专题提升(五) 天体运动中的三类典型问题
高中物理【天体运动的三类典型问题】专题训练

高中物理【天体运动的三类典型问题】专题训练[A 组 基础达标练]1.(多选)2021年10月19日至23日,美国星链2305持续轨道变化,对中国空间站产生安全影响。
中国空间站于10月21日3点16分进行变轨规避风险。
图示为10月20日至23日期间星链2303和中国空间站的轨道距离地面高度数据图。
假设除变轨过程,中国空间站在不同高度轨道上都是绕地球进行匀速圆周运动,则下列说法正确的是( )A .10月21日3点16分,发动机向后喷气使得中国空间站速度增加B .10月21日3点16分,发动机向前喷气使得中国空间站速度减小C .中国空间站在10月22日运行的线速度大于其在10月20日运行的线速度D .中国空间站在10月22日运行的线速度小于其在10月20日运行的线速度解析:由题图可知,中国空间站从低轨道调整到高轨道运行,则空间站需做离心运动,根据GMm R 2=m v 2R可知,空间站做离心运动,需要发动机向后喷气使得中国空间站速度增加,使得该位置处万有引力小于空间站所需要的向心力,故B 错误,A 正确;根据GMm R 2=m v 2R,可得v = GM R,空间站运行轨道半径越大,线速度越小,由题图可知,中国空间站在10月22日运行的半径大于其在10月20日运行的半径,则中国空间站在10月22日运行的线速度小于其在10月20日运行的线速度,故C 错误,D 正确。
答案:AD2.(多选)“神舟十一号”飞船曾与“天宫二号”目标飞行器顺利完成自动交会对接。
关于交会对接,以下说法正确的是( )A .飞船在同轨道上加速直到追上“天宫二号”完成对接B .飞船从较低轨道,通过加速追上“天宫二号”完成对接C .在同一轨道上的“天宫二号”通过减速完成与飞船的对接D .若“神舟十一号”与“天宫二号”原来在同一轨道上运动,则不能通过直接加速或减速某飞行器的方式完成对接解析:“神舟十一号”飞船与“天宫二号”目标飞行器正确对接的方法是处于较低轨道的“神舟十一号”飞船在适当位置通过适当加速,恰好提升到“天宫二号”目标飞行器所在高度并与之交会对接。
高考物理复习:天体运动中的三类问题

C.线速度的大小关系为va<vc<vb
D.向心加速度的大小关系为aa<ac<ab
解析:质量未知,无法比较向心力大小,故 A 错误。静止卫星和赤道上静止的
物体周期相等,角速度相等,ωa=ωc,而 rb<rc,根据 ω=
'
可知,ωc<ωb,所以
3
ωa=ωc<ωb,根据角速度和周期的关系可知,Ta=Tc>Tb,故 B 错误。a、c 角速度
地
小。由
2
4π2
=m
2
公式可知,做圆周运动的半径越小,则运动周期越小。由于
需要三颗卫星使地球赤道上任意两点之间保持无线电通信,所以由几何关系
可知三颗静止卫星的连线构成等边三角形并且三边与地球相切,如图。
3
由几何关系可知地球静止卫星的轨道半径为 r'=2R。由开普勒第三定律 2 =k,
(+ℎ)
地
3
h=
Gm T2
地
42
-R=3.6×107 m=6R。
Gm
地
(5)速率一定:v= R+h =3.1×103 m/s。
m m
(6)向心加速度一定:由 G
地
(R+h)
2 =man 得 an=
Gm
地
2 =0.23
(R+h)
m/s2,即地球静止卫星
的向心加速度等于轨道处的重力加速度。
(7)绕行方向一定:运行方向与地球自转方向一致。
第二环节
关键能力形成
能力形成点1
赤道上物体、近地卫星与静止卫星的差异(师生共研)
整合构建
1.近地卫星、静止卫星及赤道上物体的比较
天体运动中的三星问题、拉格朗日点(较难)

(B) 向心加速度大于地球的向心加速度
(C) 向心力仅由太阳的引力提供 (D) 向心力仅由地球的引力提供
(2015 山东卷 15)如图,拉格朗日点 L1 位于地球和月球连线上,处在该点的物 体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动。据 此,科学家设想在拉格朗日点 L1 建立空间站,使其与月球同周期绕地球运动。 以 a1 、 a2 分别表示该空间站和月球向心加速度的大小, a3 表示地球同步卫星向 心加速度的大小。以下判断正确的是 A. a2 a3 a1 B. a2 a1 a3 C. a3 a1 a2 D. a3 a2 a1
RA O RC RB B C
(2015 安徽卷 24 )由三颗星体构成的系统,忽略其它星体对它们的作用,存在着一种 运动形式: 三颗星体在相互之间的万有引力作用下, 分别位于等边三角形的三个顶点上, 绕某一共同的圆心 O 在三角形所在的平面内做相同角速度的圆周运动(图示为 A、B、 C 三颗质量不相同时的一般情况) 。若 A 星体质量为 2m,B、C 两星体的质量均为 m, 三角形的边长为 a,求: (1)A 星体所受合力大小 FA ; (2)B 星体所受合力大小 FB ; (3)C 星体的轨道半径 RC ; (4)三颗星体做圆周运动的周期 T。
(2015 安徽卷 24 )由三颗星体构成的系统,忽略其它星体对它们的作用,存在着一种 运动形式: 三颗星体在相互之间的万有引力作用下, 分别位于等边三角形的三个顶点上, 绕某一共同的圆心 O 在三角形所在的平面内做相同角速度的圆周运动(图示为 A、B、 C 三颗质量不相同时的一般情况) 。若 A 星体质量为 2m,B、C 两星体的质量均为 m, 三角形的边长为 a,求: (1)A 星体所受合力大小 FA ; (2)B 星体所受合力大小 FB ; A (3)C 星体的轨道半径 RC ; (4)三颗星体做圆周运动的周期 T。
物理高考复习专题强化五-天体运动的“三类热点”问题

