2019年山东省济宁市兖州市中考数学一模试卷(含答案)
山东省济宁市2019-2020学年中考一诊数学试题含解析

山东省济宁市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系中的图象可能是()A.B.C.D.2.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=5 ,则∠B 的度数是()A.30°B.45°C.50°D.60°3.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米4.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A .B .C .D .5.已知一元二次方程2x 6x c 0-+=有一个根为2,则另一根为A .2B .3C .4D .86.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是( )A .2003503x x =-B .2003503x x =+C .2003503x x =+D .2003503x x=- 7.(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温(℃)25 26 27 28天 数1 12 3则这组数据的中位数与众数分别是( )A .27,28B .27.5,28C .28,27D .26.5,278.下列运算正确的是( )A .235x x x +=B .236x x x +=C .325x x =()D .326x x =() 9.若实数m 满足22210⎛⎫++= ⎪⎝⎭m m ,则下列对m 值的估计正确的是( ) A .﹣2<m <﹣1 B .﹣1<m <0C .0<m <1D .1<m <2 10.若一次函数(1)y m x m =++的图像过第一、三、四象限,则函数2y mx mx =-( )A .有最大值4mB .有最大值4m -C .有最小值4mD .有最小值4m - 11.下列几何体中,主视图和俯视图都为矩形的是( )A .B .C .D .12.计算±81的值为()A.±3 B.±9 C.3 D.9二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知⊙O1、⊙O2的半径分别为2和5,圆心距为d,若⊙O1与⊙O2相交,那么d的取值范围是_________.14.我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)如果设水深为x尺,则芦苇长用含x的代数式可表示为尺,根据题意列方程为.15.分解因式:2m2-8=_______________.16.若关于x的方程x2+x﹣a+54=0有两个不相等的实数根,则满足条件的最小整数a的值是( )A.﹣1 B.0 C.1 D.217.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.18.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,以AD为直径的⊙O交AB于C点,BD的延长线交⊙O于E点,连CE交AD于F点,若AC=BC.(1)求证:»»AC CE;(2)若32DEDF,求tan∠CED的值.20.(6分)解方程(2x+1)2=3(2x+1)21.(6分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.求证:∠CBP=∠ADB.若OA=2,AB=1,求线段BP的长.22.(8分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图).请回答以下问题:(1)该班学生选择观点的人数最多,共有人,在扇形统计图中,该观点所在扇形区域的圆心角是度.(2)利用样本估计该校初三学生选择“中技”观点的人数.(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答).23.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x/(元/千克) 50 60 70销售量y/千克100 80 60(1)求y与x之间的函数表达式;设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?24.(10分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.25.(10分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共__________人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.26.(12分)如图,在▱ABCD中,以点4为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并廷长交BC于点E,连接EF(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若AB=2,AE=2,求∠BAD的大小.27.(12分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节“活动计划书书本类别科普类文学类进价(单位:元) 18 12备注 (1)用不超过16800元购进两类图书共1000本;科普类图书不少于600本;…(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a (0<a <5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:∵二次函数图象开口方向向下,∴a <0,∵对称轴为直线2b x a=->0,∴b >0,∵与y 轴的正半轴相交,∴c >0,∴y ax b =+的图象经过第一、二、四象限,反比例函数c y x=图象在第一三象限,只有C 选项图象符合.故选C .考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.2.D【解析】 根据圆周角定理的推论,得∠B=∠D .根据直径所对的圆周角是直角,得∠ACD=90°.在直角三角形ACD 中求出∠D .则sinD=∠D=60°∠B=∠D=60°.故选D .“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边. 3.A【解析】【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4.B【解析】【分析】△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.【详解】解:当P点由A运动到B点时,即0≤x≤2时,y=12×2x=x,当P 点由B 运动到C 点时,即2<x <4时,y =12×2×2=2, 符合题意的函数关系的图象是B ;故选B .【点睛】 本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.5.C【解析】试题分析:利用根与系数的关系来求方程的另一根.设方程的另一根为α,则α+2=6, 解得α=1. 考点:根与系数的关系.6.B【解析】试题分析:设每个笔记本的价格为x 元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.考点:由实际问题抽象出分式方程7.A【解析】根据表格可知:数据25出现1次,26出现1次,27出现2次,28出现3次,∴众数是28,这组数据从小到大排列为:25,26,27,27,28,28,28∴中位数是27∴这周最高气温的中位数与众数分别是27,28故选A.8.D【解析】【分析】根据幂的乘方:底数不变,指数相乘.合并同类项即可解答.【详解】解:A 、B 两项不是同类项,所以不能合并,故A 、B 错误,C 、D 考查幂的乘方运算,底数不变,指数相乘.326x x () ,故D 正确;【点睛】本题考查幂的乘方和合并同类项,熟练掌握运算法则是解题的关键.9.A 【解析】试题解析:∵222(1)0mm++=,∴m2+2+4m=0,∴m2+2=-4m,∴方程的解可以看作是函数y=m2+2与函数y=-4m,作函数图象如图,在第二象限,函数y=m2+2的y值随m的增大而减小,函数y=-4m的y值随m的增大而增大,当m=-2时y=m2+2=4+2=6,y=-4m=-42-=2,∵6>2,∴交点横坐标大于-2,当m=-1时,y=m2+2=1+2=3,y=-4m=-41-=4,∵3<4,∴交点横坐标小于-1,∴-2<m<-1.故选A.考点:1.二次函数的图象;2.反比例函数的图象.10.B【解析】【分析】【详解】解:∵一次函数y=(m+1)x+m的图象过第一、三、四象限,∴m+1>0,m<0,即-1<m<0,∴函数221()24m y mx mx m x =-=--有最大值, ∴最大值为4m -, 故选B .11.B【解析】 A 、主视图为等腰三角形,俯视图为圆以及圆心,故A 选项错误;B 、主视图为矩形,俯视图为矩形,故B 选项正确;C 、主视图,俯视图均为圆,故C 选项错误;D 、主视图为矩形,俯视图为三角形,故D 选项错误.故选:B.12.B【解析】【详解】∵(±9)2=81,∴=±9.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3<d<7【解析】【分析】若两圆的半径分别为R 和r ,且R≥r ,圆心距为d :相交,则R-r<d<R+r ,从而得到圆心距O 1O 2的取值范围.【详解】∵⊙O 1和⊙O 2的半径分别为2和5,且两圆的位置关系为相交,∴圆心距O 1O 2的取值范围为5-2<d<2+5,即3<d<7.故答案为:3<d<7.【点睛】本题考查的知识点是圆与圆的位置关系,解题的关键是熟练的掌握圆与圆的位置关系. 14.(x+1);()22251x x +=+.【解析】试题分析:设水深为x 尺,则芦苇长用含x 的代数式可表示为(x+1)尺,根据题意列方程为()22251x x +=+. 故答案为(x+1),()22251x x +=+.考点:由实际问题抽象出一元二次方程;勾股定理的应用.15.2(m+2)(m-2)【解析】【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解因式.【详解】2m 2-8,=2(m 2-4),=2(m+2)(m-2)【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法,十字相乘等方法分解.16.D【解析】【分析】根据根的判别式得到关于a 的方程,求解后可得到答案.【详解】关于x 的方程2504x x a +-+=有两个不相等的实数根, 则251410,4a ⎛⎫∆=-⨯⨯-+> ⎪⎝⎭ 解得: 1.a >满足条件的最小整数a 的值为2.故选D.【点睛】本题考查了一元二次方程根与系数的关系,理解并能运用根的判别式得出方程是解题关键.17.1【解析】【分析】根据题意,画出示意图,易得:Rt △EDC ∽Rt △FDC ,进而可得ED DC DC FD=;即DC 2=ED?FD ,代入数据可得答案.【详解】根据题意,作△EFC ,树高为CD ,且∠ECF=90°,ED=3,FD=12,易得:Rt △EDC ∽Rt △DCF , 有ED DC DC FD=,即DC 2=ED×FD , 代入数据可得DC 2=31,DC=1,故答案为1.18.24【解析】试题分析:因为四边形ABCD 是菱形,根据菱形的性质可知,BD 与AC 互相垂直且平分,因为,AB=10,所以BD=6,根据勾股定理可求的AC=8,即AC=16;考点:三角函数、菱形的性质及勾股定理;三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)tan ∠CED 15 【解析】【分析】(1)欲证明»»AC CE =,只要证明EAC AEC ∠∠=即可;(2)由EDF COF ∆∆∽,可得32ED OC DF OF ==,设FO =2a ,OC =3a ,则DF =a ,DE =1.5a ,AD =DB =6a ,由BAD BEC ∆∆∽,可得BD•BE =BC•BA ,设AC =BC =x ,则有2267.5x a a ⨯=,由此求出AC 、CD 即可解决问题.【详解】(1)证明:如下图,连接AE ,∵AD 是直径,∴90ACD ∠︒=,∴DC ⊥AB ,∵AC =CB ,∴DA =DB ,∴∠CDA =∠CDB ,∵180EAC EDC ∠+∠︒=,180EDC CDB ∠+∠︒=,∴∠BDC =∠EAC ,∵∠AEC =∠ADC ,∴∠EAC =∠AEC ,∴»»AC CE =;(2)解:如下图,连接OC ,∵AO =OD ,AC =CB ,∴OC ∥BD ,∴EDF COF ∆∆∽, ∴32ED OC DF OF ==, 设FO =2a ,OC =3a ,则DF =a ,DE =1.5a ,AD =DB =6a ,∵∠BAD =∠BEC ,∠B =∠B ,∴BAD BEC ∆∆∽,∴BD•BE =BC•BA ,设AC =BC =x ,则有2267.5x a a ⨯=,∴3102x a =, ∴3102AC a =, ∴2236CD AD AC a =-=, ∴36152tan tan 5310a DC EDC DAC AC ∠=∠===.【点睛】本题属于圆的综合题,涉及到三角形的相似,解直角三角形等相关考点,熟练掌握三角形相似的判定及解直角三角形等相关内容是解决本题的关键.20.x1=-12,x2=1【解析】试题分析:分解因式得出(2x+1)(2x+1﹣3)=0,推出方程2x+1=0,2x+1﹣3=0,求出方程的解即可.试题解析:解:整理得:(2x+1)2-3(2x+1)=0,分解因式得:(2x+1)(2x+1﹣3)=0,即2x+1=0,2x+1﹣3=0,解得:x1=﹣12,x2=1.点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大.21.(1)证明见解析;(2)BP=1.【解析】分析:(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;(2)证明△AOP∽△ABD,然后利用相似比求BP的长.详(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC为切线,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴AP AOAD AB=,即1241BP+=,∴BP=1.点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和相似三角形的判定与性质.22.(4)A高中观点.4.446;(4)456人;(4).【解析】试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460°乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;(4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;(4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解.试题解析:(4)该班学生选择A高中观点的人数最多,共有60%×50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%×460°=446°;(4)∵800×44%=456(人),∴估计该校初三学生选择“中技”观点的人数约是456人;(4)该班选择“就业”观点的人数=50×(4-60%-44%)=50×8%=4(人),则该班有4位女同学和4位男生选择“就业”观点,列表如下:共有44种等可能的结果数,其中出现4女的情况共有4种.所以恰好选到4位女同学的概率=.考点:4.列表法与树状图法;4.用样本估计总体;4.扇形统计图.23. (1)y =-2x +200(4080)x ≤≤ (2)W =-2x 2+280x -8 000(3)售价为70元时,获得最大利润,这时最大利润为1 800元.【解析】【分析】(1)用待定系数法求一次函数的表达式;(2)利用利润的定义,求与之间的函数表达式;(3)利用二次函数的性质求极值.【详解】解:(1)设y kx b =+,由题意,得501006080k b k b +=⎧⎨+=⎩,解得2200k b =-⎧⎨=⎩,∴所求函数表达式为2200y x =-+. (2)2(40)(2200)22808000W x x x x =--+=-+-.(3)22228080002(70)1800W x x x =-+-=--+,其中4080x ≤≤,∵20-<, ∴当时,随的增大而增大,当7080x <≤时,随的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.考点: 二次函数的实际应用.24.绳索长为20尺,竿长为15尺.【解析】【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.【详解】设绳索长、竿长分别为x 尺,y 尺, 依题意得:552x y x y =+⎧⎪⎨=-⎪⎩ 解得:20x =,15y =.答:绳索长为20尺,竿长为15尺.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 25.(1)100;(2)见解析;(3)108°;(4)1250.