最优化方法大作业答案
最优化方法大作业答案

1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。
确定货箱的长x 1、宽x 2和高x 3。
试列出问题的数学模型。
解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x2.将下面的线性规划问题表示为标准型并用单纯形法求解max f=x 1+2x 2+x 3s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形:Min 321x x x z -+=224321=+-+x x x x 6525321=++-x x x x646321=+++x x x x列成表格:121610011460105122001112-----可见此表已具备1°,2°,3°三个特点,可采用单纯形法。
首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得121210231040116201002121211--------再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得12123230210231040116201002121211-------再从底行中选元素-3,和第二列正元素2,迭代一次得4233410120280114042001112---再迭代一次得1023021062210231010213000421021013--选取最优解:01=x 42=x 23=x3. 试用DFP 变尺度法求解下列无约束优化问题。
min f (X )=4(x 1-5)2+(x 2-6)2取初始点X=(8,9)T ,梯度精度ε=0.01。
解:取IH=0,初始点()TX 9,8=2221)6()5(4)(-+-=x x x f⎥⎦⎤⎢⎣⎡--=∇122408)(21x x x f⎪⎪⎭⎫⎝⎛=∇624)()0(xfTx f d )6,24()()0()0(--=-∇=)0(0)0()1(dxxα+=T)69,248(00αα--=])669()5248(4min[)(min 2020)0(0)0(--+--⨯=+αααdxf 0)6()63(2)24()2458(8)(00)0(0)0(=-⨯-+-⨯--=+ααααd d xdf13077.0130170≈=α⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--⨯+⎪⎪⎭⎫ ⎝⎛=21538.886153.462413077.098)1(x⎪⎪⎭⎫⎝⎛-=∇43077.410784.1)()1(xf进行第二次迭代:⎥⎦⎤⎢⎣⎡--=-=78463.013848.31)0()1(xxδ⎥⎦⎤⎢⎣⎡--=∇-∇=56924.110783.25)()(1)0()1(xf xf γ101011011101γγγγγδδδH HH H H TTTT-+=03172.8011=γδT86614.6321101==γγγγH T⎥⎦⎤⎢⎣⎡=61561.046249.246249.285005.911Tδδ⎥⎦⎤⎢⎣⎡==46249.240022.3940022.3940363.630110110TTHH γγγγ所以:⎪⎪⎭⎫⎝⎛--=0038.103149.003149.012695.01H⎪⎪⎭⎫⎝⎛-⨯⎪⎪⎭⎫⎝⎛---=∇-=43076.410784.10038.103149.003149.012695.0)()1(1)1(xf H d⎪⎪⎭⎫⎝⎛-=48248.428018.0令 )1(1)1()2(dx x α+=利用)()1()1(=+ααd dxdf ,求得49423.01=α,所以⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫⎝⎛=+=21538.213848.021538.886152.449423.0)1()1()2(dxx⎪⎪⎭⎫ ⎝⎛=65因)()2(=∇xf ,于是停,)2(x 即为最优解。
最优化方法(试题+答案)

一、 填空题1.若()()⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=212121312112)(x x x x x x x f ,则=∇)(x f ,=∇)(2x f .2.设f 连续可微且0)(≠∇x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向。
3.向量T)3,2,1(关于3阶单位方阵的所有线性无关的共轭向量有 . 4. 设R R f n →:二次可微,则f 在x 处的牛顿方向为 . 5.举出一个具有二次终止性的无约束二次规划算法: .6.以下约束优化问题:)(01)(..)(min 212121≥-==+-==x x x g x x x h t s x x f的K-K-T 条件为:. 7.以下约束优化问题:1..)(min 212221=++=x x t s x x x f的外点罚函数为(取罚参数为μ) .二、证明题(7分+8分)1.设1,2,1,:m i R R g n i =→和m m i R R h ni ,1,:1+=→都是线性函数,证明下面的约束问题:},,1{,0)(},1{,0)(..)(min 1112m m E j x h m I i x g t s x x f j i nk k+=∈==∈≥=∑=是凸规划问题。