专题强化五天体运动的“三类热点”问题【专题解读】1.本专题是万有引力定律在天体运行中的特殊运用,同步卫星是与地球表面相对静止的卫星;而双星或多星模型有可能没有中心天体,近年来常以选择题形式在高考题中出现。
2.学好本专题有助于学生更加灵活地应用万有引力定律,加深对力和运动关系的理解。
3.需要用到的知识:牛顿第二定律、万有引力定律、圆周运动规律等。
热点一近地卫星、同步卫星和赤道上物体的区别1.卫星的轨道(1)赤道轨道:卫星的轨道在赤道平面内,同步卫星就是其中的一种。
(2)极地轨道:卫星的轨道过南、北两极,即在垂直于赤道的平面内,如极地气象卫星。
(3)其他轨道:除以上两种轨道外的卫星轨道,所有卫星的轨道平面一定通过地球的球心。
2.同步卫星问题的“四点”注意(1)基本关系:G Mmr2=ma=mv2r=mrω2=m4π2T2r。
(2)重要手段:构建物理模型,绘制草图辅助分析。
(3)物理规律①不快不慢:具有特定的运行线速度、角速度和周期。
②不高不低:具有特定的位置高度和轨道半径。
③不偏不倚:同步卫星的运行轨道平面必须处于地球赤道平面上,只能在赤道上方特定的点运行。
(4)重要条件①地球的公转周期为1年,其自转周期为1天(24小时),地球半径约为6.4×103 km,地球表面重力加速度g约为9.8 m/s2。
②月球的公转周期约27.3天,在一般估算中常取27天。
③人造地球卫星的运行半径最小为r=6.4×103 km,运行周期最小为T=84.8 min,运行速度最大为v=7.9 km/s。
3.两个向心加速度卫星绕地球运行的向心加速度物体随地球自转的向心加速度产生原因由万有引力产生由万有引力的一个分力(另一分力为重力)产生方向指向地心垂直且指向地轴大小a=GMr2(地面附近a近似等于g)a=rω2,r为地面上某点到地轴的距离,ω为地球自转的角速度特点随卫星到地心的距离的增大而减小从赤道到两极逐渐减小4.两种周期(1)自转周期是天体绕自身某轴线转动一周所需的时间,取决于天体自身转动的快慢。
2023届高考物理一轮复习学案 4.5 天体运动的三类热点问题

第5节 天体运动的三类热点问题 学案突破一 卫星的发射与变轨问题1.变轨原理及过程(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上,如图所示。
(2)在A 点(近地点)点火加速,由于速度变大,万有引力不足以提供卫星在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ。
(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅲ。
2.各物理量的比较(1)两个不同轨道的“切点”处线速度不相等。
图中v ⅢB >v ⅡB ,v ⅡA >v ⅠA 。
(2)同一个椭圆轨道上近地点和远地点的线速度大小不相等。
从远地点到近地点万有引力对卫星做正功,卫星的动能增大(引力势能减小)。
图中v ⅡA >v ⅡB ,E k ⅡA >E k ⅡB ,E p ⅡA <E p ⅡB 。
(3)两个不同圆轨道上线速度大小不相等。
轨道半径越大,线速度越小,图中v Ⅰ>v Ⅲ。
(4)卫星在不同轨道上的机械能E 不相等,“高轨高能,低轨低能”。
卫星变轨过程中机械能不守恒。
图中E Ⅰ<E Ⅱ<E Ⅲ。
(5)卫星运行的加速度与卫星和中心天体间的距离有关,与轨道形状无关,图中a ⅢB =a ⅡB ,a ⅡA =a ⅠA 。
[典例1] (2021·四川省遂宁市高三下学期5月三诊)2021年1月,“天通一号”03星发射成功。
发射过程简化为如图所示:火箭先把卫星送上轨道1(椭圆轨道,P 、Q 是远地点和近地点)后火箭脱离;卫星再变轨,到轨道2(圆轨道);卫星最后变轨到轨道3(同步圆轨道)。
轨道1、2相切于P 点,轨道2、3相交于M 、N 两点。
忽略卫星质量变化( )A .卫星在三个轨道上的周期T 3>T 2>T 1B .由轨道1变至轨道2,卫星在P 点向前喷气C .卫星在三个轨道上机械能E 3=E 2>E 1D .轨道1在Q 点的线速度小于轨道3的线速度[典例2] (多选)若“嫦娥五号”从距月面高度为100 km 的环月圆形轨道Ⅰ上的P 点实施变轨,进入近月点为15 km 的椭圆轨道Ⅱ,由近月点Q 落月,如图所示。
高考物理一轮复习 第五章 曲线运动 万有引力与航天 专题提升(六)天体运动中的三类典型问题教案

专题提升(六) 天体运动中的三类典型问题近地卫星、同步卫星及赤道上物体的运动问题赤道上物体、近地卫星、同步卫星的动力学特点赤道上的物体近地卫星同步卫星向心力来源万有引力的分力万有引力线速度v1=Rω1v2=GMRv3=(R+h)ω3=GMR h+v1<v3<v2(v2为第一宇宙速度)角速度ω1=ω自ω2=3GMRω3=3()GMR h+ω1=ω3<ω2向心加速度a1=21ωRa2=22ωR=2GMRa3=23ω(R+h)=2()GMR h+a1<a3<a2[例1](多选)如图所示,A是静止在赤道上的物体,B,C是同一平面内两颗人造卫星.B位于离地高度等于地球半径的圆形轨道上,C是地球同步卫星.则以下判断正确的是( CD)A.卫星B的速度大小等于地球的第一宇宙速度B.A,B的线速度大小关系为v A>v BC.周期大小关系为T A=T C>T BD.若卫星B要靠近C所在轨道,需要先加速审题指导:解此题注意三点:(1)地面上的物体随地球自转,与地球和地球同步卫星有相同的角速度. (2)近地卫星和同步卫星都满足卫星运行规律.(3)近地卫星与地面上物体比较时要借助地球同步卫星这一桥梁.