【解析】试题分析:(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;(3)根据甲班级所占的百分比,再乘以360°,即可得出答案;(4)根据样本估计总体,可得答案.试题解析:(1)这四个班参与大赛的学生数是:30÷30%=100(人);故答案为100;(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,则丙班得人数是:100×15%=15(人);如图:(3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:2000×=1250(人).答:全校的学生中参与这次活动的大约有1250人.考点:条形统计图;扇形统计图;样本估计总体.26.(1)见解析;(2) 60°.【解析】【分析】(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明;(2)连结BF,交AE于G.根据菱形的性质得出AB=2,AG=AE=,∠BAF=2∠BAE,AE⊥BF.然后解直角△ABG,求出∠BAG=30°,那么∠BAF=2∠BAE=60°.【详解】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴四边形ABEF是菱形;(2)连结BF,交AE于G.∵AB=AF=2,∴GA=AE=×2=,在Rt△AGB中,cos∠BAE==,∴∠BAG=30°,∴∠BAF=2∠BAG=60°,【点睛】本题考查了平行四边形的性质与菱形的判定与性质,解题的关键是熟练的掌握平行四边形的性质与菱形的判定与性质.27.(1)A类图书的标价为27元,B类图书的标价为18元;(2)当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本,利润最大;当A类图书每本降价大于等于3元,小于5元时,A 类图书购进600本,B类图书购进400本,利润最大.【解析】【分析】(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.(2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.【详解】解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得540540101.5x x-=,化简得:540-10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A类图书的标价为:1.5x=1.5×18=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27-a)元(0<a<5),由题意得,() 1812100016800600t tt+-≤⎧≥⎨⎩,解得:600≤t≤800,则总利润w=(27-a-18)t+(18-12)(1000-t)=(9-a)t+6(1000-t)=6000+(3-a)t,故当0<a<3时,3-a>0,t=800时,总利润最大,且大于6000元;当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;当3<a<5时,3-a<0,t=600时,总利润最大,且小于6000元;答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A 类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.【点睛】本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.。
2019年济宁市九年级数学下期中一模试题(及答案)

2019年济宁市九年级数学下期中一模试题(及答案)一、选择题1.如图,八个完全相同的小长方形拼成一个正方形网格,连结小长方形的顶点所得的四个三角形中是相似三角形的是()A.①和②B.②和③C.①和③D.①和④2.如果反比例函数y=kx(k≠0)的图象经过点(﹣3,2),则它一定还经过()A.(﹣12,8)B.(﹣3,﹣2)C.(12,12)D.(1,﹣6)3.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果12C EAFC CDFVV,那么S EAFS EBCVV的值是()A.12B.13C.14D.194.下列判断中,不正确的有()A.三边对应成比例的两个三角形相似B.两边对应成比例,且有一个角相等的两个三角形相似C.斜边与一条直角边对应成比例的两个直角三角形相似D.有一个角是100°的两个等腰三角形相似5.如图,已知DE∥BC,CD和BE相交于点O,S△DOE:S△COB=4:9,则AE:EC为()A.2:1 B.2:3 C.4:9 D.5:46.如图,在正方形ABCD中,N为边AD上一点,连接BN.过点A作AP⊥BN于点P,连接CP ,M 为边AB 上一点,连接PM ,∠PMA =∠PCB ,连接CM ,有以下结论:①△PAM ∽△PBC ;②PM ⊥PC ;③M 、P 、C 、B 四点共圆;④AN =AM .其中正确的个数为( )A .4B .3C .2D .17.河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比1:3,则AC 的长是( )A .10米B .53米C .15米D .103米8.如图,在矩形ABCD 中,DE AC ⊥于E ,设ADE α∠=,且3cos 5α=,5AB =,则AD 的长为( )A .3B .163C .203D .1659.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上,已知DE=0.5m ,EF=0.25m ,目测点D 到地面的距离DG=1.5m ,到旗杆的水平距离DC=20m ,则旗杆的高度为( )A .5B .(105 1.5) mC .11.5mD .10m10.如图,阳光从教室的窗户射入室内,窗户框AB 在地面上的影子长DE =1.8m ,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m11.如图所示,在△ABC 中,AB=6,AC=4,P 是AC 的中点,过 P 点的直线交AB 于点Q,若以 A、P、Q 为顶点的三角形和以A、B、C为顶点的三角形相似,则AQ 的长为 ( )A.3B.3或43C.3或34D.4312.给出下列函数:①y=﹣3x+2;②y=3x;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③二、填空题13.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是_____.14.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要________个小立方体.15.如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tan∠ABO的值为_____.16.如图,在平行四边形ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为_____.17.如果a c e b d f===k (b+d +f≠0),且a+c+e=3(b+d+f ),那么k=_____. 18.如图,圆柱形容器高为18cm ,底面周长为24cm ,在杯内壁离杯底4cm 的点B 处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外币A 处到达内壁B 处的最短距离为_______.19.如图,当太阳光与地面成角时,直立于地面的玲玲测得自己的影长为1.25m ,则玲玲的身高约为________m .(精确到0. 01m )(参考数据:sin55°≈0.8192,cos55°≈0.5736,tan55°≈1.428).20.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数()y x 0xk =<的图象经过点C ,则k 的值为 .三、解答题21.如图,在矩形ABCD 中,E 为AD 边上的一点,过C 点作CF ⊥CE 交AB 的延长线于点F.(1)求证:△CDE ∽△CBF ;(2)若B 为AF 的中点,CB=3,DE=1,求CD 的长.22.如图,已知反比例函数y =k x 的图象经过点A (4,m ),AB ⊥x 轴,且△AOB 的面积为2. (1)求k 和m 的值;(2)若点C (x ,y )也在反比例函数y =k x的图象上,当-3≤x ≤-1时,求函数值y 的取值范围.23.已知如图,AD BE CF P P ,它们依次交直线a ,b 于点A 、B 、C 和点D 、E 、F.(1)如果6AB =,8BC =,21DF =,求DE 的长.(2)如果:2:5DE DF =,9AD =,14CF =,求BE 的长.24.如图,在△ABC 中,∠A=30°,cosB=45,AC=63.求AB 的长.25.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如图所示.请根据相关测量信息,求河宽AB .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】设小长方形的长为2a ,宽为a .利用勾股定理求出三角形的三边长即可判断.【详解】由题意可知:小长方形的长是宽的2倍,设小长方形的宽为a ,则长为2a ,∴图①中的三角形三边长分别为2a 2222(2)(2)22(2)(4)25a a a a a a +=+=; 图②中的三角形三边长分别为2222(2)(3)13(3)(4)5a a a a a a +=+=; 图③中的三角形三边长分别为2222(2)(4)25(4)(4)42a a a a a a +=+=; 2222(2)()5()(3)10a a a a a a +=+=、22(3)(4)5a a a +=,∴①和②图中三角形不相似; ∵21322542a a a a a≠≠ ∴②和③图中三角形不相似; ∵2222522542a a a a a a≠≠ ∴①和③图中三角形不相似; 22252555510a a a a a === ∴①和④图中三角形相似.故选D【点睛】本题考查相似三角形的判定,勾股定理等知识,解题的关键是熟练掌握熟练掌握基本知识.2.D解析:D【解析】【分析】分别计算各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.【详解】∵反比例函数y=kx(k≠0)的图象经过点(−3,2),∴k=−3×2=−6,∵−12×8=−4≠−6,−3×(−2)=6≠−6,12×12=6≠−6,1×(−6)=−6,则它一定还经过(1,−6).故答案选D.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是熟练的掌握反比例函数图象上点的坐标特征.3.D解析:D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵12EAFCDFCCVV,=∴12 AFDF=,∴11123 AFBC==+,∵AF∥BC,∴△EAF∽△EBC,∴21139EAF EBC S S ⎛⎫== ⎪⎝⎭V V , 故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方. 4.B解析:B【解析】【分析】由相似三角形的判定依次判断可求解.【详解】解:A 、三边对应成比例的两个三角形相似,故A 选项不合题意;B 、两边对应成比例,且夹角相等的两个三角形相似,故B 选项符合题意;C 、斜边与一条直角边对应成比例的两个直角三角形相似,故C 选项不合题意;D 、有一个角是100°的两个等腰三角形,则他们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D 选项不合题意; 故选B .【点睛】本题考查了相似三角形的判定,熟练运用相似三角形的判定是本题的关键.5.A解析:A【解析】试题解析:∵ED ∥BC ,.DOE COB AED ACB ∴V V V V ∽,∽:4:9DOE BOC DOE COB S S V V Q V V ∽,,=:2:3.ED BC ∴=AED ACB QV V ∽,::.ED BC AE AC ∴=:2:3,?::ED BC ED BC AE AC Q ,==:2:3AE AC ∴=,:2:1.AE EC ∴=故选A.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.6.A解析:A【解析】【分析】根据互余角性质得∠PAM =∠PBC ,进而得△PAM ∽△PBC ,可以判断①;由相似三角形得∠APM =∠BPC ,进而得∠CPM =∠APB ,从而判断②;根据对角互补,进而判断③;由△APB∽△NAB得AP ANBP AB=,再结合△PAM∽△PBC便可判断④.【详解】解:∵AP⊥BN,∴∠PAM+∠PBA=90°,∵∠PBA+∠PBC=90°,∴∠PAM=∠PBC,∵∠PMA=∠PCB,∴△PAM∽△PBC,故①正确;∵△PAM∽△PBC,∴∠APM=∠BPC,∴∠CPM=∠APB=90°,即PM⊥PC,故②正确;∵∠MPC+∠MBC=90°+90°=180°,∴B、C、P、M四点共圆,∴∠MPB=∠MCB,故③正确;∵AP⊥BN,∴∠APN=∠APB=90°,∴∠PAN+∠ANB=90°,∵∠ANB+∠ABN=90°,∴∠PAN=∠ABN,∵∠APN=∠BPA=90°,∴△PAN∽△PBA,∴AN PA BA PB=,∵△PAM∽△PBC,∴Al AP BC BP=,∴AN AM AB BC=,∵AB=BC,∴AM=AN,故④正确;故选:A.【点睛】本题考查了相似三角形的判定和性质,正方形的性质、四点共圆,同角的余角相等,判断出PM ⊥PC 是解题的关键.7.B解析:B【解析】【分析】Rt △ABC 中,已知了坡比是坡面的铅直高度BC 与水平宽度AC 之比,通过解直角三角形即可求出水平宽度AC 的长.【详解】Rt △ABC 中,BC=5米,tanA=13;∴AC=BC÷3 故选:B .【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.8.C解析:C【解析】【分析】根据矩形的性质可知:求AD 的长就是求BC 的长,易得∠BAC =∠ADE ,于是可利用三角函数的知识先求出AC ,然后在直角△ABC 中根据勾股定理即可求出BC ,进而可得答案.【详解】解:∵四边形ABCD 是矩形,∴∠B =∠BAC =90°,BC=AD ,∴∠BAC +∠DAE =90°, ∵DE AC ⊥,∴∠ADE +∠DAE =90°,∴∠BAC =ADE α∠=,在直角△ABC 中,∵3cos 5α=,5AB =,∴25cos 3AB AC α==, ∴AD=BC 22222520533AC AB ⎛⎫-=-= ⎪⎝⎭. 故选:C.【点睛】本题考查了矩形的性质、勾股定理和解直角三角形的知识,属于常考题型,熟练掌握矩形的性质和解直角三角形的知识是解题关键.9.C解析:C【解析】【分析】确定出△DEF 和△DAC 相似,根据相似三角形对应边成比例求出AC ,再根据旗杆的高度=AC+BC 计算即可得解.【详解】解:∵∠FDE=∠ADC ,∠DEF=∠DCA=90°,∴△DEF ∽△DAC , ∴CDE CD EF A = , 即:0.50.2520AC = , 解得AC=10,∵DF 与地面保持平行,目测点D 到地面的距离DG=1.5米,∴BC=DG=1.5米,∴旗杆的高度=AC+BC=10+1.5=11.5米.故选:C .【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例,准确确定出相似三角形是解题的关键.10.A解析:A【解析】∵BE ∥AD ,∴△BCE ∽△ACD , ∴CB CE AC CD =,即 CB CE AB BC DE EC=++, ∵BC=1,DE=1.8,EC=1.2 ∴1 1.21 1.8 1.2AB =++ ∴1.2AB=1.8,∴AB=1.5m .故选A . 11.B解析:B【解析】AP AQ AB AC =,264AQ =,AQ=43,AP AQ AC AB =,246AQ =,AQ =3.故选B.点睛:相似常见图形(1)称为“平行线型”的相似三角形(如图,有“A 型”与“X 型”图)(2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形,有“反A 共角型”、“反A 共角共边型”、 “蝶型”,如下图:12.B解析:B【解析】分析:分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案. 详解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项错误;②y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项错误;③y=2x2,当x>1时,函数值y随自变量x增大而减小,故此选项正确;④y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项正确.故选B.点睛:本题主要考查了一次函数、正比例函数、反比例函数、二次函数的性质,正确把握相关性质是解题的关键.二、填空题13.12【解析】【分析】根据位似是相似的特殊形式位似比等于相似比其对应的面积比等于相似比的平方进行解答即可【详解】解:∵△ABC与△A′B′C′是位似图形位似比是1:2∴△ABC∽△A′B′C′相似比是解析:12【解析】【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【详解】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是12,故答案为12.