信号,通过采集卡将其转换为数字信号,存储在计算机中。

2. 滤波器设计接下来,需要设计FIR数字滤波器。

为了实现对信号的降噪,我们选择了低通滤波器。

在设计滤波器时,需要确定滤波器的阶数、截止频率等参数。

本实验中,我们选择了8阶低通滤波器,截止频率为500Hz。

3. 滤波器实现设计好滤波器后,需要将其实现。

在本实验中,我们采用MATLAB 软件实现FIR数字滤波器。

具体实现过程如下:定义滤波器的系数。

根据滤波器设计的公式,计算出系数值。

利用MATLAB中的filter函数对信号进行滤波。

将采集到的信号作为输入,滤波器系数作为参数,调用filter函数进行滤波处理。

处理后的信号即为滤波后的信号。

4. 结果分析需要对处理后的信号进行分析。

我们可以通过MATLAB绘制出处理前后的信号波形图、频谱图,比较它们的差异,以评估滤波器的效果。

结果显示,经过FIR数字滤波器处理后,信号的噪声得到了有效的降低,滤波效果较好。

同时,频谱图也显示出了滤波器的低通特性,截止频率处信号衰减明显。

结论本实验成功设计并实现了基于FIR数字滤波器的信号处理系统。

通过采集、滤波、分析等步骤,我们实现了对模拟信号的降噪处理。

同时,本实验还验证了FIR数字滤波器的优点,包括线性相位、稳定性好等特点。

在实际应用中,FIR数字滤波器具有广泛的应用前景。

FIR数字滤波器的设计

FIR数字滤波器的设计

FIR数字滤波器的设计
FIR(有限冲激响应)数字滤波器的设计主要包括以下几个步骤:
1.确定滤波器的要求:根据应用需求确定滤波器的类型(如低通、高通、带通、带阻等)和滤波器的频率特性要求(如截止频率、通带波动、阻带衰减等)。

2.确定滤波器的长度:根据频率特性要求和滤波器类型,确定滤波器的长度(即冲激响应的系数个数)。

长度通常根据滤波器的截止频率和阻带宽度来决定。

3.设计滤波器的冲激响应:使用一种滤波器设计方法(如窗函数法、频率抽样法、最小二乘法等),根据滤波器的长度和频率特性要求,设计出滤波器的冲激响应。

4.计算滤波器的频率响应:将设计得到的滤波器的冲激响应进行傅里叶变换,得到滤波器的频率响应。

可以使用FFT算法来进行计算。

5.优化滤波器的性能:根据频率响应的实际情况,对滤波器的冲激响应进行优化,可以通过调整滤波器的系数或使用优化算法来实现。

6.实现滤波器:将设计得到的滤波器的冲激响应转化为差分方程或直接形式,并使用数字信号处理器(DSP)或其他硬件进行实现。

7.验证滤波器的性能:使用测试信号输入滤波器,检查输出信号是否满足设计要求,并对滤波器的性能进行验证和调整。

以上是FIR数字滤波器的一般设计步骤,具体的设计方法和步骤可能因应用需求和设计工具的不同而有所差异。

在实际设计中,还需要考虑滤波器的实时性、计算复杂度和存储资源等方面的限制。

第7章FIR数字滤波器的设计

第7章FIR数字滤波器的设计

| H (e jω) |
只能实现带通滤波器

0
π
2π ω
(d) BSF
情况4:h(n) = -h(N-n-1),N为偶数
M
H g () 2h(n) sin[(n )] n0 | H (e jω) |

0
π
2π ω
(a) LPF
| H (e jω) |
N 1
2
,
M
N 1 2
N 1 N 1
h(n) hd (n)w(n)
N 1 2
hd (n) , 0 ,
0n 其 它n
N
1
h(n)
c
0 ,
sin[c (n
N 1)] 2,
0
n
c
(n
N 1) 2
其 它n
N
1
图7.2.1 窗函数设计法的时域波形(矩形窗,N=30)
加窗处理对理想矩形频率响应产生的影响
h(n)
hd
(n)wN
(n)
H (e j )
(7.2.6)
(
)
(N 1) 2
对实际FIR滤波器频率响应的幅度函数起影 响的是窗函数频率响应的幅度函数 WRg ()
可以实现各种滤波器