解析:第一宇宙速度为近地卫星的环绕速度,为最大环绕速度,所以B 的速度小于第一宇宙速度,故A 错误;A,C 相比较,角速度相等,由v=ωr,可知v A <v C ,根据卫星的线速度公式得v C <v B ,则v A <v C <v B ,故B 错误;同理,根据可知T C >T B ,有T A =T C >T B ,故C 正确;卫星要想从低轨道到达高轨道,需要加速做离心运动,故D 正确. 1.(2016·四川卷,3)国务院批复,自2016年起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km,远地点高度约为2 060 km;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km 的地球同步轨道上.设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1,a 2,a 3的大小关系为( D ) A.a 2>a 1>a 3 B.a 3>a 2>a 1 C.a 3>a 1>a 2D.a 1>a 2>a 3解析:由于东方红二号卫星是同步卫星,则其角速度和赤道上的物体角速度相等,可得a 2=r 2ω2,而a 3=r 3ω2, 由于r 2>r 3,则可得a 2>a 3. 又由万有引力定律G2Mmr =ma 和题目中数据可得r 1<r 2, 则可以得出a 2<a 1,故选项D 正确.2.(多选)已知地球赤道上的物体随地球自转的线速度大小为v 1、向心加速度大小为a 1,近地卫星线速度大小为v 2、向心加速度大小为a 2,地球同步卫星线速度大小为v 3、向心加速度大小为a3.设近地卫星距地面高度不计,同步卫星距地面高度约为地球半径的6倍.则以下结论正确的是( BCD ) A.23v v =6 B.13v v =17C.23a a =49 D.13a a =17解析:近地卫星和同步卫星都绕地球做匀速圆周运动,根据万有引力提供向心力有G2Mm r=m 2v r ,解得v=GM r ,两卫星的轨道半径之比为1∶7,所以23v v =71,故A 错误;地球赤道上的物体和同步卫星具有相同的周期和角速度,根据v=ωr,地球的半径与同步卫星的轨道半径之比为1∶7,所以13v v =17,故B 正确;根据万有引力提供向心力得G 2Mm r =ma,a=2GMr,两卫星的轨道半径之比为1∶7,则23a a =49,C 正确;同步卫星与随地球自转的物体具有相同的角速度,根据a=rω2,地球的半径与同步卫星的轨道半径之比为1∶7,所以13a a =17,故D 正确. 航天器的变轨问题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道.如图所示,发射卫星的过程大致有以下几个步骤:(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上. (2)在A 处点火加速,由于速度变大,进入椭圆轨道Ⅱ. (3)在B 处(远地点)再次点火加速进入圆形轨道Ⅲ. 2.卫星变轨的实质 两类变轨 离心运动近心运动变轨起因 卫星速度突然增大卫星速度突然减小受力分析 G2Mm r <m 2v r G2Mmr >m 2v r 变轨结果变为椭圆轨道运动或在较大半径圆轨道上运动变为椭圆轨道运动或在较小半径圆轨道上运动能量分重力势能、机械能均增加重力势能、机械能均减小析角度1 变轨过程中各物理量的变化[例2](2019·河北唐山模拟)(多选)如图所示,地球卫星a,b分别在椭圆轨道、圆形轨道上运行,椭圆轨道在远地点A处与圆形轨道相切,则( AD)A.卫星a的运行周期比卫星b的运行周期短B.两颗卫星分别经过A点处时,a的速度大于b的速度C.两颗卫星分别经过A点处时,a的加速度小于b的加速度D.卫星a在A点处通过加速可以到圆轨道上运行解析:由于卫星a的运行轨道的半长轴比卫星b的运行轨道半径短,根据开普勒第三定律,卫星a的运行周期比卫星b的运行周期短,选项A正确;两颗卫星分别经过A点处时,a的速度小于b的速度,若卫星a在A点处加速后万有引力恰好提供向心力,则可以做匀速圆周运动,选项B错误,D正确;两颗卫星分别经过A点处,a的加速度等于b的加速度,选项C错误.分析卫星变轨问题的三点注意(1)卫星变轨时半径的变化,要根据万有引力与所需向心力的大小关系判断.决定.(2)卫星稳定在新轨道上的运行速度由v=GMr(3)卫星通过不同轨道的同一点(切点)时的速度大小关系可根据离心或向心运动的条件分析得出.角度2 变轨问题中能量分析[例3] (多选)目前,在地球周围有许多人造地球卫星绕着它运转,其中一些卫星的轨道可近似为圆,且轨道半径逐渐变小.若卫星在轨道半径逐渐变小的过程中,只受到地球引力和稀薄气体阻力的作用,则下列判断正确的是( BD)A.卫星的动能逐渐减小B.由于地球引力做正功,引力势能一定减小C.由于气体阻力做负功,地球引力做正功,机械能保持不变D.卫星克服气体阻力做的功小于引力势能的减小解析:卫星在轨道半径逐渐变小的过程中,由于地球引力做正功,引力势能一定减小,故B正确;卫星的环绕速度当半径r减小时,运行速度增大,卫星的动能增大,选项A错误;由于气体阻力做负功,地球引力做正功,根据功能关系,机械能(引力势能和动能之和)减小,选项C错误;由于卫星的动能增大,地球引力做的正功大于卫星克服气体阻力做的功,选项D 正确.1.(多选)如图所示,在发射地球同步卫星的过程中,卫星首先进入椭圆轨道Ⅰ,然后在Q点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则( ACD)A.该卫星在P点的速度大于7.9 km/s,小于11.2 km/sB.卫星在同步轨道Ⅱ上的运行速度大于7.9 km/sC.在轨道Ⅰ上,卫星在P点的速度大于在Q点的速度D.