【点睛】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.14.8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个由主视图可知第二层最少有2个第三层最少有1个所以组成这个几何体的小正方体的个数最少为5+2+1=8个点睛:本题主要考查学生由三视图判断几何解析:8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个,由主视图可知第二层最少有2个,第三层最少有1个,所以组成这个几何体的小正方体的个数最少为5+2+1=8个.点睛:本题主要考查学生由三视图判断几何体,同时也体现了对空间想象能力方面的考查.做题要掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”.15.2+3【解析】【分析】连接OA过点A作AC⊥OB于点C由题意知AC=1OA=OB=2从而得出OC=OA2-AC2=3BC=OB﹣OC=2﹣3在Rt△ABC中根据tan∠ABO=ACBC可得答案【详解解析:2+.【解析】【分析】连接OA,过点A作AC⊥OB于点C,由题意知AC=1、OA=OB=2,从而得出OC==、BC=OB﹣OC=2﹣,在Rt△ABC中,根据tan∠ABO=可得答案.【详解】如图,连接OA,过点A作AC⊥OB于点C,则AC=1,OA=OB=2,∵在Rt△AOC中,OC==,∴BC=OB﹣OC=2﹣,∴在Rt△ABC中,tan∠ABO==2+.故答案是:2+.【点睛】本题考查了解直角三角形,根据题意构建一个以∠ABO为内角的直角三角形是解题的关键.16.2【解析】【分析】首先证明CF=BC=12利用相似三角形的性质求出BF再利用勾股定理即可解决问题【详解】解:∵四边形ABCD是平行四边形∴AB=CD=12AE∥BCAB∥CD∴∠CFB=∠FBA∵B解析:15【解析】【分析】首先证明CF=BC=12,利用相似三角形的性质求出BF,再利用勾股定理即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD=12,AE∥BC,AB∥CD,∴∠CFB=∠FBA,∵BE平分∠ABC,∴∠ABF=∠CBF,∴∠CFB=∠CBF,∴CB=CF=8,∴DF=12﹣8=4,∵DE∥CB,∴△DEF∽△CBF,∴EF BF =DF CF , ∴2BF =48, ∴BF =4,∵CF =CB ,CG ⊥BF ,∴BG =FG =2,在Rt △BCG 中,CG =22BC BG -=2282- =215,故答案为:215.【点睛】本题考查平行四边形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.17.3【解析】∵=k∴a=bkc=dke=fk∴a+c+e=bk+dk+fk=k(a+b+c)∵a+c+e=3(b+d+f)∴k=3故答案为:3解析:3【解析】∵a c e b d f===k ,∴a=bk,c=dk ,e=fk ,∴a+c+e=bk+dk+fk=k(a+b+c), ∵a+c+e=3(b+d+f),∴k=3,故答案为:3.18.cm 【解析】【分析】将杯子侧面展开建立A 关于EF 的对称点A′根据两点之间线段最短可知A′B 的长度即为所求【详解】解:如答图将杯子侧面展开作A 关于EF 的对称点A′连接A′B 则A′B 即为最短距离根据勾股解析:cm .【解析】【分析】将杯子侧面展开,建立A 关于EF 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A 关于EF 的对称点A′,连接A′B ,则A′B 即为最短距离.根据勾股定理,得(cm ).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.19.79【解析】【分析】身高影长和光线构成直角三角形根据tan55°=身高:影长即可解答【详解】解:玲玲的身高=影长×tan55°=125×1428≈179(m )故答案为179【点睛】本题考查了解直角三解析:79【解析】【分析】身高、影长和光线构成直角三角形,根据tan55°=身高:影长即可解答. 【详解】解:玲玲的身高=影长×tan55°=1.25×1.428≈1.79(m ).故答案为1.79.【点睛】本题考查了解直角三角形的应用、正切的概念、计算器的使用.20.-6【解析】【分析】分析:∵菱形的两条对角线的长分别是6和4∴A (﹣32)∵点A 在反比例函数的图象上∴解得k=-6【详解】请在此输入详解!解析:-6【解析】【分析】分析:∵菱形的两条对角线的长分别是6和4,∴A (﹣3,2).∵点A 在反比例函数()y x 0xk =<的图象上, ∴23k =-,解得k=-6. 【详解】请在此输入详解! 三、解答题21.(1)证明见解析;(2)CD=3【解析】【分析】(1)如图,通过证明∠D=∠1,∠2=∠4即可得;(2)由△CDE∽△CBF,可得CD:CB=DE:BF,根据B为AF中点,可得CD=BF,再根据CB=3,DE=1即可求得.【详解】(1)∵四边形ABCD是矩形,∴∠D=∠1=∠2+∠3=90°,∵CF⊥CE,∴∠4+∠3=90°,∴∠2=∠4,∴△CDE∽△CBF;(2)∵四边形ABCD是矩形,∴CD=AB,∵B为AF的中点,∴BF=AB,∴设CD=BF=x,∵△CDE∽△CBF,∴CD DE CB BF=,∴13xx =,∵x>0,∴3即:3【点睛】本题考查了相似三角形的判定与性质:有两组角对应相等的两个三角形相似;两个三角形相似对应角相等,对应边的比相等.也考查了矩形的性质22.(1) k=4, m=1;(2)当-3≤x≤-1时,y的取值范围为-4≤y≤-4 3 .【解析】【分析】【详解】试题分析:(1)根据反比例函数系数k 的几何意义先得到k 的值,然后把点A 的坐标代入反比例函数解析式,可求出k 的值;(2)先分别求出x=﹣3和﹣1时y 的值,再根据反比例函数的性质求解.试题解析:(1)∵△AOB 的面积为2,∴k=4,∴反比例函数解析式为4y x =,∵A (4,m ),∴m=44=1; (2)∵当x=﹣3时,y=﹣43; 当x=﹣1时,y=﹣4,又∵反比例函数4y x =在x <0时,y 随x 的增大而减小,∴当﹣3≤x≤﹣1时,y 的取值范围为﹣4≤y≤﹣43. 考点:反比例函数系数k 的几何意义;反比例函数图象上点的坐标特征.23.(1)DE 的长为9;(2)BE 的长为11;【解析】【分析】(1)由果6AB =,8BC =,可得AC=14,然后根据平行线等分线段定理得到6=14DE AB DF AC =,然后将已知条件代入即可求解; (2)过D 作DH∥AC,分别交BE,CF 于H ,说明四边形ABGD 和四边形BCHG 是平行四边形,然后根据平行四边形的性质得CH=BG=AD=9;进一步说明FH=CF-DH=5,然后再按照平行线等分线段定理得到:2:5DE DF =,最后代入已知条件求解即可.【详解】(1)∵6AB =,8BC =,∴AC=AB+BC=14∵AD BE CF P P ∴6=14DE AB DF AC = ∴662191414DE DF ==⨯= (2)过D 作DH∥AC,分别交BE,CF 于H.∵AD BE CF P P∴四边形ABGD 和四边形BCHG 是平行四边形,∴CH=BG=AD=9∴FH=CF -DH=5∵:2:5DE DF =∴:2:5GE HF = ∴225255GE HF ==⨯= ∴BE=BG+GE=9+2=11.【点睛】 本题主要考查平行线分线段成比例的知识,关键是掌握三条平行线截两条直线,所得的对应线段成比例.24.259x -=【解析】试题分析:过点C 作CD ⊥AB 于点D ,在Rt △ACD 中先由已知条件求得AD 和CD ,再在Rt △BCD 中求得BD 即可求出AB.试题解析:过点C 作CD ⊥AB 于点D ,∴∠ADC=∠BDC=90°,∴AD=cosA ⋅339=,CD=sinA ⋅AC=163332⨯= ∵cosB=45=BD BC, ∴可设BD=4m ,BC=5m ,则在Rt △BCD 中由勾股定理可得CD=3m=33∴3∴BD=4m=43∴AB=AD+BD=9+4325.河宽为17米.【解析】【分析】由题意先证明∆ABC∽∆ADE,再根据相似三角形的对应边成比例即可求得AB的长.【详解】∵CB⊥AD,ED⊥AD,∴∠CBA=∠EDA=90°,∵∠CAB=∠EAD,∴∆ABC∽∆ADE,∴AD DE AB BC=,又∵AD=AB+BD,BD=8.5,BC=1,DE=1.5,∴8.5 1.51 ABAB+=,∴AB=17,即河宽为17米.【点睛】本题考查了相似三角形的应用,熟记相似三角形的判定与性质是解题的关键.。
2019年山东省济宁市中考数学试卷以及解析版

2019年山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求1.(3分)下列四个实数中,最小的是( )A .B .5-C .1D .42.(3分)如图,直线a ,b 被直线c ,d 所截,若12∠=∠,3125∠=︒,则4∠的度数是()A .65︒B .60︒C .55︒D .75︒3.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .4.(3分)以下调查中,适宜全面调查的是( ) A .调查某批次汽车的抗撞击能力B .调查某班学生的身高情况C .调查春节联欢晚会的收视率D .调查济宁市居民日平均用水量 5.(3分)下列计算正确的是( )A 3=-B =C 6=±D .0.6-6.(3分)世界文化遗产“三孔”景区已经完成5G 基站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是( ) A .5005004510x x-= B .5005004510x x-=C .500050045x x-= D .500500045x x-= 7.(3分)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是( )A .B .C .D .8.(3分)将抛物线265y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( ) A .2(4)6y x =--B .2(1)3y x =--C .2(2)2y x =--D .2(4)2y x =--9.(3分)如图,点A 的坐标是(2,0)-,点B 的坐标是(0,6),C 为OB 的中点,将ABC ∆绕点B 逆时针旋转90︒后得到△A B C '''.若反比例函数ky x=的图象恰好经过A B '的中点D ,则k 的值是( )A .9B .12C .15D .1810.(3分)已知有理数1a ≠,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数⋯⋯依此类推,那么12100a a a ++⋯+的值是( ) A .7.5-B .7.5C .5.5D . 5.5-二、填空题:本大题共5小题,每小题3分,共15分。
【附5套中考模拟试卷】山东省济宁市2019-2020学年中考数学一模试卷含解析

山东省济宁市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,CE,BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为()A.6 B.5 C.4 D.32.长度单位1纳米米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是()A.米B.米C.米D.米3.设0<k<2,关于x的一次函数y=(k-2)x+2,当1≤x≤2时,y的最小值是()A.2k-2 B.k-1 C.k D.k+14.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短D.经过两点,有且仅有一条直线5.一个容量为50的样本,在整理频率分布时,将所有频率相加,其和是( )A.50 B.0.02 C.0.1 D.16.小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>b.根据需要小明列出以下三种混合方案:(单位:千克)甲种糖果乙种糖果混合糖果方案1 2 3 5方案2 3 2 5方案3 2.5 2.5 5则最省钱的方案为( )A .方案1B .方案2C .方案3D .三个方案费用相同7.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )A .方差B .中位数C .众数D .平均数8.下列计算正确的是( )A .(a+2)(a ﹣2)=a 2﹣2B .(a+1)(a ﹣2)=a 2+a ﹣2C .(a+b )2=a 2+b 2D .(a ﹣b )2=a 2﹣2ab+b 2 9.若a+|a|=0,则()222a a -+等于( ) A .2﹣2a B .2a ﹣2C .﹣2D .2 10.若55+55+55+55+55=25n ,则n 的值为( )A .10B .6C .5D .311.某车间20名工人日加工零件数如表所示:日加工零件数45 6 7 8人数 2 6 5 4 3 这些工人日加工零件数的众数、中位数、平均数分别是( )A .5、6、5B .5、5、6C .6、5、6D .5、6、612.如图,AB 是⊙O 的直径,弦CD ⊥AB 于E ,∠CDB=30°,⊙O 的半径为3,则弦CD 的长为( )A .32cmB .3cmC .23cmD .9cm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在Rt △ABC 中,∠C =90°,AB =6,cosB =23,则BC 的长为_____. 14.若一个反比例函数的图象经过点A(m ,m)和B(2m ,-1),则这个反比例函数的表达式为______ 15.关于x 的一元二次方程x 2+bx+c =0的两根为x 1=1,x 2=2,则x 2+bx+c 分解因式的结果为_____. 16.如图,长方形纸片ABCD 中,AB=4,BC=6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则△AFC 的面积等于___.17.如图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要___枚棋子.18.一个正n边形的中心角等于18°,那么n=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)“垃圾不落地,城市更美丽”.某中学为了了解七年级学生对这一倡议的落实情况,学校安排政教处在七年级学生中随机抽取了部分学生,并针对学生“是否随手丢垃圾”这一情况进行了问卷调查,统计结果为:A为从不随手丢垃圾;B为偶尔随手丢垃圾;C为经常随手丢垃圾三项.要求每位被调查的学生必须从以上三项中选一项且只能选一项.现将调查结果绘制成以下来不辜负不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生“是否随手丢垃圾”情况的众数是;(3)若该校七年级共有1500名学生,请你估计该年级学生中“经常随手丢垃圾”的学生约有多少人?谈谈你的看法?20.(6分)已知:如图1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点P由点B出发沿BA方向向点A匀速运动,速度为2cm/s;同时点Q由点A出发沿AC方向点C匀速运动,速度为lcm/s;连接PQ,设运动的时间为t秒(0<t<5),解答下列问题:(1)当为t何值时,PQ∥BC;(2)设△AQP的面积为y(c m2),求y关于t的函数关系式,并求出y的最大值;(3)如图2,连接PC,并把△PQC沿QC翻折,得到四边形PQPC,是否存在某时刻t,使四边形PQP'C 为菱形?若存在,求出此时t的值;若不存在,请说明理由.21.(6分)先化简,再求值:2222+244a b a b a b a ab b--÷++﹣1,其中a=2sin60°﹣tan45°,b=1. 22.(8分)校园空地上有一面墙,长度为20m ,用长为32m 的篱笆和这面墙围成一个矩形花圃,如图所示.能围成面积是126m 2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.若篱笆再增加4m ,围成的矩形花圃面积能达到170m 2吗?请说明理由.23.(8分)先化简:(1111x x --+)÷221x x +-,再从﹣2,﹣1,0,1这四个数中选择一个合适的数代入求值. 24.(10分)如图,AB 是半圆O 的直径,点P 是半圆上不与点A ,B 重合的动点,PC ∥AB ,点M 是OP 中点.(1)求证:四边形OBCP 是平行四边形;(2)填空:①当∠BOP = 时,四边形AOCP 是菱形;②连接BP ,当∠ABP = 时,PC 是⊙O 的切线.25.(10分)如图,一棵大树在一次强台风中折断倒下,未折断树杆AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树杆AB 形成53︒的夹角.树杆AB 旁有一座与地面垂直的铁塔DE ,测得6BE =米,塔高9DE =米.在某一时刻的太阳照射下,未折断树杆AB 落在地面的影子FB 长为4米,且点F 、B 、C 、E 在同一条直线上,点F 、A 、D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1,参考数据:sin530.7986︒≈,cos530.6018︒≈,tan53 1.3270︒≈).26.