0
π
2π ω
(c) BPF
| H (e jω) |

0
π
2π ω
(d) BSF
情况2:h(n) = h(N-n-1),N为偶数
N 1
2
,
M
N 1 2
N 1
H (e j ) h(n)e jn H g ()e j () H g ()e j n0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见窗函数--(2)海宁窗和汉明窗
主瓣增强, 旁瓣抵消
33
常见窗函数--(3)布莱克曼窗
34
常见窗函数--(3)布莱克曼窗
35
窗函数频谱对比
36
低通滤波器特性
37
窗长对滤波器设计的影响
38
常见窗函数--(4)凯泽窗
39
常见窗函数--(4)凯泽窗
40
41
作业
• 176.tif
▫ 7-1、7-2
2
本章知识点
• 线性相位特性 • 窗口函数法 • 频率取样法
3
第一节 线性相位FIR滤波器应满足的条件
4
相位特性与时延
5
线性相位特性的充要条件
6
线性相位特性的充要条件(续)
7
具有恒定群时延的滤波器(第二类线性相位 滤波器)
8
FIR滤波器分类
9
第二节 线性相位FIR滤波器基本性质
10
第一类 偶对称(续)
57
作业
50Hz、1kHz两路1:1混合信号,设计滤波器 • IIR滤波器——低通获得50Hz,1kHz衰减>100倍 • FIR滤波器——高通获得1kHz,50Hz衰减>100倍 分别显示输入与输出波形,标出参数值
课后作业:7-5、7-8,实验8
58
现代数字信号处理
第七章 FIR数字滤波器设计
福州大学物理与信息工程学院 魏宏安、赵宜升 2017年9月
IIR滤波器与FIR滤波器对比
IIR:保留模拟滤波器优良的幅度特性,设计简单有效 • 双线性变换法:没有频率混叠,牺牲相位特性 • 冲激响应不变法:线性相位,混叠影响幅度特性 FIR: • 幅度特性可以随意设计 • 保持精确严格的线性相位特性 • 不存在不稳定问题 设计方法:窗口函数法、频率取样法
50
系统函数逼近效果
• 理想曲线是一阶梯形,曲线比较 圆滑,频率响应逼近特性比较好
• 理想特性有不连续点,在每一个 不连续点处都出现肩峰与起伏 • 为了使逼近误差减小,可以使某 些频率采样点不受限制,这些一 般选择在过渡带 • 增加了过渡带宽,但减少突变, 增加阻带最小衰减
51
例:用频率采样法设计如图线性相位低通
11
第一类 偶对称(续)
12
第一类 偶对称(续)
13
第二类 奇对称
14
第二类 奇对称(续)
90度相移 正交变化
15
第二类 奇对称(续)
16
第二节 线性相位FIR滤波器基本性质
• FIR滤波器单位冲激相应只要满足对称条件,就一定具有 线性相位频率特性
群时延较大
17
零点位置
18
第三节 FIR滤波器的窗口函数设计法
28
改善窗口函数形状
基本方法: • 尽可能减少窗口函数的旁瓣,以减少肩峰、余振,提高阻 带衰减 • 主瓣宽度尽可能窄,以获得较抖的过渡带
实际使用中,往往需要增加主瓣宽度去换取旁瓣抑制
29
常见窗函数--(1)矩形窗
30
常见窗函数--(2)海宁窗和汉明窗
31
常见窗函数--(2)海宁窗和汉明窗
32
52
例(续)
53
例(续)
• 由于理想频率特性要求矩形特性, 在0.2π存在不连续点,引起频率 响应特性很大的波动 • 在本例中增加取样点H(2)=0.4, H(18)=0.4,可以大大改善波动
54
频率采样设计与频率抽样结构
• 应用采样理论建立的FIR滤波器结构,对任何FIR函数都 适用 • 应用频率采样理论来设计FIR滤波器的系统函数,即可以 采用频率抽样结构,也可以采用直接形式,或者其他结构
42
三、实际窗口函数设计步骤及说明
43
(1)其它幅度特性滤波器
例:设计如图所示线性相位滤波器
44
例(续)
45
例(续)
46
( 2)
47
第系统函数逼近效果
• 系统频率响应
• 在每个采样点上,频率响应严格的与理想特性一致 • 采样点间,由各采样点内插函数延伸叠加而成,其逼近误 差是有限的,误差大小取决于频率响应曲线的圆滑程度和 取样点的密度
55
滤波器设计小结
• 滤波器设计问题就是确定满足指标要求的滤波器系数a、 b、c、d或者h(n),基本上是一个求解逼近问题。 • 滤波器的设计方法分两大类:时域法、频域法 ▫ IIR:数字变换设计法、优化设计法 ▫ FIR:窗口函数法、频率采样法
56
FIR与IIR比较
(1)IIR可以用较小的阶数获得很高的选择特性,高效率的 代价是相位的非线性 (2)IIR滤波器必须采用递归结构,由于有限字长效应, 会产生寄生振荡 (3)IIR借助于模拟滤波器成果,设计工作量小 (4)FIR滤波器可以灵活设计适应各种幅度特性和相位特 性要求
• 基本原理:
19
第一个问题:无限长序列变有限长序列
20
第二个问题:非因果系统变因果系统
21
一、基本原理
1.
2.
3.
22
例:设计如图所示线性相位滤波器
通带幅度为1 阻带幅度为0 截止频率 采样频率
23
24
二、窗函数
• 加窗处理对频响产生的影响
25
二、窗函数
26
27
二、窗函数
加了窗函数后,FIR滤波器幅度特 性相对于理想特性变化 1. 使理想特性不连续的边沿加宽, 形成一个过渡带,过渡带宽度取 决于窗口函数主瓣宽度 2. 在截止频率两旁出现最大、最小 肩峰点,在肩峰点两侧形成长长 的余振 3. 最大肩峰可达理想矩形幅度的 8.95%。随着N值增加,过渡带 变窄、肩峰宽度变窄,但肩峰并 不减小。
相关文档
最新文档