卫星在Q点通过加速实现由轨道Ⅰ进入轨道Ⅱ解析:卫星在P点做圆周运动的速度为7.9 km/s,卫星在P点的速度大于7.9 km/s会做离心运动,运动轨迹为椭圆,但必须小于11.2 km/s,否则就会脱离地球束缚,故A正确;环绕地球做圆周运动的人造卫星,最大的运行速度是7.9 km/s,故B错误;P点比Q点离地球近,故在轨道Ⅰ上,卫星在P 点的速度大于在Q 点的速度,C 正确;卫星在Q 点通过加速实现由轨道Ⅰ进入轨道Ⅱ,故D 正确.2.(2019·河南南阳月考)(多选)若“嫦娥四号”从距月面高度为100 km 的环月圆形轨道Ⅰ上的P 点实施变轨,进入近月点为15 km 的椭圆轨道Ⅱ,由近月点Q 落月,如图所示.关于“嫦娥四号”,下列说法正确的是( AD )A.沿轨道Ⅰ运动至P 时,需制动减速才能进入轨道ⅡB.沿轨道Ⅱ运行的周期大于沿轨道Ⅰ运行的周期C.沿轨道Ⅱ运行时,在P 点的加速度大于在Q 点的加速度D.在轨道Ⅱ上由P 点运行到Q 点的过程中,万有引力对其做正功,它的动能增加,重力势能减小,机械能不变解析:要使“嫦娥四号”从环月圆形轨道Ⅰ上的P 点实施变轨进入椭圆轨道Ⅱ,需制动减速做近心运动,A 正确;由开普勒第三定律知,沿轨道Ⅱ运行的周期小于沿轨道Ⅰ运行的周期,B 错误;根据牛顿第二定律,有G2Mm r =ma,解得a=G 2Mr,沿轨道Ⅱ运行时,在P 点的加速度小于在Q 点的加速度,C 错误;月球对“嫦娥四号”的万有引力指向月球,所以在轨道Ⅱ上由P 点运行到Q 点的过程中,万有引力对其做正功,它的动能增加,重力势能减小,机械能不变,D 正确.双星或多星模型1.宇宙双星问题(1)特点:如图(甲)所示绕公共圆心转动的两个星体组成的系统,我们称之为双星系统. (2)动力学规律①各自所需的向心力由彼此间的万有引力提供,即122Gm m L=m 1r 121ω, 122Gm m L=m 2r 222ω; ②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2; ③两颗星的轨道半径与它们之间的距离关系为:r 1+r 2=L. (3)两颗星到圆心的距离r 1,r 2与星体质量成反比,即12m m =21r r . 2.宇宙三星问题(1)三颗质量均为m 的星体位于同一直线上,两颗环绕星围绕中央星在同一半径为R 的圆形轨道上运行[如图(乙)所示].其中一个环绕星由其余两颗星的引力提供向心力:22Gm R +22(2)Gm R =ma.(2)三颗质量均为m 的星体位于等边三角形的三个顶点上[如图(丙)所示].每颗星体运动所需向心力都由其余两颗星体对其万有引力的合力来提供.2×22Gm L cos 30°=ma,其中L=2Rcos 30°.3.宇宙四星问题(1)其中一种是四颗质量相等的星体位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动[如图(丁)所示].(2)另一种是三颗星体始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O 做匀速圆周运动[如图(戊)所示].三颗星体转动的方向相同,周期、角速度、线速度的大小相等.4.宇宙多星的分析思路 角度1 双星问题 [例4]宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动,而不至于因为万有引力的作用而吸引到一起.如图所示,某双星系统中A,B 两颗天体绕O 点做匀速圆周运动,它们的轨道半径之比r A ∶r B =1∶2,则两颗天体的( A ) A.质量之比m A ∶m B =2∶1 B.角速度之比ωA ∶ωB =1∶2 C.线速度大小之比v A ∶v B =2∶1 D.向心力大小之比F A ∶F B =2∶1审题指导:(1)双星做匀速圆周运动的周期相同. (2)公式G122m m r 中的r 是两星间的距离,而不是轨道半径. 解析:双星绕连线上的一点做匀速圆周运动,其角速度相同,周期相同,两者之间的万有引力提供向心力,F=m A r A ω2=m B r B ω2,所以m A ∶m B =2∶1,选项A 正确,B,D 错误;由v=rω可知,线速度大小之比v A ∶v B =1∶2,选项C 错误.(1)双星系统中,两星的向心力大小一定相等,等于它们之间的万有引力,向心力不会因为两星质量、轨道半径不同而不同.(2)万有引力定律表达式中的r 表示双星间的距离,此处应该是L;而向心力表达式中的r 表示它们各自做圆周运动的半径,此处为r 1,r 2,千万不可混淆. 角度2 三星问题 [例5]三颗相同的质量都是M 的星球位于边长为L 的等边三角形的三个顶点上.如果它们中的每一颗都在相互的引力作用下沿外接于等边三角形的圆轨道运行而保持等边三角形不变,下列说法正确的是( B )A.23G MB.其中一个星球受到另外两个星球的万有引力的合力指向圆心OC.3LD.2GML解析:根据万有引力定律,任意两颗星球之间的万有引力为F 1=22GM L ,方向沿着它们的连线.其中一个星球受到另外两个星球的万有引力的合力为F=2F 1cos 23G M ,方向指向圆心,选项A 错误,B 正确;三个星球运行的轨道半径r=2cos30L3L,选项C 错误;23G M =M 2v r可得GML选项D 错误. (1)多星问题中,质量相同的各星处于同一圆轨道上,绕某一点做匀速圆周运动,或处于同一直线上的三星绕其中一颗做匀速圆周运动,某一星体所需向心力是其他星体对它万有引力的矢量和.(2)解题时首先明确多星系统中各星体的位置及周期关系,再分析各星做匀速圆周运动的向心力的来源和轨道半径.1.两个质量不同的天体构成双星系统,它们以二者连线上的某一点为圆心做匀速圆周运动,下列说法正确的是( C )A.