(12分)观察下列各个等式的规律:第一个等式:222112--=1,第二个等式:223212--=2,第三个等式:224312--=3…请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.27.(12分)如图,一次函数y=kx+b的图象与反比例函数y= mx(x>0)的图象交于A(2,﹣1),B(12,n)两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】连接EG、FG,根据斜边中线长为斜边一半的性质即可求得EG=FG=12BC,因为D是EF中点,根据等腰三角形三线合一的性质可得GD⊥EF,再根据勾股定理即可得出答案.【详解】解:连接EG、FG,EG、FG分别为直角△BCE、直角△BCF的斜边中线,∵直角三角形斜边中线长等于斜边长的一半∴EG=FG=12BC=12×10=5,∵D为EF中点∴GD⊥EF,即∠EDG=90°,又∵D是EF的中点,∴116322DE EF==⨯=,在Rt EDG∆中,2222534DG EG ED=--=,故选C.【点睛】本题考查了直角三角形中斜边上中线等于斜边的一半的性质、勾股定理以及等腰三角形三线合一的性质,本题中根据等腰三角形三线合一的性质求得GD⊥EF是解题的关键.2.D【解析】先将25 100用科学记数法表示为2.51×104,再和10-9相乘,等于2.51×10-5米.故选D3.A【解析】【分析】先根据0<k<1判断出k-1的符号,进而判断出函数的增减性,根据1≤x≤1即可得出结论.【详解】∵0<k<1,∴k-1<0,∴此函数是减函数,∵1≤x≤1,∴当x=1时,y最小=1(k-1)+1=1k-1.故选A.本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.4.C【解析】【详解】Q用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.5.D【解析】所有小组频数之和等于数据总数,所有频率相加等于1.6.A【解析】【分析】求出三种方案混合糖果的单价,比较后即可得出结论.【详解】方案1混合糖果的单价为235a b+,方案2混合糖果的单价为225a b+,方案3混合糖果的单价为2.5 2.552a b a b++=.∵a>b,∴2232525a b a b a b+++<<,∴方案1最省钱.故选:A.【点睛】本题考查了加权平均数,求出各方案混合糖果的单价是解题的关键. 7.A试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差8.D【解析】A、原式=a2﹣4,不符合题意;B、原式=a2﹣a﹣2,不符合题意;C、原式=a2+b2+2ab,不符合题意;D、原式=a2﹣2ab+b2,符合题意,故选D9.A【解析】【分析】直接利用二次根式的性质化简得出答案.【详解】∵a+|a|=0,∴|a|=-a,则a≤0,故原式=2-a-a=2-2a.故选A.【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.10.D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=1.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.11.D【解析】【分析】【详解】5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(6+6)÷2=6;平均数是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案选D.12.B【解析】【详解】解:∵∠CDB=30°,∴∠COB=60°,又∵CD⊥AB于点E,∴sin60︒==,解得CE=32cm,CD=3cm.故选B.考点:1.垂径定理;2.圆周角定理;3.特殊角的三角函数值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4【解析】【分析】根据锐角的余弦值等于邻边比对边列式求解即可.【详解】∵∠C=90°,AB=6,∴2cos3BCBAB==,∴BC=23AB=4.【点睛】本题考查了勾股定理和锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.在Rt△ABC中,sinAA∠=的对边斜边,cosAA∠=的邻边斜边,tanAAA∠=∠的对边的邻边.14.4 yx =【解析】【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.【详解】设反比例函数解析式为y=kx,由题意得:m2=2m×(-1),解得:m=-2或m=0(不符题意,舍去),所以点A(-2,-2),点B(-4,1),所以k=4,所以反比例函数解析式为:y=4x,故答案为y=4 x .【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.15.(x﹣1)(x﹣2)【解析】【分析】根据方程的两根,可以将方程化为:a(x﹣x1)(x﹣x2)=0(a≠0)的形式,对比原方程即可得到所求代数式的因式分解的结果.【详解】解:已知方程的两根为:x1=1,x2=2,可得:(x﹣1)(x﹣2)=0,∴x2+bx+c=(x﹣1)(x﹣2),故答案为:(x﹣1)(x﹣2).【点睛】一元二次方程ax2+bx+c=0(a≠0,a、b、c是常数),若方程的两根是x1和x2,则ax2+bx+c=a(x﹣x1)(x﹣x2)16.26 3【解析】由矩形的性质可得AB=CD=4,BC=AD=6,AD//BC ,由平行线的性质和折叠的性质可得∠DAC=∠ACE ,可得AF=CF ,由勾股定理可求AF 的长,即可求△AFC 的面积.【详解】解:Q 四边形ABCD 是矩形AB CD 4∴==,BC AD 6==,AD//BCDAC ACB ∠∠∴=,Q 折叠ACB ACE ∠∠∴=,DAC ACE ∠∠∴=AF CF ∴=在Rt CDF V 中,222CF CD DF =+,22AF 16(6AF)∴=+-,13AF 3∴= AFC 111326S AF CD 42233∴=⨯⨯=⨯⨯=V . 故答案为:263. 【点睛】本题考查了翻折变换,矩形的性质,勾股定理,利用勾股定理求AF 的长是本题的关键.17.1.【解析】【分析】根据题意分析可得:第1个图案中棋子的个数5个,第2个图案中棋子的个数5+6=11个,…,每个图形都比前一个图形多用6个,继而可求出第30个“小屋子”需要的棋子数.【详解】根据题意分析可得:第1个图案中棋子的个数5个.第2个图案中棋子的个数5+6=11个.….每个图形都比前一个图形多用6个.∴第30个图案中棋子的个数为5+29×6=1个.故答案为1.【点睛】考核知识点:图形的规律.分析出一般数量关系是关键.【解析】【分析】由正n边形的中心角为18°,可得方程18n=360,解方程即可求得答案.【详解】∵正n边形的中心角为18°,∴18n=360,∴n=20.故答案为20.【点睛】本题考查的知识点是正多边形和圆,解题的关键是熟练的掌握正多边形和圆.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)补全图形见解析;(2)B;(3)估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督.【解析】【分析】(1)根据被调查的总人数求出C情况的人数与B情况人数所占比例即可;(2)根据众数的定义求解即可;(3)该年级学生中“经常随手丢垃圾”的学生=总人数×C情况的比值.【详解】(1)∵被调查的总人数为60÷30%=200人,∴C情况的人数为200﹣(60+130)=10人,B情况人数所占比例为130200×100%=65%,补全图形如下:(2)由条形图知,B情况出现次数最多,所以众数为B,故答案为B.(3)1500×5%=75,答:估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督.【点睛】本题考查了众数与扇形统计图与条形统计图,解题的关键是熟练的掌握众数与扇形统计图与条形统计图的相关知识点.20.(1)当t=4013时,PQ∥BC;(2)﹣35(t﹣52)2+154,当t=52时,y有最大值为154;(3)存在,当t=4021时,四边形PQP′C为菱形【解析】【分析】(1)只要证明△APQ∽△ABC,可得=,构建方程即可解决问题;(2)过点P作PD⊥AC于D,则有△APD∽△ABC,理由相似三角形的性质构建二次函数即可解决问题;(3)存在.由△APO∽△ABC,可得=,即=,推出OA=(5﹣t),根据OC=CQ,构建方程即可解决问题;【详解】(1)在Rt△ABC中,AB===10,BP=2t,AQ=t,则AP=10﹣2t,∵PQ∥BC,∴△APQ∽△ABC,∴=,即=,解得t=,∴当t=4013时,PQ∥BC.(2)过点P作PD⊥AC于D,则有△APD∽△ABC,∴=,即=,∴PD=6﹣t,∴y=t (6﹣t )=﹣35(t ﹣52)2+154, ∴当t=52时,y 有最大值为154. (3)存在.理由:连接PP′,交AC 于点O .∵四边形PQP′C 为菱形, ∴OC=CQ ,∵△APO ∽△ABC ,∴=,即=,∴OA=(5﹣t ),∴8﹣(5﹣t )=(8﹣t ),解得t=, ∴当t=4021时,四边形PQP′C 为菱形. 【点睛】本题考查四边形综合题、相似三角形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题.213【解析】【分析】对待求式的分子、分母进行因式分解,并将除法化为乘法可得2-+a b a b ×()()()22a b a b a b ++--1,通过约分即可得到化简结果;先利用特殊角的三角函数值求出a 的值,再将a 、b 的值代入化简结果中计算即可解答本题.【详解】原式=2-+a b a b ×()()()22a b a b a b ++--1 =2++a b a b -1 =2a b a b a b a b++-++ =b a b+,当a═2sin60°﹣tan45°=2×2﹣﹣1,b=1时,原式3=. 【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的化简求值运算法则.22.(1)长为18米、宽为7米或长为14米、宽为9米;(1)若篱笆再增加4m ,围成的矩形花圃面积不能达到172m 1.【解析】【分析】(1)假设能,设AB 的长度为x 米,则BC 的长度为(31﹣1x )米,再根据矩形面积公式列方程求解即可得到答案.(1)假设能,设AB 的长度为y 米,则BC 的长度为(36﹣1y )米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB 的长度为x 米,则BC 的长度为(31﹣1x )米,根据题意得:x(31﹣1x)=116,解得:x 1=7,x 1=9,∴31﹣1x=18或31﹣1x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(1)假设能,设AB 的长度为y 米,则BC 的长度为(36﹣1y )米,根据题意得:y(36﹣1y)=172,整理得:y 1﹣18y+85=2.∵△=(﹣18)1﹣4×1×85=﹣16<2,∴该方程无解,∴假设不成立,即若篱笆再增加4m ,围成的矩形花圃面积不能达到172m 1.23.22x +,1. 【解析】【分析】先算括号内的减法,同时把除法变成乘法,再根据分式的乘法进行计算,最后代入求出即可.【详解】原式=1111x x x x +--+-()()()()•112x x x +-+()() =211x x +-()()•112x x x +-+()() =22x +. ∵由题意,x 不能取1,﹣1,﹣2,∴x 取2.当x=2时,原式=22x +=202+=1. 【点睛】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解答此题的关键. 24. (1)见解析;(2)①120°;②45°【解析】【分析】(1)由AAS 证明△CPM ≌△AOM ,得出PC=OA ,得出PC=OB ,即可得出结论;(2)①证出OA=OP=PA ,得出△AOP 是等边三角形,∠A=∠AOP=60°,得出∠BOP=120°即可; ②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.【详解】(1)∵PC ∥AB ,∴∠PCM =∠OAM ,∠CPM =∠AOM .∵点M 是OP 的中点,∴OM =PM ,在△CPM 和△AOM 中, PCM OAM CPM AOM PM OM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CPM ≌△AOM (AAS ),∴PC =OA .∵AB 是半圆O 的直径,∴OA =OB ,∴PC =OB .又PC∥AB,∴四边形OBCP是平行四边形.(2)①∵四边形AOCP是菱形,∴OA=PA,∵OA=OP,∴OA=OP=PA,∴△AOP是等边三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案为120°;②∵PC是⊙O的切线,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案为45°.【点睛】本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.25.9.6米.【解析】试题分析:要求这棵大树没有折断前的高度,只要求出AB和AC的长度即可,根据题目中的条件可以求得AB和AC的长度,即可得到结论.试题解析:解:∵AB⊥EF,DE⊥EF,∴∠ABC=90°,AB∥DE,∴△FAB∽△FDE,∴AB FB DE FE=,∵FB=4米,BE=6米,DE=9米,∴4946AB=+,得AB=3.6米,∵∠ABC=90°,∠BAC=53°,cos∠BAC=ABAC,∴AC=cosABBAC∠=3.60.6=6米,∴AB+AC=3.6+6=9.6米,即这棵大树没有折断前的高度是9.6米.点睛:本题考查直角三角形的应用,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答.26.(1)225412--=4;(2)22(1)12n n +--=n . 【解析】【详解】试题分析:(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n 等式并加以证明.试题解析:解:(1)由题目中式子的变化规律可得,第四个等式是:225412--=4; (2)第n 个等式是:22(1)12n n +--=n .证明如下: ∵22(1)12n n +--=[(1)][(1)]12n n n n +++-- =2112n +- =n ∴第n 个等式是:22(1)12n n +--=n . 点睛:本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.27.(1)y=2x ﹣5,2y x =-;(2)214. 【解析】【分析】【详解】试题分析:(1)把A 坐标代入反比例解析式求出m 的值,确定出反比例解析式,再将B 坐标代入求出n的值,确定出B 坐标,将A 与B 坐标代入一次函数解析式求出k 与b 的值,即可确定出一次函数解析式;(2)用矩形面积减去周围三个小三角形的面积,即可求出三角形ABC 面积.试题解析:(1)把A (2,﹣1)代入反比例解析式得:﹣1=2m ,即m=﹣2,∴反比例解析式为2y x =-,把B (12,n )代入反比例解析式得:n=﹣4,即B (12,﹣4),把A 与B 坐标代入y=kx+b 中得:21{142k b k b +=-+=-,解得:k=2,b=﹣5,则一次函数解析式为y=2x ﹣5;(2)如图,S△ABC=1113121 266323222224⨯-⨯⨯-⨯⨯-⨯⨯=考点:反比例函数与一次函数的交点问题;一次函数及其应用;反比例函数及其应用.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-2的倒数是( )A .-2B .12-C .12D .22.在实数﹣3 ,0.21,2π ,18,0.001 ,0.20202中,无理数的个数为( ) A .1 B .2C .3D .4 3.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间4.如图,点P 是∠AOB 外的一点,点M ,N 分别是∠AOB 两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上,若PM =2.5cm ,PN =3cm ,MN =4cm ,则线段QR 的长为( )A .4.5cmB .5.5cmC .6.5cmD .7cm5.已知x ﹣2y=3,那么代数式3﹣2x+4y 的值是( )A .﹣3B .0C .6D .96.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC=62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°7.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,8.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.9.下列方程中,没有实数根的是( )A.2x2x30--=B.2x2x30-+=C.2x2x10-+=D.2x2x10--=10.