2.设R R f →2:连续可微,n i R a ∈,R h i ∈,m i ,2,1=,考察如下的约束条件问题:},1{,0}2,1{,0..)(min 11m m E i b x a m I i b x a t s x f i T i i Ti +=∈=-=∈≥-设d 是问题1||||,0,0..)(min ≤∈=∈≥∇d E i d a Ii d a t s d x f Ti Ti T的解,求证:d 是f 在x 处的一个可行方向。
三、计算题(每小题12分)1.取初始点T x )1,1()0(=.采用精确线性搜索的最速下降法求解下面的无约束优化问题(迭代2步):22212)(m in x x x f +=2.采用精确搜索的BFGS 算法求解下面的无约束问题:21222121)(min x x x x x f -+=3.用有效集法求解下面的二次规划问题:.0,001..42)(min 2121212221≥≥≥+----+=x x x x t s x x x x x f4.用可行方向算法(Zoutendijk 算法或Frank Wolfe 算法)求解下面的问题(初值设为)0,0()0(=x,计算到)2(x 即可):.0,033..221)(min 21211222121≥≥≤+-+-=x x x x t s x x x x x x f参考答案一、填空题 1. ⎪⎪⎭⎫⎝⎛++++3421242121x x x x ⎪⎪⎭⎫⎝⎛4224 2. 0)(<∇d x f T3. T)0,1,2(-,T)1,0,3(-(答案不唯一)。
重庆大学最优化方法习题答案

s.t.x1 + 2x2 ≤ 5 x1, x2 ≥ 0
解:根据条件,可行域为下面图形中的阴影部分,,有图形可知,原问题在 A 点取得最优值, 最优值 z=5
(2) min z = x1 − 6x2 2x1 + x2 ≤ 1
s.t.− x1 + x2 ≤ 7 x1, x2 ≥ 0
解:图中阴影部分表示可行域,由图可知原问题在点 A 处取得最优值,最优值 z=-6.
(3) max z = 3x1 + 2x2
− x1 + x2 ≤ 1 s.t.x1 − 2x2 ≥ −4
x1, x2 ≥ 0
解:如图 所示,可行域为图 中阴影部 分,易得 原线性规 划问题 为无界 解。
所以 x(2) , x(4) , x(6) 是原问题的基可行解, x(6) 是最优解,最优值是 z = −3 。
(2) max z = x1 + x2 − 2x3 + x 4 − x5
x1 + x2 + x3 + x4 = 1 s.t.− x1 + 2x2 + x5 = 4
xi ≥ 0,i = 1,2,3,4,5
解:易知
x1
的系数列向
量
p1
= 1− 1
,
x2
的系数列向
量
p2
=
1
2
,
x3
的系
数列向量
1
1
0
p3
=
0
,
x4
的系数列向量
p4
=
0
,
x5
的系数列向量
最优化方法习题答案

最优化方法习题答案最优化方法习题答案最优化方法是数学中一门重要的学科,它研究如何找到使函数取得最大值或最小值的方法。
在实际问题中,最优化方法被广泛应用于经济学、工程学、管理学等领域。
本文将为读者提供一些最优化方法习题的答案,希望能够帮助读者更好地理解和应用这一学科。
一、单变量函数的最优化问题1. 求函数f(x) = x^2 - 2x + 1在区间[0, 3]上的最小值。
解:首先,我们需要找到函数f(x)的驻点。
计算f'(x) = 2x - 2,并令其等于零,得到x = 1。
然后,我们计算f''(x) = 2,发现在x = 1处,f''(x)大于零,说明该点是函数的极小值点。
接下来,我们需要检查区间的端点和驻点,找到函数f(x)在这些点的函数值。
f(0) = 1,f(1) = 0,f(3) = 4。
由于f(1)是最小的函数值,因此函数f(x)在区间[0, 3]上的最小值为0。
2. 求函数f(x) = e^x - 2x在整个实数轴上的最小值。
解:首先,我们计算f'(x) = e^x - 2,并令其等于零,得到x = ln(2)。
然后,我们计算f''(x) = e^x,发现在x = ln(2)处,f''(x)大于零,说明该点是函数的极小值点。
接下来,我们需要检查整个实数轴上的函数值。
由于函数f(x)在x趋近负无穷大时趋于负无穷大,而在x趋近正无穷大时趋于正无穷大,因此函数f(x)在整个实数轴上没有最小值。
二、多变量函数的最优化问题1. 求函数f(x, y) = x^2 + y^2 - 2x - 4y在闭区域D={(x, y)|0≤x≤2, 0≤y≤3}上的最小值。
解:首先,我们需要找到函数f(x, y)的驻点。
计算f_x(x, y) = 2x - 2和f_y(x, y) = 2y - 4,并令它们同时等于零,得到x = 1和y = 2。
最优化方法部分课后习题解答(1-7)