质量大的天体线速度较大B.质量小的天体角速度较大C.两个天体的向心力大小相等D.若在圆心处放一个质点,它受到的合力为零解析:双星系统做匀速圆周运动的角速度ω相等,选项B 错误.两个天体之间的万有引力提供向心力,所以两个天体的向心力大小相等,选项C 正确.由万有引力定律及牛顿运动定律得G122m m L =m 1r 1ω2=m 2r 2ω2,其中r 1+r 2=L,故r 1=212m m m +L,r 2=112m m m +L,则12v v =12r r =21m m ,故质量大的星球线速度小,故选项A 错误.若在圆心处放一个质量为m 的质点,质量为m 1的天体对它的万有引力为F 1=G 121mm r ,质量为m 2的天体对它的万有引力为F 2=G 222mmr ,由A 项分析知m 1r 1=m 2r 2,则F 2=G1132mm r r ,显然,F 2≠F 1,即圆心处放的质点受到的合力不为零,选项D 错误. 2.(多选)宇宙中有这样一种三星系统,系统由两个质量为m 的小星体和一个质量为M 的大星体组成,两个小星体围绕大星体在同一圆形轨道上运行,轨道半径为r.关于该三星系统的说法正确的是( BC )A.在稳定运行的情况下,大星体提供两小星体做圆周运动的向心力B.在稳定运行的情况下,大星体应在小星体轨道中心,两小星体在大星体相对的两侧C.小星体运行的周期为32rD.小星体运行的周期为32r解析:在稳定运行的情况下,对某一个环绕星体而言,受到其他两个星体的万有引力,两个万有引力的合力提供环绕星体做圆周运动的向心力,选项A 错误;在稳定运行的情况下,大星体应在小星体轨道中心,两小星体在大星体相对的两侧,选项B 正确;对某一个小星体有2GMm r +2(2)Gmmr =mr,解得小星体运行的周期32选项C 正确,D 错误. 1.(2019·北京卷,18)2019年5月17日,我国成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星).该卫星( D ) A.入轨后可以位于北京正上方B.入轨后的速度大于第一宇宙速度C.发射速度大于第二宇宙速度D.若发射到近地圆轨道所需能量较少解析:同步卫星只能位于赤道正上方,故A 错误;由2GMmr=m 2v r 知,卫星的轨迹半径越大,环绕速度越小,因此入轨后的速度小于第一宇宙速度(近地卫星的速度),故B 错误;同步卫星的发射速度大于第一宇宙速度、小于第二宇宙速度,故C 错误;若该卫星发射到近地圆轨道,所需发射速度较小,所需能量较少,故D 正确.2.(2018·全国Ⅰ卷,20)(多选)2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km,绕二者连线上的某点每秒转动12圈.将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( BC ) A.质量之积 B.质量之和 C.速率之和 D.各自的自转角速度解析:两颗中子星运动到某位置的示意图如图所示.每秒转动12圈,即转速n=12 r/s,角速度ω=2πn,中子星运动时,由万有引力提供向心力得122Gm m l =m 1r 1ω2,122Gm m l =m 2r 2ω2,l=r 1+r 2,联立可得122()G m m l +=ω2l,所以m 1+m 2=23l G ω,质量之和可以估算;由线速度与角速度的关系v=ωr 得,v 1=ωr 1,v 2=ωr 2,解得v 1+v 2=(r 1+r 2)ω=ωl,速率之和可以估算;质量之积和各自自转的角速度无法求解,故B,C 正确,A,D 错误. 3.(2016·天津卷,3)我国即将发射“天宫二号”空间实验室,之后发射“神舟十一号”飞船与“天宫二号”对接.假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是( C )A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接解析:使飞船与空间实验室在同一轨道上运行,然后飞船加速,则向心力变大,飞船将脱离原轨道而进入更高的轨道,不能实现对接;若空间实验室减速,则向心力变小,空间实验室将脱离原轨道而进入更低的轨道,不能实现对接,故选项A,B 错误;要想实现对接,可使飞船在比空间实验室半径小的轨道上加速,然后飞船将进入较高的空间实验室轨道,逐渐靠近空间实验室后,两者速度接近时实现对接,选项C 正确;若飞船在比空间实验室半径小的轨道上减速,则飞船将进入更低的轨道,不能实现对接,选项D 错误.4.(2019·福建泉州质检)(多选)如图,虚线Ⅰ,Ⅱ,Ⅲ分别表示地球卫星的三条轨道,其中轨道Ⅰ为与第一宇宙速度7.9 km/s 对应的近地环绕圆轨道,轨道Ⅱ为椭圆轨道,轨道Ⅲ为与第二宇宙速度11.2 km/s 对应的脱离轨道,a,b,c 三点分别位于三条轨道上,b 点为轨道Ⅱ的远地点,b,c 点与地心的距离均为轨道Ⅰ半径的2倍,则( CD )A.卫星在轨道Ⅱ的运行周期为轨道Ⅰ的2倍B.卫星经过a 点的速率为经过bC.卫星在a 点的加速度大小为在c 点的4倍D.质量相同的卫星在b 点的机械能小于在c 点的机械能解析:由开普勒第三定律可得21T T ,故A 错误;卫星在轨道Ⅰ做匀速圆周运动,半径为r,Ⅱ轨道为椭圆,卫星经过b 点可以加速后做匀速圆周运动,由,卫星经过a 点的速率大于经过b ,故B 错误;由公式a=2GM r 可知,卫星在a 点的加速度大小为在c 点的4倍,故C 正确;卫星越高,发射过程中要克服引力做功越多,所以质量相同的卫星在b 点的机械能小于在c 点的机械能,故D 正确.。
拓展课 天体运动中的三类典型问题2020(春)物理 必修 第二册 鲁科版(新教材)