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.11.如图,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使△ADC 与△BDA相似,可以添加一个条件.下列添加的条件中错误的是( )A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD12.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于点E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为()DC=3OG;(2)OG= 12BC;(3)△OGE是等边三角形;(4)16AOE ABCD S S∆=矩形.A.1 B.2 C.3 D.4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为______dm.14.如图,▱ABCD 中,M 、N 是BD 的三等分点,连接CM 并延长交AB 于点E ,连接EN 并延长交CD 于点F ,以下结论:①E 为AB 的中点;②FC=4DF ;③S △ECF =92EMN S V ; ④当CE ⊥BD 时,△DFN 是等腰三角形. 其中一定正确的是_____.15.已知点P (2,3)在一次函数y =2x -m 的图象上,则m =_______.16.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知折痕AE =5cm , 且tan ∠EFC=,那么矩形ABCD 的周长_____________cm .17.方程21x -=1的解是_____. 18.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 与CD 相交于点P ,则tan ∠APD 的值为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-. 20.(6分)解方程:3x 2﹣2x ﹣2=1.21.(6分)先化简,再求值:()2111x x ⎛⎫-÷- ⎪+⎝⎭,其中x 为方程2320x x ++=的根. 22.(8分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低直接写出y与x之间的函数关系式和自变量x的取值范围;当每本足球纪念册销售单价是多少元时,商店每天获利2400元?将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?23.(8分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.请你用画树状图或列表的方法,求出这两数和为6的概率.如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.24.(10分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.求该抛物线的表达式;点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.25.(10分)为了解某市市民上班时常用交通工具的状况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如图所示的尚不完整的统计图:根据以上统计图,解答下列问题:本次接受调查的市民共有人;扇形统计图中,扇形B的圆心角度数是;请补全条形统计图;若该市“上班族”约有15万人,请估计乘公交车上班的人数.的速度沿着O﹣C﹣B﹣A﹣O的线路移动.a=,b=,点B的坐标为;当点P移动4秒时,请指出点P的位置,并求出点P的坐标;在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.27.(12分)某校数学综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使用情况进行了问卷调查.在这次调查中,发现有20人对于共享单车不了解,使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如下图所示:本次调查人数共人,使用过共享单车的有人;请将条形统计图补充完整;如果这个小区大约有3000名居民,请估算出每天的骑行路程在2~4千米的有多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】-2的倒数是-12故选B【点睛】 本题难度较低,主要考查学生对倒数相反数等知识点的掌握2.C【解析】,0.21,2π ,18 ,0.20202中,2π,共三个. 故选C .3.B【解析】分析:直接利用2<3,进而得出答案.详解:∵2<3,∴3+1<4,故选B .的取值范围是解题关键.4.A【解析】试题分析:利用轴对称图形的性质得出PM=MQ ,PN=NR ,进而利用PM=2.5cm ,PN=3cm ,MN=3cm ,得出NQ=MN-MQ=3-2.5=2.5(cm ),即可得出QR 的长RN+NQ=3+2.5=3.5(cm ).故选A .考点:轴对称图形的性质5.A【解析】【详解】解:∵x ﹣2y=3,∴3﹣2x+4y=3﹣2(x ﹣2y )=3﹣2×3=﹣3;故选A .6.D先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选D.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.7.D【解析】【分析】根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.【详解】∵1+2=3,不能构成三角形,故选项错误;B、∵12+12)2,是等腰直角三角形,故选项错误;C=12,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选D.8.C根据左视图是从左面看所得到的图形进行解答即可.【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.9.B【解析】【分析】分别计算四个方程的判别式的值,然后根据判别式的意义确定正确选项.【详解】解:A、△=(-2)2-4×(-3)=16>0,方程有两个不相等的两个实数根,所以A选项错误;B、△=(-2)2-4×3=-8<0,方程没有实数根,所以B选项正确;C、△=(-2)2-4×1=0,方程有两个相等的两个实数根,所以C选项错误;D、△=(-2)2-4×(-1)=8>0,方程有两个不相等的两个实数根,所以D选项错误.故选:B.【点睛】本题考查根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0根时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.10.D【解析】【分析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n 分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)1+5的大致图象如下:.。
2019年山东省济宁市中考数学模拟试卷(含解析)

2019年山东省济宁市中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.的值是()A.1B.﹣1C.3D.﹣32.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为()A.4.995×1011B.49.95×1010C.0.4995×1011D.4.995×10103.下列计算正确的是()A.a3+a3=2a6B.(﹣a2)3=a6C.a6÷a2=a3D.a5•a3=a84.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50°B.60°C.80°D.100°5.多项式4a﹣a3分解因式的结果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)26.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再把△A1B1C1绕点C1顺时针旋转90°得到△A2B2C1,则点A的对应点A2的坐标是()A.(5,2)B.(1,0)C.(3,﹣1)D.(5,﹣2)7.在一些“打分类”比赛当中,经常采用这样的办法来得到一名选手的最后成绩:将所有评委的打分组成一组数据,去掉一个最高分和一个最低分,得到一组新的数据,再计算平均分.假设评委不少于4人,则比较两组数据,一定不会发生变化的是()A.平均数B.中位数C.众数D.方差8.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P 的度数是()A.50°B.55°C.60°D.65°9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π10.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是由第1个图案经过平移而得,那么第n个图案中有白色六边形地面砖()块.A.6+4(n+1)B.6+4n C.4n﹣2D.4n+2二.填空题(共5小题,满分15分,每小题3分)11.若二次根式在实数范围内有意义,则x的取值范围是.12.已知一次函数y=ax+b,且2a+b=1,则该一次函数图象必经过点.13.关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是.14.如图,在笔直的海岸线l上有两个观测点A和B,点A在点B的正西方向,AB=2km.若从点A测得船C在北偏东60°的方向,从点B测得船C在北偏东45°的方向,则船C离海岸线l的距离为km.(结果保留根号)15.如图,点A是反比例函数y=(x>0)图象上一点,直线y=kx+b过点A并且与两坐标轴分别交于点B,C,过点A作AD⊥x轴,垂足为D,连接DC,若△BOC的面积是4,则△DOC的面积是.三.解答题(共7小题,满分55分)16.(6分)化简:(y+2)(y﹣2)﹣(y﹣1)(y+5).17.(7分)国家为了实现2020年全面脱贫目标,实施“精准扶贫”战略,采取异地搬迁,产业扶持等措施.使贫困户的生活条件得到改善,生活质量明显提高.某旗县为了全面了解贫困县对扶贫工作的满意度情况,进行随机抽样调查,分为四个类别:A.非常满意;B.满意;C.基本满意;D.不满意.依据调查数据绘制成图1和图2的统计图(不完整).根据以上信息,解答下列问题:(1)将图1补充完整;(2)通过分析,贫困户对扶贫工作的满意度(A、B、C类视为满意)是;(3)市扶贫办从该旗县甲乡镇3户、乙乡镇2户共5户贫困户中,随机抽取两户进行满意度回访,求这两户贫困户恰好都是同一乡镇的概率.18.(7分)在同一平面直角坐标系中有5个点:A(1,1),B(﹣3,﹣1),C(﹣3,1),D(﹣2.﹣2).(1)画出△ABC的外接圆⊙P,并指出点D与⊙P相的位置关系;(2)E点是y轴上的一点,若直线DE与⊙P相切,求点E的坐标.19.(7分)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?20.(8分)如图所示,(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF 绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF形成的锐角β.21.(9分)知识背景当a>0且x>0时,因为(﹣)2≥0,所以x﹣2+≥0,从而x+(当x=时取等号).设函数y=x+(a>0,x>0),由上述结论可知:当x=时,该函数有最小值为2.应用举例已知函数为y1=x(x>0)与函数y2=(x>0),则当x==2时,y1+y2=x+有最小值为2=4.解决问题(1)已知函数y1=x+3(x>﹣3)与函数y2=(x+3)2+9(x>﹣3),当x取何值时,有最小值?最小值是多少?(2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x天,则当x取何值时,该设备平均每天的租货使用成本最低?最低是多少元?22.(11分)如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.2019年山东省济宁市中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】直接利用立方根的定义化简得出答案.【解答】解:=﹣1.故选:B.【点评】此题主要考查了立方根,正确把握立方根的定义是解题关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将499.5亿用科学记数法表示为:4.995×1010.故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;同底数幂的除法法则:底数不变,指数相减分别进行计算即可.【解答】解:A、a3+a3=2a3,故原题计算错误;B、(﹣a2)3=﹣a6,故原题计算错误;C、a6÷a2=a4,故原题计算错误;D、a5•a3=a8,故原题计算正确;故选:D.【点评】此题主要考查了同底数幂的乘除法、合并同类项、积的乘方,关键是掌握各计算法则.4.【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD =180°,即可求得∠BAD的度数,再根据圆周角的性质,即可求得答案.【解答】解:圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故选:D.【点评】此题考查了圆周角的性质与圆的内接四边形的性质.此题比较简单,解题的关键是注意数形结合思想的应用,注意辅助线的作法.5.【分析】首先提取公因式a,再利用平方差公式分解因式得出答案.【解答】解:4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).故选:B.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.6.【分析】根据平移变换,旋转变换的性质画出图象即可解决问题;【解答】解:如图,△A2B2C1即为所求.观察图象可知:A2(5,2)故选:A.【点评】本题考查旋转变换,平移变换等知识,解题的关键是熟练掌握基本知识,正确作出图形是解决问题的关键.7.【分析】去掉一个最高分和最低分后不会对数据的中间的数产生影响,即中位数.【解答】解:统计每位选手得分时,会去掉一个最高分和一个最低分,这样做不会对数据的中间的数产生影响,即中位数.故选:B.【点评】本题考查了统计量的选择,属于基础题,相对比较简单,解题的关键在于理解这些统计量的意义.8.【分析】先根据五边形内角和求得∠EDC+∠BCD,再根据角平分线求得∠PDC+∠PCD,最后根据三角形内角和求得∠P的度数.【解答】解:∵在五边形ABCDE中,∠A+∠B+∠E=300°,∴∠EDC+∠BCD=240°,又∵DP、CP分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP中,∠P=180°﹣(∠PDC+∠PCD)=180°﹣120°=60°.故选:C.【点评】本题主要考查了多边形的内角和以及角平分线的定义,解题时注意:多边形内角和=(n ﹣2)•180 (n≥3且n为整数).9.【分析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【解答】解:该几何体的表面积为2וπ•22+4×4+×2π•2×4=12π+16,故选:D.【点评】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.10.【分析】观察图形可知,第一个黑色地面砖由六个白色地面砖包围,再每增加一个黑色地面砖就要增加四个白色地面砖.【解答】解:∵第一个图案中,有白色的是6个,后边是依次多4个.∴第n个图案中,是6+4(n﹣1)=4n+2.故选:D.【点评】本题考查图形的变化规律,主要培养学生的观察能力和空间想象能力,解题的关键是发现规律:在第一个图案的基础上,多一个图案,多4块白色地砖.二.填空题(共5小题,满分15分,每小题3分)11.【分析】直接利用二次根式的性质得出答案.【解答】解:∵二次根式在实数范围内有意义,∴x﹣2019≥0,解得:x≥2019.故答案为:x≥2019.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.12.【分析】由已知等式可知当x=2时,y=1,即可求得答案.【解答】解:∵2a+b=1,∴相当于y=ax+b中,当x=2时,y=1,∴一次函数图象必过点(2,1),故答案为:(2,1).【点评】本题主要考查函数图象上点的坐标特征,由等式得到x=2,y=1是解题的关键.13.【分析】利用判别式,根据不等式即可解决问题;【解答】解:∵关于x的一元二次方程kx2+3x﹣1=0有实数根,∴△≥0且k≠0,∴9+4k≥0,∴k≥﹣,且k≠0,故答案为k≥﹣且k≠0.【点评】本题考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.14.【分析】作CD⊥AB,设CD=x,根据∠CBD=∠BCD=45°知BD=CD=x、AD=AB+BD=2+x,由sin∠CAD=列出关于x的方程,解之可得答案.