最优化方法部分课后习题解答习题一1.一直优化问题的数学模型为:22121122123142min ()(3)(4)5()02()50..()0()0f x x xg x x x g x x x s t g x x g x x =−+−⎧=−−≥⎪⎪⎪=−−+≥⎨⎪=≥⎪=≥⎪⎩试用图解法求出:(1)无约束最优点,并求出最优值。
(2)约束最优点,并求出其最优值。
(3)如果加一个等式约束,其约束最优解是什么?12()0h x x x =−=解:(1)在无约束条件下,的可行域在整个平面上,不难看出,当=(3,4)()f x 120x x *x 时,取最小值,即,最优点为=(3,4):且最优值为:=0()f x *x *()f x (2)在约束条件下,的可行域为图中阴影部分所示,此时,求该问题的最优点就是()f x 在约束集合即可行域中找一点,使其落在半径最小的同心圆上,显然,从图示中可12(,)x x 以看出,当时,所在的圆的半径最小。
*155(,)44x =()f x 其中:点为和的交点,令求解得到:1()g x 2()g x 1122125()02()50g x x x g x x x ⎧=−−=⎪⎨⎪=−−+=⎩1215454x x ⎧=⎪⎪⎨⎪=⎪⎩即最优点为:最优值为:=*155(,)44x =*()f x 658(3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。
2.一个矩形无盖油箱的外部总面积限定为S,怎样设计可使油箱的容量最大?试列出这个优化问题的数学模型,并回答这属于几维的优化问题.解:列出这个优化问题的数学模型为:该优化问题属于三维的优化问题。
123122313123max ()220..00f x x x x x x x x x x S x s t x x =++≤⎧⎪>⎪⎨>⎪⎪>⎩32123sx y z v⎛⎞=====⎜⎟⎝⎠习题二3.计算一般二次函数的梯度。
最优化方法(试题+答案)

1.若 ,则 , .
2.设 连续可微且 ,若向量 满足,则它是 在 处的一个下降方向。
3.向量 关于3阶单位方阵的所有线性无关的共轭向量有.
4.设 二次可微,则 在 处的牛顿方向为.
5.举出一个具有二次终止性的无约束二次规划算法:.
6.以下约束优化问题:
的K-K-T条件为:
.
7.以下约束优化.证明:要证凸规划,即要证明目标函数是凸函数且可行域是凸集。
一方面,由于 二次连续可微, 正定,根据凸函数等价条件可知目标函数是凸函数。
另一方面,约束条件均为线性函数,若任意 可行域,则
故 ,从而可行域是凸集。
2.证明:要证 是 在 处的一个可行方向,即证当 , 时, ,使得 ,
解此线性规划(作图法)得 ,于是 .由线性搜索
得 .因此, .重复以上计算过程得下表:
0
1
1
2
(注:范文素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注。)
2.采用精确搜索的BFGS算法求解下面的无约束问题:
3.用有效集法求解下面的二次规划问题:
4.用可行方向算法(Zoutendijk算法或Frank Wolfe算法)求解下面的问题(初值设为 ,计算到 即可):
参考答案
一、填空题
1. 2. 3. , (答案不唯一)。4.
5. 牛顿法、修正牛顿法等(写出一个即可)
0
1/2
1
2
2
3.解:取初始可行点 求解等式约束子问题
得解和相应的Lagrange乘子
转入第二次迭代。求解等式约束子问题
得解
令
转入第三次迭代。求解等式约束子问题
得解和相应的Lagrange乘子
最优化方法与应用大作业(一)最速下降法

最优化方法与应用大作业(一)
---最速下降法部分:
1.问题描述:
用梯度下降法求解以下优化问题
min f(x)=(x1+10*x2)^2+5(x3-x4)^2+(x2-2*x3)^4+10*(x1-x4)^4
2.编程感想:
该算法需要计算Hesse矩阵,C语言在向量运算时没有Matlab方便,所以手工完成了理论计算,再输入,破坏了程序的移植性。
同时,实验表明当初始值离理想点较远且精度要求较高时,最速下降法的收敛速率极慢,迭代几乎不可能完成,这对初值的选取提出了一定限制。
3.结果分析:
编译界面(Mac os X,Xcode环境)
输入参数(设定为(0.1,0.2,0.3,0.4)):
结果(此处列出每次迭代结果)。
明显的看到,最速下降法的收敛较慢,最终结果接近理论值(F(0,0,0,0)=0)所以该结果可以满意。
4.算法代码见下页
西安电子科技大学电子工程学院020951
李骏昊02095005。
最优化方法试题及答案

最优化方法试题及答案一、选择题1. 下列哪项不是最优化方法的特点?A. 目标性B. 可行性C. 多样性D. 随机性答案:D2. 在最优化问题中,约束条件的作用是什么?A. 限制解的可行性B. 增加问题的复杂性C. 提供额外的信息D. 以上都是答案:A3. 线性规划问题中,目标函数与约束条件之间的关系是什么?A. 无关B. 相等C. 线性D. 非线性答案:C二、简答题1. 简述最优化问题的基本构成要素。
答案:最优化问题的基本构成要素包括目标函数、决策变量、约束条件和解的可行性。
目标函数是衡量最优化问题解的质量的函数,决策变量是问题中需要确定的参数,约束条件是对决策变量的限制,解的可行性是指解必须满足所有约束条件。