拓展课天体运动中的三类典型问题核心要点人造卫星的发射、变轨问题[要点归纳]1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图所示。
(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上。
(2)在A点点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅱ。
(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ。
2.三个运行物理量的大小比较(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A 点和B点速率分别为v A、v B。
在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B。
(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同。
(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3。
[经典示例][例1]我国正在进行的探月工程是高新技术领域的一次重大科技活动,在探月工程中飞行器成功变轨至关重要。
如图所示,假设月球半径为R,月球表面的重力加速度为g0,飞行器在距月球表面高度为3R的圆形轨道Ⅰ上运动,到达轨道的A 点点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B再次点火进入近月轨道Ⅲ绕月球做圆周运动,则()A.飞行器在B点处点火后,动能增加B.由已知条件不能求出飞行器在轨道Ⅱ上的运行周期C.只有万有引力作用情况下,飞行器在轨道Ⅱ上通过B点的加速度大于在轨道Ⅲ上通过B点的加速度D.飞行器在轨道Ⅲ上绕月球运行一周所需的时间为2πR g0解析在椭圆轨道近月点变轨成为圆轨道,要实现变轨应给飞行器点火减速,减小所需的向心力,故点火后动能减小,故A错误;设飞行器在近月轨道Ⅲ绕月球运行一周所需的时间为T3,则mg0=mR4π2T23,解得T3=2πRg0,根据几何关系可知,轨道Ⅱ的半长轴a=2.5R,根据开普勒第三定律a3T2=k以及轨道Ⅲ的周期,可求出在轨道Ⅱ上的运行周期,故B错误,D正确;只有万有引力作用情况下,飞行器在轨道Ⅱ上通过B点的加速度与在轨道Ⅲ上通过B点的加速度相等,故C错误。
天体运动三类问题

R+h2 ≈3.6×107 m.
4π2 T2
(R+h)得地球同步卫星离地面的高度h=
GM (5)速率一定:v=_____R_+__h__≈3.1×103 m/s. (6)向心加速度一定:由G RM+mh=2 man得an=RG+M=hg2 h=0.23 m/s2,即同步卫星的 向心加速度等于轨道处的重力加速度.
Ⅰ轨道与Ⅱ轨道的切点,Q点为Ⅱ轨道与Ⅲ轨道的切点,下列判断正确的是
√A.卫星在轨道Ⅰ上的动能为G
Mm 2R1
√B.卫星在轨道Ⅲ上的机械能等于-G
Mm 2R3
C.卫星在Ⅱ轨道经过Q点时的加速度小于在Ⅲ轨道上经过
Q点时的加速度
D.卫星在Ⅰ轨道上经过P点时的速率大于在Ⅱ轨道上经过P点 图6
时的速率
一天、体卫中星的的追轨及道相遇问题
√B.A的线速度一定大于B的线速度
C.L一定,M越大,T越大
√D.M一定,L越大,T越大
图3
1 2 3 4 5 6 7 8 9 10 11
例6 (多选)(2018·广东省高考第一次模拟)如图11,天文观测中观测到有三颗星
位于边长为l的等边三角形三个顶点上,并沿等边三角形的外接圆做周期为T的
匀速圆周运动.已知引力常量为G,不计其他星体对它们的影响,关于这个三星
例2 (多选)(2018·陕西省宝鸡市质检二)如图6所示,质量为m的人造地球卫星
与地心的距离为r时,引力势能可表示为Ep=-
GMm,其中G为引力常量,M为 r
地球质量,该卫星原来在半径为R1的轨道Ⅰ上绕地球做匀速圆周运动,经过椭
圆轨道Ⅱ的变轨过程进入半径为R3的圆形轨道Ⅲ继续绕地球运动,其中P点为
相对于地面静止且与地球自转具有相同周期的卫星叫地球同步卫星.同步卫星
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题提升(五) 天体运动中的三类典型问题基础必备1.两个靠近的天体称为双星,它们以两者连线上某点O为圆心做匀速圆周运动,其质量分别为m1,m2,如图所示,以下说法正确的是( A )A.线速度与质量成反比B.线速度与质量成正比C.向心力与质量的乘积成反比D.轨道半径与质量成正比解析:设两星之间的距离为L,轨道半径分别为r1,r2,根据万有引力提供向心力得,G=m 1ω2r1,G=m2ω2r2,则m1r1=m2r2,即轨道半径和质量成反比,故D错误;根据v=ωr可知,线速度与轨道半径成正比,则线速度与质量成反比,故A正确,B错误;由万有引力公式F 向=G,向心力与质量的乘积成正比,故C错误.2.(多选)2017年4月20日19时41分,“天舟一号”货运飞船在文昌航天发射场成功发射,后与“天宫二号”空间实验室成功对接.假设对接前“天舟一号”与“天宫二号”都围绕地球做匀速圆周运动,下列说法正确的是( AC )A.“天舟一号”货运飞船发射加速上升时,里面的货物处于超重状态B.“天舟一号”货运飞船在整个发射过程中,里面的货物始终处于完全失重状态C.