【解答】解:如图所示,过点C作CD⊥AB,交AB延长线于点D,设CD=x,∵∠CBD=∠BCD=45°,∴BD=CD=x,又∵AB=2,∴AD=AB+BD=2+x,∵∠CAD=30°,且sin∠CAD=,∴=,解得:x=1+,即船C离海岸线l的距离为(1+)km,故答案为:1+.【点评】本题主要考查解直角三角形的应用﹣方向角问题,解题的关键是根据题意构建合适的直角三角形及三角函数的定义及其应用.15.【分析】方法1、先用三角形BOC的面积得出k=①,再判断出△BOC∽△BDA,得出a2k+ab =4②,联立①②求出ab,即可得出结论.方法2、先利用△BOC的面积得出k=,表示出A(m,),进而得出m+b=,即(mb)2+mb﹣4=0,即可得出结论.【解答】解法1:设A(a,)(a>0),∴AD=,OD=a,∵直线y=kx+b过点A并且与两坐标轴分别交于点B,C,∴C(0,b),B(﹣,0),∵△BOC的面积是4,∴S=OB×OC=××b=4,△BOC∴b2=8k,∴k =①∵AD ⊥x 轴, ∴OC ∥AD , ∴△BOC ∽△BDA ,∴,∴,∴a 2k +ab =4②,联立①②得,ab =﹣4﹣4(舍)或ab =4﹣4,∴S △DOC =OD •OC =ab =2﹣2故答案为2﹣2.解法2、∵直线y =kx +b 与两坐标轴分别交于点B ,C ,∴B (﹣,0),C (0,b ),∴OB =,OC =b , ∵△BOC 的面积是4,∴××b =4,∴=8,∴k =设OD =m ,∵AD ⊥x 轴,∴A (m ,),∵点A 在直线y =kx +b 上,∴km +b =,∴m +b =,∴(mb )2+mb ﹣4=0,∴mb =﹣4﹣4(舍)或mb =4﹣4,=OC×OD=b×m=2﹣2∴S△COD【点评】此题主要考查了坐标轴上点的特点,反比例函数上点的特点,相似三角形的判定和性质,得出a2k+ab=4是解本题的关键.三.解答题(共7小题,满分55分)16.【分析】原式利用平方差公式,多项式乘以多项式法则计算,去括号合并得到最简结果./【解答】解:原式=y2﹣4﹣y2﹣5y+y+5=﹣4y+1,【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.17.【分析】(1)先由A类别户数和所占百分比求得样本总量,再根据各类别户数和等于总户数求得C的数量即可补全图形;(2)用A、B、C户数和除以总户数即可得;(3)画树状图列出所有等可能结果,再根据概率公式求解可得.【解答】解:(1)∵被调查的总户数为60÷60%=100,∴C类别户数为100﹣(60+20+5)=15,补全图形如下:(2)贫困户对扶贫工作的满意度(A、B、C类视为满意)是×100%=95%,故答案为:95%;(3)画树状图如下:由树状图知共有20种等可能结果,其中这两户贫困户恰好都是同一乡镇的有8种结果,所以这两户贫困户恰好都是同一乡镇的概率为=.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.18.【分析】(1)在直角坐标系内描出各点,画出△ABC的外接圆,并指出点D与⊙P的位置关系即可;(2)连接PD,用待定系数法求出直线DE的关系式进而得出E点坐标.【解答】解:(1)如图所示:△ABC外接圆的圆心为(﹣1,0),点D在⊙P上;(2)连接PD,∵直线DE与⊙P相切,∴PD⊥PE,利用网格过点D做直线的DF⊥PD,则F(﹣6,0),设过点D,E的直线解析式为:y=kx+b,∵D(﹣2,﹣2),F(﹣6,0),∴,解得:,∴直线DE解析式为:y=﹣x﹣3,∴x=0时,y=﹣3,∴E(0,﹣3).【点评】本题考查的是直线与圆的位置关系,根据题意画出图形,利用数形结合求解是解答此题的关键.19.【分析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据A、B两村庄总支出列出关于x、y的方程组,解之可得;(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据“总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数”列不等式组求解可得.【解答】解:(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据题意,得:,解得:,答:清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据题意,得:,解得:18≤m<20,∵m为整数,∴m=18或m=19,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.【点评】本题主要考查二元一次方程组和一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程或不等式组.20.【分析】(1)根据旋转的过程中线段的长度不变,得到AF=AE,又∠BAE与∠DAF都与∠BAF 互余,所以∠BAE=∠DAF,所以△FAD≌△EAB,因此BE与DF相等,延长DF交BE于G,根据全等三角形的对应角相等和四边形的内角和等于360°求出∠EGF=90°,所以DF⊥BE;(2)等同(1)的方法,因为矩形的邻边不相等,但根据题意,可以得到对应边成比例,所以△FAD∽△EAB,所以DF=kBE,同理,根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EHF=90°,所以DF⊥BE;(3)与(2)的证明方法相同,但根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EAF+∠EHF=180°,所以DF与BE的夹角β=180°﹣α.【解答】解:(1)DF与BE互相垂直且相等.证明:延长DF分别交AB、BE于点P、G(1分)在正方形ABCD和等腰直角△AEF中AD=AB,AF=AE,∠BAD=∠EAF=90°∴∠FAD=∠EAB∴△FAD≌△EAB(2分)∴∠AFD=∠AEB,DF=BE∵∠AFD+∠AFG=180°,∴∠AEG+∠AFG=180°,∵∠EAF=90°,∴∠EGF=180°﹣90°=90°,∴DF⊥BE(5分)(2)数量关系改变,位置关系不变.DF=kBE,DF⊥BE.(7分)延长DF交EB于点H,∵AD=kAB,AF=kAE∴=k,=k∴=∵∠BAD=∠EAF=a∴∠FAD=∠EAB∴△FAD∽△EAB(9分)∴=k∴DF=kBE(10分)∵△FAD∽△EAB,∴∠AFD=∠AEB,∵∠AFD+∠AFH=180°,∴∠AEH+∠AFH=180°,∵∠EAF=90°,∴∠EHF=180°﹣90°=90°,∴DF⊥BE(5分)(3)不改变.DF=kBE,β=180°﹣a.(7分)证法(一):延长DF交EB的延长线于点H,∵AD=kAB,AF=kAE∴=k,=k∴=∵∠BAD=∠EAF=a∴∠FAD=∠EAB∴△FAD∽△EAB(9分)∴=k∴DF=kBE(10分)由△FAD∽△EAB得∠AFD=∠AEB∵∠AFD+∠AFH=180°∴∠AEB+∠AFH=180°∵四边形AEHF的内角和为360°,∴∠EAF+∠EHF=180°∵∠EAF=α,∠EHF=β∴a+β=180°∴β=180°﹣a(12分)证法(二):DF=kBE的证法与证法(一)相同延长DF分别交EB、AB的延长线于点H、G.由△FAD∽△EAB得∠ADF=∠ABE ∵∠ABE=∠GBH,∴∠ADF=∠GBH,∵β=∠BHF=∠GBH+∠G∴β=∠ADF+∠G.在△ADG中,∠BAD+∠ADF+∠G=180°,∠BAD=a∴a+β=180°∴β=180°﹣a(12分)证法(三):在平行四边形ABCD中AB∥CD可得到∠ABC+∠C=180°∵∠EBA+∠ABC+∠CBH=180°∴∠C=∠EBA+∠CBH在△BHP、△CDP中,由三角形内角和等于180°可得∠C+∠CDP=∠CBH+∠BHP ∴∠EBA+∠CBH+∠CDP=∠CBH+∠BHP∴∠EBA+∠CDP=∠BHP由△FAD∽△EAB得∠ADP=∠EBA∴∠ADP+∠CDP=∠BHP即∠ADC=∠BHP∵∠BAD+∠ADC=180°,∠BAD=a,∠BHP=β∴a+β=180°∴β=180°﹣a(12分)(有不同解法,参照以上给分点,只要正确均得分.)【点评】本题(1)中主要利用三角形全等的判定和性质以及正方形的性质进行证明;(2)(3)利用相似三角形的判定和性质证明,要解决本题,证明三角形全等和三角相似是解题的关键,也是难点所在.21.【分析】(1)模仿例题解决问题即可;(2)构建函数后,模仿例题即可解决问题;【解答】解:(1)==(x+3)+,∴当x+3=时,有最小值,∴x=0或﹣6(舍弃)时,有最小值=6.(2)设该设备平均每天的租货使用成本为w元.则w==+0.001x+200,∴当=0.001x时,w有最小值,∴x=700或﹣700(舍弃)时,w有最小值,最小值=201.4元.【点评】本题考查二次函数的应用,反比例函数的应用,函数的最值问题,完全平方公式等知识,解题的关键是学会构建函数解决问题,属于中考常考题型.22.【分析】(1)把A,B,C的坐标代入抛物线解析式求出a,b,c的值即可;(2)由题意得到直线BC与直线AM垂直,求出直线BC解析式,确定出直线AM中k的值,利用待定系数法求出直线AM解析式,联立求出M坐标即可;(3)存在以点B,C,Q,P为顶点的四边形是平行四边形,分三种情况,利用平移规律确定出P 的坐标即可.【解答】解:(1)把A(3,0),B(﹣1,0),C(0,﹣3)代入抛物线解析式得:,解得:,则该抛物线解析式为y=x2﹣2x﹣3;(2)设直线BC解析式为y=kx﹣3,把B(﹣1,0)代入得:﹣k﹣3=0,即k=﹣3,∴直线BC解析式为y=﹣3x﹣3,∴直线AM解析式为y=x+m,把A(3,0)代入得:1+m=0,即m=﹣1,∴直线AM解析式为y=x﹣1,联立得:,解得:,则M(﹣,﹣);(3)存在以点B,C,Q,P为顶点的四边形是平行四边形,分三种情况考虑:设Q(x,0),P(m,m2﹣2m﹣3),当四边形BCQP为平行四边形时,由B(﹣1,0),C(0,﹣3),根据平移规律得:﹣1+x=0+m,0+0=﹣3+m2﹣2m﹣3,解得:m=1±,x=2±,当m=1+时,m2﹣2m﹣3=8+2﹣2﹣2﹣3=3,即P(1+,3);当m=1﹣时,m2﹣2m﹣3=8﹣2﹣2+2﹣3=3,即P(1﹣,3);当四边形BCPQ 为平行四边形时,由B (﹣1,0),C (0,﹣3),根据平移规律得:﹣1+m =0+x ,0+m 2﹣2m ﹣3=﹣3+0,解得:m =0或2,当m =0时,P (0,﹣3)(舍去);当m =2时,P (2,﹣3),当四边形BQCP 是平行四边形时,由平移规律得:﹣1+0=m +x ,0﹣3=m 2﹣2m ﹣3,解得:m =0或2,x =﹣1或﹣3,当m =0时,P (0,﹣3)(舍去);当m =2时,P (2,﹣3),综上,存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形,P 的坐标为(1+,3)或(1﹣,3)或(2,﹣3).【点评】此题属于二次函数综合题,涉及的知识有:待定系数法求函数解析式,平行四边形的性质,以及平移规律,熟练掌握各自的性质是解本题的关键.。
山东省济宁市2019-2020学年中考数学一模考试卷含解析

山东省济宁市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=()A.6 B.8 C.10 D.122.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°3.如图,在矩形ABCD 中,AB=2a,AD=a,矩形边上一动点P 沿A→B→C→D 的路径移动.设点P 经过的路径长为x,PD2=y,则下列能大致反映y 与x 的函数关系的图象是()A.B.C.D.4.如图,在扇形CAB中,CA=4,∠CAB=120°,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB的最小值为()A.B.C.10 D.5.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是( )A .∠BDO =60°B .∠BOC =25° C .OC =4D .BD =46.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x --=2 7.实数a 、b 、c 在数轴上的位置如图所示,则代数式|c ﹣a|﹣|a+b|的值等于( )A .c+bB .b ﹣cC .c ﹣2a+bD .c ﹣2a ﹣b8.如图,在ABC 中,30B ∠=︒,BC 的垂直平分线交AB 于点E ,垂足为D .如果8CE =,则ED 的长为( )A .2B .3C .4D .69.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC=1,CE=3,CH┴AF 与点H ,那么CH 的长是( )A .223B .5C .322D 35 10.已知A 、B 两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A 市到B 市乘动车比乘火车少用40分钟,设动车速度为每小时x 千米,则可列方程为( )A .4504504050x x-=- B .4504504050x x -=- C .4504502503x x -=+ D .4504502503x x -=- 11.若关于x 的不等式组221x m x m ->⎧⎨-<-⎩无解,则m 的取值范围( ) A .m >3 B .m <3C .m≤3D .m≥312.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.14.如图,已知AB∥CD,若14ABCD=,则OAOC=_____.15.方程15x12x1=-+的解为.16.如图,在正方形ABCD中,AD=5,点E,F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为__________.17.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=________cm.18.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a b、的等式为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知ABCD是边长为3的正方形,点P在线段BC上,点G在线段AD上,PD=PG,DF⊥PG于点H,交AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连接EF.(1)求证:DF=PG;(2)若PC=1,求四边形PEFD的面积.20.(6分)如图,直线y=kx+2与x轴,y轴分别交于点A(﹣1,0)和点B,与反比例函数y=mx的图象在第一象限内交于点C(1,n).求一次函数y=kx+2与反比例函数y=mx的表达式;过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线y=kx+2和双曲线y=mx交于P、Q两点,且PQ=2QD,求点D的坐标.21.(6分)综合与实践﹣﹣﹣折叠中的数学在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究.问题背景:在矩形ABCD中,点E、F分别是BC、AD 上的动点,且BE=DF,连接EF,将矩形ABCD沿EF折叠,点C落在点C′处,点D落在点D′处,射线EC′与射线DA相交于点M.猜想与证明:(1)如图1,当EC′与线段AD交于点M时,判断△MEF的形状并证明你的结论;操作与画图:(2)当点M与点A重合时,请在图2中作出此时的折痕EF和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母);操作与探究:(3)如图3,当点M在线段DA延长线上时,线段C′D'分别与AD,AB交于P,N两点时,C′E与AB 交于点Q,连接MN 并延长MN交EF于点O.求证:MO⊥EF 且MO平分EF;(4)若AB=4,AD=43,在点E由点B运动到点C的过程中,点D'所经过的路径的长为.22.(8分)某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元.(1)若购进A,B两种花木刚好用去8000元,则购买了A,B两种花木各多少棵?(2)如果购买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.23.(8分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.(1)这次调查的市民人数为________人,m=________,n=________;(2)补全条形统计图;(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.24.(10分)已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,点P为边AB上一动点,以P为圆心,BP为半径的圆交边BC于点Q.(1)求AB的长;(2)当BQ的长为409时,请通过计算说明圆P与直线DC的位置关系.25.(10分)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.26.(12分)甲、乙两个人做游戏:在一个不透明的口袋中装有1张相同的纸牌,它们分别标有数字1,2,3,1.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.27.