2. 什么是局部最优解和全局最优解?请举例说明。
答案:局部最优解是指在问题的邻域内没有其他解比当前解更优的解,而全局最优解是指在整个解空间中最优的解。
例如,在山峰攀登问题中,局部最优解可能是到达了一个小山丘的顶部,而全局最优解是到达了最高峰的顶部。
三、计算题1. 假设一个农民有一块矩形土地,长为100米,宽为80米,他想在这块土地上建一个矩形的养鸡场,但只能沿着土地的长边布置。
如果养鸡场的一边必须靠在土地的长边上,另一边与土地的宽边平行,求养鸡场的最大面积。
答案:为了使养鸡场的面积最大,养鸡场的一边应该靠在土地的宽边上,另一边与土地的长边平行。
这样,养鸡场的长将是80米,宽将是100米,所以最大面积为80米 * 100米 = 8000平方米。
2. 一个工厂需要生产三种产品A、B和C,每种产品都需要使用机器X 和机器Y。
生产一个单位的产品A需要机器X工作2小时和机器Y工作1小时;产品B需要机器X工作3小时和机器Y工作2小时;产品C需要机器X工作1小时和机器Y工作3小时。
工厂每天有机器X总共300小时和机器Y总共200小时的使用时间。
如果工厂每天需要生产至少100单位的产品A,50单位的产品B和20单位的产品C,请问工厂应该如何安排生产以最大化产品的总产量?答案:设生产产品A的单位数为x,产品B的单位数为y,产品C的单位数为z。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武工院你们懂的1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。
确定货箱的长x 1、宽x 2和高x 3。
试列出问题的数学模型。
解:min 32312122x x x x x x z ++= s.t5321=x x x41≥x 0,,321≥x x x2.将下面的线性规划问题表示为标准型并用单纯形法求解max f=x 1+2x 2+x 3s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形:Min 321x x x z -+=224321=+-+x x x x6525321=++-x x x x646321=+++x x x x列成表格:0000121610011460105122001112-----可见此表已具备1°,2°,3°三个特点,可采用单纯形法。
首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得0000121210231040116201002121211--------再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得1002123230210231040116201002121211-------再从底行中选元素-3,和第二列正元素2,迭代一次得4002303410120280114042001112---再迭代一次得102302106221023101021300042121013-- 选取最优解:01=x 42=x 23=x3. 试用DFP 变尺度法求解下列无约束优化问题。
min f (X )=4(x 1-5)2+(x 2-6)2取初始点X=(8,9)T ,梯度精度ε=0.01。
解:取I H =0,初始点()TX 9,8=2221)6()5(4)(-+-=x x x f⎥⎦⎤⎢⎣⎡--=∇122408)(21x x x f ⎪⎪⎭⎫ ⎝⎛=∇624)()0(x f T x f d )6,24()()0()0(--=-∇=)0(0)0()1(d x x α+=T)69,248(00αα--=])669()5248(4min[)(min 2020)0(0)0(--+--⨯=+αααd x f)6()63(2)24()2458(8)(00)0(0)0(=-⨯-+-⨯--=+ααααd d x df13077.0130170≈=α⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛--⨯+⎪⎪⎭⎫ ⎝⎛=21538.886153.462413077.098)1(x⎪⎪⎭⎫⎝⎛-=∇43077.410784.1)()1(x f进行第二次迭代:⎥⎦⎤⎢⎣⎡--=-=78463.013848.31)0()1(xx δ⎥⎦⎤⎢⎣⎡--=∇-∇=56924.110783.25)()(1)0()1(x f x f γ101011011101γγγγγδδδH H H H H T T T T -+=03172.8011=γδT 86614.6321101==γγγγH T ⎥⎦⎤⎢⎣⎡=61561.046249.246249.285005.911Tδδ⎥⎦⎤⎢⎣⎡==46249.240022.3940022.3940363.630110110T T H H γγγγ所以:⎪⎪⎭⎫ ⎝⎛--=0038.103149.003149.012695.01H⎪⎪⎭⎫⎝⎛-⨯⎪⎪⎭⎫ ⎝⎛---=∇-=43076.410784.10038.103149.003149.012695.0)()1(1)1(x f H d⎪⎪⎭⎫⎝⎛-=48248.428018.0令 )1(1)1()2(d x x α+=利用0)()1()1(=+ααd d x df ,求得49423.01=α,所以⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛=+=21538.213848.021538.886152.449423.0)1()1()2(d x x⎪⎪⎭⎫⎝⎛=65 因0)()2(=∇x f ,于是停,)2(x 即为最优解。