为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向后喷气加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向前喷气减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接解析:“天舟一号”货运飞船发射加速上升时,加速度向上,则里面的货物处于超重状态,选项A正确,B错误;为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向后喷气加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接,选项C正确,D错误.3.某同学学习了天体运动的知识后,假想宇宙中存在着由四颗星组成的孤立星系.如图所示,一颗母星处在正三角形的中心,三角形的顶点各有一颗质量相等的小星围绕母星做圆周运动.如果两颗小星间的万有引力为F,母星与任意一颗小星间的万有引力为9F.则( A )A.每颗小星受到的万有引力为(+9)FB.每颗小星受到的万有引力为(+9)FC.母星的质量是每颗小星质量的2倍D.母星的质量是每颗小星质量的3倍解析:每颗小星受到的万有引力的合力为9F+2F·cos 30°=(+9)F,选项A正确,B错误;由F=G和9F=得=3,选项C,D错误.4.如图所示,A是静止在赤道上随地球自转的物体;B,C是同在赤道平面内的两颗人造卫星,B位于离地高度等于地球半径的圆形轨道上,C 是地球同步卫星.则下列关系正确的是( B )A.物体A随地球自转的角速度大于卫星B的角速度B.卫星B的线速度大于卫星C的线速度C.物体A随地球自转的加速度大于卫星C的加速度D.物体A随地球自转的周期大于卫星C的周期解析:由于A是静止在赤道上随地球自转的物体,C是地球同步卫星,所以两者角速度大小相等,周期大小相等,故C,D错误;由ω=可知,ωB>ωC,则ωB>ωA,故A错误;由v=可知,v B>v C,故B正确.5.(多选)如图所示,A是地球的同步卫星,B是位于赤道平面内的近地卫星,C为地面赤道上的物体,已知地球半径为R,同步卫星离地面的高度为h,则( BD )A.A,B加速度的大小之比为()2B.A,C加速度的大小之比为1+C.A,B,C速度的大小关系为v A>v B>v CD.要将B卫星转移到A卫星的轨道上运行至少需要对B卫星进行两次加速解析:根据万有引力提供向心力可知G=ma,得a A=G,a B=G,故=()2,选项A错误;A,C角速度相同,根据a=ω2r得a A=ω2(R+h),a C=ω2R,故=1+,选项B正确;根据G=m得v=,可知轨道半径越大线速度越小,所以v B>v A,又A,C角速度相同,根据v=ωr可知v A>v C,故v B>v A>v C,选项C错误;要将B卫星转移到A卫星的轨道上,先要加速到椭圆轨道上,再由椭圆轨道加速到A卫星的轨道上,选项D正确. 6.(多选)宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m,半径均为R,四颗星稳定分布在边长为L的正方形的四个顶点上,其中L远大于R.已知万有引力常量为G,忽略星体的自转,则关于四星系统,下列说法正确的是( CD )A.四颗星做圆周运动的轨道半径为B.四颗星做圆周运动的线速度均为C.四颗星做圆周运动的周期均为2πD.四颗星表面的重力加速度均为G解析:如图所示,四颗星均围绕正方形对角线的交点做匀速圆周运动,轨道半径r=L.取任一顶点上的星体为研究对象,它受到其他三个星体的万有引力的合力为F 合=G+G.由F合=F向=m=m,解得v=,T=2π,故A,B项错误,C项正确;对于在星体表面质量为m0的物体,受到的重力等于万有引力,则有m 0g=G,故g=G,D项正确.7.(多选)我国计划将“嫦娥五号”送上38万千米远的月球,采回月壤,实现航天工程绕、落、回的收关阶段.到时着陆器将自动从月面取样后从月表起飞,并在近月轨道实现自动交会对接后和返回舱一起返回地面,供科学家分析.了解这则新闻后物理兴趣小组进行了热烈讨论,绘制出了“嫦娥五号”奔向月球和返回地球的示意图,图中对接为取样后的对接点,实线圆为绕行器在半径为r的圆轨道绕月等待着陆器返回的轨道,设着陆器取样并返回到绕行器的时间t内绕行器飞行N圈,全过程不考虑空气阻力的影响.已知引力常量为G,月球的半径为R,则兴趣小组提出了下列有关结论,其中表示正确的是( BC )A.从地表发射后的“嫦娥五号”需要进行多次变轨,当其速度达到第二宇宙速度时才能飞抵月球B.“嫦娥五号”沿椭圆轨道向38万千米远的月球飞行时,只有月球也运动到椭圆轨道的远地点附近时才能将“嫦娥五号”捕获,否则还要沿椭圆轨道返回C.结合题中信息可知月球的质量为,二者在对接过程中有一定的机械能损失D.绕行器携带样品沿椭圆轨道返回地球时,虽然引力做功,动能增大,但系统的机械能不变解析:从地表发射后的“嫦娥五号”需要进行多次变轨,以提高其绕行速度,但由于月球在地月系内,因此“嫦娥五号”不需要达到逃离地球的第二宇宙速度,A项错误;由于月球也在绕地运行,只有当“嫦娥五号”沿椭圆轨道运动到远地点时,刚好月球也运动到这一位置,才能减速被月球捕获,若月球尚未到达目的地,地球的引力还会使“嫦娥五号”沿椭圆轨道返回,等待月球的下次到来,因此发射时还要通过计算选择合适时间,以便“嫦娥五号”一去就被月球捕获,B项正确;着陆器取样返回后与绕行器对接过程是合二为一的过程,一定有机械能损失,绕行器由月球引力提供向心力,G=mr,又T=,故M=,C项正确;绕行器携带样品沿椭圆轨道返回时,需加速离开绕月轨道,外力做正功,系统的机械能增大,故D项错误.8.(2019·山西太原模拟)(多选)已知某卫星在赤道上空轨道半径为r1的圆形轨道上绕地球运行的周期为T,卫星运动方向与地球自转方向相同,赤道上某城市的人每两天恰好三次看到卫星掠过其正上方.假设某时刻,该卫星如图在A点变轨进入椭圆轨道,近地点B到地心距离为r2.