(12分)如图,将连续的奇数1,3,5,7…按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a,b,c,d表示,如图所示.(1)计算:若十字框的中间数为17,则a+b+c+d=______.(2)发现:移动十字框,比较a+b+c+d 与中间的数.猜想:十字框中a 、b 、c 、d 的和是中间的数的______; (3)验证:设中间的数为x ,写出a 、b 、c 、d 的和,验证猜想的正确性;(4)应用:设M=a+b+c+d+x ,判断M 的值能否等于2020,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:根据根与系数的关系得到x 1+x 2=2,x 1•x 2=﹣3,再变形x 12+x 22得到(x 1+x 2)2﹣2x 1•x 2,然后利用代入计算即可.解:∵一元二次方程x 2﹣2x ﹣3=0的两根是x 1、x 2,∴x 1+x 2=2,x 1•x 2=﹣3,∴x 12+x 22=(x 1+x 2)2﹣2x 1•x 2=22﹣2×(﹣3)=1.故选C .2.D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°,故选D .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.3.D【解析】解:(1)当0≤t≤2a 时,∵222PD AD AP =+,AP=x ,∴22y x a =+;(2)当2a <t≤3a 时,CP=2a+a ﹣x=3a ﹣x ,∵222PD CD CP =+,∴22(3)(2)y a x a =-+=22613x ax a -+;(3)当3a <t≤5a 时,PD=2a+a+2a ﹣x=5a ﹣x ,∵2PD =y ,∴2(5)y a x =-=2(5)x a -;综上,可得22225)2(02)613(23)((35)x a x a x a y x ax a a x a a x a -⎧+≤≤⎪=-+<≤⎨⎪<≤⎩,∴能大致反映y 与x 的函数关系的图象是选项D 中的图象.故选D .4.D【解析】【分析】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,推出△APD ∽△ABP′,得到BP′=2PD ,于是得到2PD+PB=BP′+PB≥PP′,根据勾股定理得到PP′=,求得2PD+PB≥4,于是得到结论.【详解】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2, ∵=2,∴△APD ∽△ABP′,∴BP′=2PD ,∴2PD+PB=BP′+PB≥PP′,∴PP′=,∴2PD+PB≥4,∴2PD+PB 的最小值为4, 故选D .【点睛】本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.5.D【解析】【分析】由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.【详解】解:∵△OAB绕O点逆时针旋转60°得到△OCD,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.故选D.【点睛】本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.6.A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.7.A【解析】【分析】根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c-a>0,a+b<0,根据绝对值的性质化简计算.【详解】由数轴可知,b<a<0<c,∴c-a>0,a+b<0,则|c-a|-|a+b|=c-a+a+b=c+b ,故选A .【点睛】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.8.C【解析】【分析】先利用垂直平分线的性质证明BE=CE=8,再在Rt △BED 中利用30°角的性质即可求解ED .【详解】解:因为DE 垂直平分BC ,所以8BE CE ==,在Rt BDE 中,30B ∠=︒, 则118422ED BE ==⨯=; 故选:C .【点睛】 本题主要考查了线段垂直平分线的性质、30°直角三角形的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.9.D【解析】【分析】连接AC 、CF ,根据正方形性质求出AC 、CF ,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF ,最后由直角三角形面积的两种表示法即可求得CH 的长.【详解】如图,连接AC 、CF ,∵正方形ABCD 和正方形CEFG 中,BC=1,CE=3,∴2,2∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,==∵CH ⊥AF , ∴1122AC CF AF CH ⋅=⋅,12CH =⨯, ∴CH=5. 故选D.【点睛】本题考查了正方形的性质、勾股定理及直角三角形的面积,熟记各性质并作辅助线构造出直角三角形是解题的关键.10.D【解析】解:设动车速度为每小时x 千米,则可列方程为:45050x -﹣450x =23.故选D . 11.C【解析】【分析】根据“大大小小找不着”可得不等式2+m≥2m -1,即可得出m 的取值范围.【详解】 221x m x m ->⎧⎨-<-⎩①② , 由①得:x >2+m ,由②得:x <2m ﹣1,∵不等式组无解,∴2+m≥2m ﹣1,∴m≤3,故选C .【点睛】考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键.12.C【解析】解:A .小丽从家到达公园共用时间20分钟,正确;B .公园离小丽家的距离为2000米,正确;C .小丽在便利店时间为15﹣10=5分钟,错误;D .便利店离小丽家的距离为1000米,正确.故选C .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.23或﹣23. 【解析】【分析】【详解】试题分析:当点F 在OB 上时,设EF 交CD 于点P ,可求点P 的坐标为(2x ,1). 则AF+AD+DP=3+32x , CP+BC+BF=3﹣32x , 由题意可得:3+32x=2(3﹣32x ), 解得:x=23. 由对称性可求当点F 在OA 上时,x=﹣23, 故满足题意的x 的值为23或﹣23. 故答案是23或﹣23. 【点睛】考点:动点问题.14.14【解析】【分析】利用相似三角形的性质即可解决问题;【详解】∵AB ∥CD ,∴△AOB ∽△COD , ∴14OA AB OC CD ==, 故答案为14. 【点睛】本题考查平行线的性质,相似三角形的判定和性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.15.x 2=.【解析】试题分析:首先去掉分母,观察可得最简公分母是()()x 12x 2-+,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解: 152x 15x 53x 6x 2x 12x 1=⇒+=-⇒-=-⇒=-+,经检验,x 2=是原方程的根. 16.2【解析】分析:延长AE 交DF 于G ,再根据全等三角形的判定得出△AGD 与△ABE 全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF 的长.详解:延长AE 交DF 于G ,如图, ∵AB=5,AE=3,BE=4,∴△ABE 是直角三角形,同理可得△DFC 是直角三角形,可得△AGD 是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE ,∴∠GAD=∠EBA ,同理可得:∠ADG=∠BAE .在△AGD 和△BAE 中,∵EAB GDA AD AB ABE DAG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AGD ≌△BAE (ASA ),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=22112+=.故答案为2.点睛:本题考查了正方形的性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.17.3【解析】试题分析:根据点D 为AB 的中点可得:CD 为直角三角形斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=6,根据E 、F 分别为中点可得:EF 为△ABC 的中位线,根据中位线的性质可得:EF=AB=3.考点:(1)、直角三角形的性质;(2)、中位线的性质18.(a+b)2﹣(a﹣b)2=4ab【解析】【分析】根据长方形面积公式列①式,根据面积差列②式,得出结论.【详解】S阴影=4S长方形=4ab①,S阴影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案为(a+b)2﹣(a﹣b)2=4ab.【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)1.【解析】【分析】作PM⊥AD,在四边形ABCD和四边形ABPM证AD=PM;DF⊥PG,得出∠GDH+∠DGH=90°,推出∠ADF=∠MPG;还有两个直角即可证明△ADF≌△MPG,从而得出对应边相等(2)由已知得,DG=2PC=2;△ADF≌△MPG得出DF=PD;根据旋转,得出∠EPG=90°,PE=PG 从而得出四边形PEFD为平行四边形;根据勾股定理和等量代换求出边长DF的值;根据相似三角形得出对应边成比例求出GH的值,从而求出高PH 的值;最后根据面积公式得出【详解】解:(1)证明:∵四边形ABCD为正方形,∴AD=AB,∵四边形ABPM为矩形,∴AB=PM,∴AD=PM,∵DF⊥PG,∴∠DHG=90°,∴∠GDH+∠DGH=90°,∵∠MGP+∠MPG=90°,∴∠GDH=∠MPG,在△ADF和△MPG中,∴△ADF≌△MPG(ASA),∴DF=PG;(2)作PM⊥DG于M,如图,∵PD=PG,∴MG=MD,∵四边形ABCD为矩形,∴PCDM为矩形,∴PC=MD,∴DG=2PC=2;∵△ADF≌△MPG(ASA),∴DF=PG,而PD=PG,∴DF=PD,∵线段PG绕点P逆时针旋转90°得到线段PE,∴∠EPG=90°,PE=PG,∴PE=PD=DF,而DF⊥PG,∴DF∥PE,即DF∥PE,且DF=PE,∴四边形PEFD为平行四边形,在Rt△PCD中,PC=1,CD=3,∴PD==,∴DF=PG=PD=,∵四边形CDMP是矩形,∴PM=CD=3,MD=PC=1,∵PD=PG,PM⊥AD,∴MG=MD=1,DG=2,∵∠GDH=∠MPG,∠DHG=∠PMG=90°,∴△DHG∽△PMG,∴,∴GH ==,∴PH =PG ﹣GH =﹣=,∴四边形PEFD 的面积=DF•PH =×=1.【点睛】本题考查了平行四边形的面积、勾股定理、相似三角形判定、全等三角形性质,本题的关键是求边长和高的值20.()1一次函数解析式为22y x =+;反比例函数解析式为4y x =;()()22,0D . 【解析】【分析】(1)根据A (-1,0)代入y=kx+2,即可得到k 的值;(2)把C (1,n )代入y=2x+2,可得C (1,4),代入反比例函数m y x=得到m 的值; (3)先根据D (a,0),PD ∥y 轴,即可得出P (a,2a+2),Q(a ,4a),再根据PQ=2QD ,即可得44222a a a +-=⨯,进而求得D 点的坐标.【详解】(1)把A (﹣1,0)代入y=kx+2得﹣k+2=0,解得k=2,∴一次函数解析式为y=2x+2;把C (1,n )代入y=2x+2得n=4,∴C (1,4), 把C (1,4)代入y=m x得m=1×4=4, ∴反比例函数解析式为y=4x ; (2)∵PD ∥y 轴,而D (a ,0),∴P (a ,2a+2),Q (a ,4a), ∵PQ=2QD ,∴2a+2﹣4a=2×4a,整理得a2+a﹣6=0,解得a1=2,a2=﹣3(舍去),∴D(2,0).【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数的解析式.21.(1)△MEF是等腰三角形(2)见解析(3)证明见解析(4)16 3【解析】【分析】(1)由AD∥BC,可得∠MFE=∠CEF,由折叠可得,∠MEF=∠CEF,依据∠MFE=∠MEF,即可得到ME=MF,进而得出△MEF是等腰三角形;(2)作AC的垂直平分线,即可得到折痕EF,依据轴对称的性质,即可得到D'的位置;(3)依据△BEQ≌△D'FP,可得PF=QE,依据△NC'P≌△NAP,可得AN=C'N,依据Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,进而得到△MEF是等腰三角形,依据三线合一,即可得到MO⊥EF 且MO平分EF;(4)依据点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,即可得到点D'所经过的路径的长.【详解】(1)△MEF是等腰三角形.理由:∵四边形ABCD是矩形,∴AD∥BC,∴∠MFE=∠CEF,由折叠可得,∠MEF=∠CEF,∴∠MFE=∠MEF,∴ME=MF,∴△MEF是等腰三角形.(2)折痕EF和折叠后的图形如图所示:(3)如图,∵FD=BE ,由折叠可得,D'F=DF ,∴BE=D'F ,在△NC'Q 和△NAP 中,∠C'NQ=∠ANP ,∠NC'Q=∠NAP=90°,∴∠C'QN=∠APN ,∵∠C'QN=∠BQE ,∠APN=∠D'PF ,∴∠BQE=∠D'PF ,在△BEQ 和△D'FP 中,{BQE DPFBE D F AP C Q∠=∠='=',∴△BEQ ≌△D'FP (AAS ),∴PF=QE ,∵四边形ABCD 是矩形,∴AD=BC ,∴AD ﹣FD=BC ﹣BE ,∴AF=CE ,由折叠可得,C'E=EC ,∴AF=C'E ,∴AP=C'Q ,在△NC'Q 和△NAP 中,{C NQ ANPNC Q NAP AP C Q''∠∠=∠='∠=,∴△NC'P ≌△NAP (AAS ),∴AN=C'N ,在Rt △MC'N 和Rt △MAN 中,{MN MN AN C N==',∴Rt△MC'N≌Rt△MAN(HL),∴∠AMN=∠C'MN,由折叠可得,∠C'EF=∠CEF,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFE=∠FEC,∴∠C'EF=∠AFE,∴ME=MF,∴△MEF是等腰三角形,∴MO⊥EF 且MO平分EF;(4)在点E由点B运动到点C的过程中,点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,如图:故其长为L=2404161803ππ⨯⨯=.故答案为163π.【点睛】此题是四边形综合题,主要考查了折叠问题与菱形的判定与性质、弧长计算公式,等腰三角形的判定与性质以及全等三角形的判定与性质的综合应用,熟练掌握等腰三角形的判定定理和性质定理是解本题的关键.22.(1)购买A种花木40棵,B种花木60棵;(2)当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.【解析】【分析】(1)设购买A种花木x棵,B种花木y棵,根据“A,B两种花木共100棵、购进A,B两种花木刚好用去8000元”列方程组求解可得;(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据“B花木的数量不少于A花木的数量”求得a的范围,再设购买总费用为W,列出W关于a的解析式,利用一次函数的性质求解可得.【详解】解析:(1)设购买A种花木x棵,B种花木y棵,根据题意,得:100501008000x yx y+=⎧⎨+=⎩,解得:4060xy=⎧⎨=⎩,答:购买A种花木40棵,B种花木60棵;(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据题意,得:100﹣a≥a,解得:a≤50,设购买总费用为W,则W=50a+100(100﹣a)=﹣50a+10000,∵W随a的增大而减小,∴当a=50时,W取得最小值,最小值为7500元,答:当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.考点:一元一次不等式的应用;二元一次方程组的应用.23.(1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.【解析】【分析】(1)根据项目B的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A,C的百分比;(2)根据对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A非常了解”的程度的人数.【详解】试题分析:试题解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,(2)对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图如下:(3)100000×32%=32000(人),答:该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.24.(1)AB长为5;(2)圆P与直线DC相切,理由详见解析.