4.某厂生产甲乙两种口味的饮料,条件如下:因条件所限,甲饮料产量不能超过8百箱。
问如何安排生产计划,即两种饮料各生产多少使获利最大。
(要求:1.建立数学模型,并求解。
2.用mat lab 编写程序) 解:模型假设:设生产甲饮料错误!未找到引用源。
百箱,生产乙饮料2x 百箱,获利最大为z. 符号说明:错误!未找到引用源。
错误!未找到引用源。
为生产甲饮料的百箱数2x 错误!未找到引用源。
为生产乙饮料的百箱数z 为生产甲饮料x 百箱和生产乙饮料y 百箱数获利最大值.建立模型:目标函数:21910max x x z +=错误!未找到引用源。
原料供应:错误!未找到引用源。
工人加工:错误!未找到引用源。
产量限制:错误!未找到引用源。
非负约束:错误!未找到引用源。
02,1≥x x得出模型为:错误!未找到引用源。
21910max x x z +=⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,815020106056,2112121x x x x x x x t s 先化标准形:min 21910x x Z +=6056321=++x x x1502010421=++x x x851=+x x列成表格000091081000115001020106000156--可见此表已具备1°,2°,3°三个特点,可采用单纯形法。
首先从底行中选元素-9,由最小者150/20决定选第二行第二列的元素20,标以记号,迭代一次得000091081001150202145021207--- 2135020900211810001150202145021207--再从底行中选元素-11/2,和第1列正元素7,迭代一次得21350209002117111141720073002829711074501417201----7720035871107111141720073002829711074501417201--- 选取最优解:7451=x 7302=x编写M 文件,代码如下:>> f=[-10,-9]';a=[6,5;10,20;1,0;-1,0;0,-1];b=[60,150,8,0,0]';x=linprog(f,a,b)运行结果:Optimization terminated.x =6.42864.2857>> ans=f'*xans =-102.8571结果分析:甲饮料生产642箱,乙饮料生产428箱时,获利最大为102.8万元。
5.某家具厂要安排一周的生产计划,产品是桌子和椅子。
制作一张桌子需4m2木板及时性20小时的工时,制作一只椅子需6m2木板及18小时的工时,每周能拥有的木板是600m2,可利用的工时是400小时;每张桌子的利润是50元,每只椅子的利润是60元。
按合同每周至少要交付8张桌子和5只椅子,并假定所有的产品都能够销售出去。
问:该厂每周生产桌子和椅子的数量分别是多少时,能获得最大利润?(要求:1.建立数学模型,并求解。
2.用mat lab 编写程序) 解:设x 1为每周生产桌子数,x 2为每周生产椅子数,则:S max =50 x 1+60 x 2约束条件:4 x 1 +6 x 2≤600(材料)20 x 1+18 x 2≤400(工时)x 1≥8,x 2≥5先化标准形:min 216050x x z +=60064321=++x x x4001820421=++x x x851-=+-x x562-=+-x x列成表格:0000060505100010801000140000101820600000164------可见此表已具备1°,2°,3°三个特点,可采用单纯形法。
首先从底行中选元素-50,由最小者400/20决定选第二行第一列的元素20,标以记号,迭代一次得:1000005.20150512000102400010180200002191026000015120----再从底行中选元素-15,和第2列元素18,迭代一次得:12000350320000150182010002400201018016002000020732004051500---得:120003503200003251910181000340910181010801000148803831100---选取最优解:81=X3402=X4883=X3254=X编写M文件,代码如下:>> f=[-50,-60]';a=[4,6;20,18;-1,0;0,-1];b=[600,400,-8,-5]';x=linprog(f,a,b)运行结果:Optimization terminated.x =8.000013.3333>> ans=f'*xans =-1.2000e+003结果分析:当生产8张桌子,13张椅子时,可获最大利润为1200元.。