设卫星由A到B运动的时间为t,地球自转周期为T0,不计空气阻力.则( ABC )A.T=T0B.T=C.卫星在图中椭圆轨道由A到B时,机械能不变D.卫星由图中A点变轨进入椭圆轨道,机械能增大解析:赤道上某城市的人每两天恰好三次看到卫星掠过其正上方,有·-·=2π,解得T=T0,故选项A正确;根据开普勒第三定律有=,解得T=,故选项B正确;卫星在图中椭圆轨道由A 到B时,只有万有引力做功,所以机械能不变,故选项C正确;卫星由图中A点变轨进入椭圆轨道,从高轨道变到低轨道,卫星在A点要减速,所以机械能减小,故选项D错误.能力培养9.(多选)如图,甲、乙、丙是位于同一直线上的离其他恒星较远的三颗恒星,甲、丙围绕乙在半径为R的圆轨道上运行,若三颗星质量均为M,引力常量为G,则( AD )A.甲星所受合外力为B.乙星所受合外力为C.甲星和丙星的线速度相同D.甲星和丙星的角速度相同解析:由万有引力定律可知,甲、乙和乙、丙之间的万有引力为F1=G,甲、丙之间的万有引力为F2=G=,甲星所受两个引力的方向相同,故合力为F1+F2=,A项正确;乙星所受两个引力等大、反向,合力为零,B项错误;甲、丙两星线速度方向始终不同,C项错误;由题知甲、丙两星周期相同,由角速度定义可知,两星角速度相同,D项正确. 10.(多选)2017年4月,我国第一艘货运飞船天舟一号顺利升空,随后与天宫二号交会对接.假设天舟一号从B点发射经过椭圆轨道运动到天宫二号的圆轨道上完成交会,如图所示.已知天宫二号的轨道半径为r,天舟一号沿椭圆轨道运动的周期为T,A,B两点分别为椭圆轨道的远地点和近地点,地球半径为R,引力常量为G.则( AC )A.天宫二号的运行速度小于7.9 km/sB.天舟一号的发射速度大于11.2 km/sC.根据题中信息可以求出地球的质量D.天舟一号在A点的速度大于天宫二号的运行速度解析:由G=m可得线速度与半径的关系v=,轨道半径r越大,速率v越小.第一宇宙速度7.9 km/s是近地面卫星(轨道半径等于地球半径)的运行速度,而天宫二号轨道半径大于地球半径,所以天宫二号的运行速度小于7.9 km/s,选项A正确;11.2 km/s(第二宇宙速度)是发射脱离地球引力范围围绕太阳运动的人造行星的速度,而天舟一号是围绕地球运动的,所以天舟一号的发射速度小于11.2 km/s,选项B 错误;根据题中信息可知,天舟一号沿椭圆轨道运动的轨道半长轴为a=(R+r),利用开普勒第三定律=,可得天宫二号绕地球运动的周期T′,再由G=mr()2,可以求出地球的质量M,选项C正确;天舟一号在A点的速度小于天宫二号的运行速度,选项D错误.11.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为( B )A.TB.TC.TD.T解析:设两恒星中一颗恒星的质量原来为m,围绕其连线上的某一点做匀速圆周运动的半径为r,两星总质量为M,两星之间的距离为R,圆周运动的周期为T,由G=mr,G=(M-m)(R-r),联立解得T= 2π.经过一段时间演化后,两星总质量变为原来的k倍,即为kM,两恒星中一颗恒星的质量变为m′,围绕其连线上的某一点做匀速圆周运动的半径为r′,两星之间的距离变为原来的n倍,即为nR.此时圆周运动的周期为T′.则有=m′r′,G=(k M- m′)(nR-r′),联立解得T′=2π=T,选项B正确.12.我国自1970年4月24日发射第一颗人造地球卫星——“东方红1号”以来,为了满足通讯、导航、气象预报和其他领域科学研究的不同需要,又发射了许多距离地面不同高度的人造地球卫星.卫星A 为近地卫星,卫星B为地球同步卫星,它们都绕地球做匀速圆周运动.已知地球半径为R,卫星A距地面高度可忽略不计,卫星B距地面高度为h,不计卫星间的相互作用力.求:(1)卫星A与卫星B运行速度大小之比;(2)卫星A与卫星B运行周期之比;(3)卫星A与卫星B运行的加速度大小之比.解析:(1)卫星绕地球做匀速圆周运动,设地球质量为M,卫星质量为m,轨道半径为r,运行速度大小为v由万有引力定律和牛顿运动定律得G=m解得v=卫星A与卫星B运行速度大小之比=.(2)由万有引力定律和牛顿运动定律得G=m r可知卫星运行周期T=卫星A与卫星B运行周期之比=.(3)由万有引力定律和牛顿运动定律得卫星运行的加速度大小a==卫星A与卫星B运行的加速度大小之比=.答案:见解析13.两个天体(包括人造天体)间存在万有引力,并具有由相对位置决定的引力势能.如果两个天体的质量分别为m1和m2,当它们相距无穷远时势能为零,则它们距离为r时,引力势能为E p=-G.发射地球同步卫星时一般是把它先送入较低的圆形轨道,如图中Ⅰ轨道,再经过两次“点火”,即先在图中a点处启动发动机,向后喷出高压气体,卫星得到加速,进入图中的椭圆轨道Ⅱ,在轨道Ⅱ的远地点b处第二次“点火”,卫星再次被加速,此后,沿图中的圆形轨道Ⅲ(即同步轨道)运动.设某同步卫星的质量为m,地球半径为R,轨道Ⅰ距地面非常近,轨道Ⅲ距地面的距离近似为6R,地面处的重力加速度为g,并且每次点火经历的时间都很短,点火过程中卫星质量的减少可以忽略.求:(1)从轨道Ⅰ转移到轨道Ⅲ的过程中,合力对卫星所做的总功是多大?(2)两次“点火”过程中高压气体对卫星所做的总功是多少?解析:(1)卫星沿轨道Ⅰ做圆周运动,满足G=m=mg,故E k1=m==mgR,卫星沿轨道Ⅲ做圆周运动,则G=m,E k2=m=,合力做的功W=E k2-E k1=mgR(-)=-.(2)卫星在轨道Ⅰ上的引力势能E p1=-=-mgR,卫星在轨道Ⅲ上的引力势能E p2=-=-,高压气体所做的总功W′=(E p2+E k2)-(E p1+E k1)=(-+)-(-mgR+mgR) =.答案:(1)-(2)。