【解析】【分析】(1)过A作AE⊥BC于E,根据矩形的性质得到CE=AD=1,AE=CD=3,根据勾股定理即可得到结论;(2)过P作PF⊥BQ于F,根据相似三角形的性质得到PB=259,得到PA=AB-PB=209,过P作PG⊥CD于G交AE于M,根据相似三角形的性质得到PM=169,根据切线的判定定理即可得到结论.【详解】(1)过A作AE⊥BC于E,则四边形AECD是矩形,∴CE=AD=1,AE=CD=3,∵AB=BC,∴BE=AB-1,在Rt△ABE中,∵AB2=AE2+BE2,∴AB2=32+(AB-1)2,解得:AB=5;(2)过P作PF⊥BQ于F,∴BF=12BQ=209,∴△PBF∽△ABE,∴PB BF AB BE=,∴20954 PB=,∴PB=259,∴PA=AB-PB=209,过P作PG⊥CD于G交AE于M,∴GM=AD=1,∵DC⊥BC∴PG∥BC∴△APM∽△ABE,∴AP PM AB BE=,∴20954PM =, ∴PM=169, ∴PG=PM+MG=259=PB , ∴圆P 与直线DC 相切.【点睛】本题考查了直线与圆的位置关系,矩形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.25.见解析【解析】【分析】根据条件可以得出AD=AB ,∠ABF=∠ADE=90°,从而可以得出△ABF ≌△ADE ,就可以得出∠FAB=∠EAD ,就可以得出结论.【详解】证明:∵四边形ABCD 是正方形,∴AB=AD ,∠ABC=∠D=∠BAD=90°,∴∠ABF=90°.∵在△BAF 和△DAE 中,AB AD ABF ADE BF DE ⎧⎪∠∠⎨⎪⎩=== ,∴△BAF ≌△DAE (SAS ),∴∠FAB=∠EAD ,∵∠EAD+∠BAE=90°,∴∠FAB+∠BAE=90°,∴∠FAE=90°,∴EA ⊥AF .26.不公平【解析】【分析】列表得到所有情况,然后找出数字之和是3的倍数的情况,利用概率公式计算后进行判断即可得. 【详解】根据题意列表如下:所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:(2,1),(1,2),(1,2),(3,3),(2,1),共5种,∴P(甲获胜)=516,P(乙获胜)=1﹣516=1116,则该游戏不公平.【点睛】本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比.27.(1)68 ;(2)4倍;(3)4x,猜想正确,见解析;(4)M的值不能等于1,见解析.【解析】【分析】(1)直接相加即得到答案;(2)根据(1)猜想a+b+c+d=4x;(3)用x表示a、b、c、d,相加后即等于4x;(4)得到方程5x=1,求出的x不符合数表里数的特征,故不能等于1.【详解】(1)5+15+19+29=68,故答案为68;(2)根据(1)猜想a+b+c+d=4x,答案为:4倍;(3)a=x-12,b=x-2,c=x+2,d=x+12,∴a+b+c+d=x-12+x-2+x+2+x+12=4x,∴猜想正确;(4)M=a+b+c+d+x=4x+x=5x,若M=5x=1,解得:x=404,但整个数表所有的数都为奇数,故不成立,∴M的值不能等于1.【点睛】本题考查了一元一次方程的应用.当解得方程的解后,要观察是否满足题目和实际要求再进行取舍.。
2019年山东省济宁市中考数学模拟试卷(一)(解析版)

2019年山东省济宁市中考数学模拟试卷(一)一.选择题(满分30分,每小题3分)1.=()A.4B.±8C.8D.±42.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10133.下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a3 4.如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58°B.60°C.64°D.68°5.下列因式分解正确的是()A.x2﹣xy+x=x(x﹣y)B.a3+2a2b+ab2=a(a+b)2C.x2﹣2x+4=(x﹣1)2+3D.ax2﹣9=a(x+3)(x﹣3)6.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC 经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6)C.(3.8,2.6)D.(﹣3.8,﹣2.6)7.甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表第一次第二次第三次第四次第五次第六次甲9867810乙879788对他们的训练成绩作如下分析,其中说法正确的是()A.他们训练成绩的平均数相同B.他们训练成绩的中位数不同C.他们训练成绩的众数不同D.他们训练成绩的方差不同8.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°9.如图,按照三视图确定该几何体的侧面积是(单位:cm)()A.24πcm2B.48πcm2C.60πcm2D.80πcm210.用棋子摆出下列一组“口”字,按照这种方法摆下去,则第n个“口”字需要用棋子()A.(4n﹣4)枚B.4n枚C.(4n+4)枚D.n2枚二.填空题(共5小题,满分15分,每小题3分)11.若a,b都是实数,b=+﹣2,则a b的值为.12.若函数y=2x+b(b为常数)的图象经过点A(0,﹣2),则b=.13.已知关于x的一元二次方程x2﹣x+m﹣1=0有两个不相等的实数根,则实数m的取值范围是.14.如图,海中一渔船在A处于小岛C相距70海里,若该渔船由西向东航行30海里到达B 处,此时测得小岛C位于B的北偏东30°方向上,则该渔船此时与小岛C之间的距离是海里.15.如图,已知点A是一次函数y=x(x≥0)图象上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y=(x>0)的图象过点B,C,若△OAB的面积为8,则△ABC的面积是.三.解答题(共7小题,满分55分)16.(6分)(5x+3y)(3y﹣5x)﹣(4x﹣y)(4y+x)17.(7分)某中学为推动“时刻听党话永远跟党走”校园主题教育活动,计划开展四项活动:A:党史演讲比赛,B:党史手抄报比赛,C:党史知识竞赛,D:红色歌咏比赛.校团委对学生最喜欢的一项活动进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2两幅不完整的统计图.请结合图中信息解答下列问题:(1)本次共调查了名学生;(2)将图1的统计图补充完整;(3)已知在被调查的最喜欢“党史知识竞赛”项目的4个学生中只有1名女生,现从这4名学生中任意抽取2名学生参加该项目比赛,请用画树状图或列表的方法,求出恰好抽到一名男生一名女生的概率.18.(7分)⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.19.(7分)随着新能源汽车的发展,某公交公司将用新能源公交车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A型和B型新能源公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需300万元;若购买A型公交车2辆,B型公交车1辆,共需270万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为80万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1000万元,且确保这10辆公交车在该线路的年均载客量总和不少于900万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?20.(8分)在△ABC中,∠ACB=45°.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.(2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=,BC=3,CD=x,求线段CP的长.(用含x的式子表示)21.(9分)某公司对一款新高压锅进行测试,放入足量的水和设定某一模式后,在容积不变的情况下,根据温度t(℃)的变化测出高压锅内的压强p(kpa)的大小,压强在加热前是100pa,达到最大值后高压锅停止加热,为方便分析,测试员记y=p﹣100,表示压强在测试过程中相对于100kpa的增加值,部分数据如下表:温度0102030405060……09.51825.53237.542……压强增大值y(kpa)(1)根据表中的数据,在给出的坐标系中画出相应的点(坐标系已画在答卷上);(2)y与t之间是否存在函数关系?若是,请求出函数关系式;否则请说明理由;(3)①在该模式下,压强p的最大值是多少?②当t分别为t1,t2(t1<t2)时,对应y的值分别为y1,y2,请比较与的大小,并解释比较结果的实际意义.22.(11分)如图,抛物线y =﹣x2+bx+c经过点B(2,0)、C(0,2)两点,与x轴的另一个交点为A.(1)求抛物线的解析式;(2)点D从点C出发沿线段CB 以每秒个单位长度的速度向点B运动,作DE⊥CB 交y轴于点E,以CD、DE为边作矩形CDEF,设点D运动时间为t(s).①当点F落在抛物线上时,求t的值;②若点D在运动过程中,设△ABC与矩形CDEF重叠部分的面积为S,请直接写出S与t之间的函数关系式,并写出自变量t的取值范围.参考答案一.选择题1.=()A.4B.±8C.8D.±4【分析】直接利用立方根的定义化简得出答案.解:==4.故选:A.【点评】此题主要考查了立方根,正确把握立方根的定义是解题关键.2.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a3【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别计算得出答案.解:A、a3+a2,无法计算,故此选项错误;B、a3•a2=a5,正确;C、(2a2)3=8a6,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.4.如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58°B.60°C.64°D.68°【分析】根据半径相等,得出OC=OA,进而得出∠C=32°,利用直径和圆周角定理解答即可.解:∵OA=OC,∴∠C=∠OAC=32°,∵BC是直径,∴∠B=90°﹣32°=58°,故选:A.【点评】此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.5.下列因式分解正确的是()A.x2﹣xy+x=x(x﹣y)B.a3+2a2b+ab2=a(a+b)2C.x2﹣2x+4=(x﹣1)2+3D.ax2﹣9=a(x+3)(x﹣3)【分析】直接利用提取公因式法以及公式法分解因式,进而分析即可.解:A、x2﹣xy+x=x(x﹣y+1),故此选项错误;B、a3+2a2b+ab2=a(a+b)2,正确;C、x2﹣2x+4=(x﹣1)2+3,不是因式分解,故此选项错误;D、ax2﹣9,无法分解因式,故此选项错误;故选:B.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.6.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC 经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6)C.(3.8,2.6)D.(﹣3.8,﹣2.6)【分析】由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题;解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6),∵P1与P2关于原点对称,∴P2(2.8,3.6),故选:A.【点评】本题考查坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.7.甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表第一次第二次第三次第四次第五次第六次甲9867810乙879788对他们的训练成绩作如下分析,其中说法正确的是()A.他们训练成绩的平均数相同B.他们训练成绩的中位数不同C.他们训练成绩的众数不同D.他们训练成绩的方差不同【分析】利用方差的定义、以及众数和中位数的定义分别计算得出答案.解:∵甲6次射击的成绩从小到大排列为6、7、8、8、9、10,∴甲成绩的平均数为=8(环),中位数为=8(环)、众数为8环,方差为×[(6﹣8)2+(7﹣8)2+2×(8﹣8)2+(9﹣8)2+(10﹣8)2]=(环2),∵乙6次射击的成绩从小到大排列为:7、7、8、8、8、9,∴乙成绩的平均数为=,中位数为=8(环)、众数为8环,方差为×[2×(7﹣)2+3×(8﹣)2+(9﹣)2]=(环2),则甲、乙两人的平均成绩不相同、中位数和众数均相同,而方差不相同,故选:D.【点评】此题主要考查了中位数以及方差以及众数的定义等知识,正确掌握相关定义是解题关键.8.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°【分析】根据四边形内角和为360°可得∠1+∠2+∠A+∠B=360°,再根据直角三角形的性质可得∠A+∠B=90°,进而可得∠1+∠2的和.解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.【点评】考查了多边形内角与外角,三角形内角和定理,本题是一道根据四边形内角和为360°和直角三角形的性质求解的综合题,有利于锻炼学生综合运用所学知识的能力.9.如图,按照三视图确定该几何体的侧面积是(单位:cm)()A.24πcm2B.48πcm2C.60πcm2D.80πcm2【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积.解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为8÷2=4cm,故侧面积=πrl=π×6×4=24πcm2.故选:A.【点评】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.10.用棋子摆出下列一组“口”字,按照这种方法摆下去,则第n个“口”字需要用棋子()A.(4n﹣4)枚B.4n枚C.(4n+4)枚D.n2枚【分析】首先根据图形得到规律是:每增加一个数就增加四个棋子,然后根据规律解题即可.解:n=1时,棋子个数为4=1×4;n=2时,棋子个数为8=2×4;n=3时,棋子个数为12=3×4;…;n=n时,棋子个数为n×4=4n.故选:B.【点评】本题考查了图形的变化类问题,主要培养学生的观察能力和空间想象能力,找出其中的规律是解题的关键.二.填空题(共5小题,满分15分,每小题3分)11.若a,b都是实数,b=+﹣2,则a b的值为4.【分析】直接利用二次根式有意义的条件得出a的值,进而利用负指数幂的性质得出答案.解:∵b=+﹣2,∴1﹣2a=0,解得:a=,则b=﹣2,故a b=()﹣2=4.故答案为:4.【点评】此题主要考查了二次根式有意义的条件以及负指数幂的性质,正确得出a的值是解题关键.12.若函数y=2x+b(b为常数)的图象经过点A(0,﹣2),则b=﹣2.【分析】把A点坐标代入可得到关于b的方程,则可求得b的值.解:∵函数y=2x+b(b为常数)的图象经过点A(0,﹣2),∴b=﹣2,故答案为:﹣2.【点评】本题主要考查一次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键.13.已知关于x的一元二次方程x2﹣x+m﹣1=0有两个不相等的实数根,则实数m的取值范围是m.【分析】由方程有两个不等的实数根结合根的判别式,即可得出关于m的一元一次不等式,解之即可得出结论.解:∵关于x的一元二次方程x2﹣x+m﹣1=0有两个不相等的实数根,∴△=(﹣1)2﹣4×1×(m﹣1)=5﹣4m>0,∴m.故答案为:m.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.14.如图,海中一渔船在A处于小岛C相距70海里,若该渔船由西向东航行30海里到达B 处,此时测得小岛C位于B的北偏东30°方向上,则该渔船此时与小岛C之间的距离是50海里.【分析】过点C作CD⊥AB于点D,由题意得∠BCD=30°,设BC=x,解直角三角形即可得到BD=BC•sin30°=x、CD=BC•cos30°=x、AD=30+x,根据“AD2+CD2=AC2”列方程求解可得.解:过点C作CD⊥AB于点D,由题意得∠BCD=30°,设BC=x,在Rt△BCD中,BD=BC•sin30°=x,CD=BC•cos30°=x;∴AD=30+x,∵AD2+CD2=AC2,∴(30+x)2+(x)2=702,解得:x=50(负值舍去),即渔船此时与C岛之间的距离为50海里.故答案为:50.【点评】此题考查了解直角三角形的应用﹣方向角问题,关键是根据题意画出图形,作出辅助线,构造直角三角形,“化斜为直”是解三角形的基本思路,常需作垂线(高),原则上不破坏特殊角.15.如图,已知点A是一次函数y=x(x≥0)图象上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y=(x>0)的图象过点B,C,若△OAB的面积为8,则△ABC的面积是.【分析】过C作CD⊥y轴于D,交AB于E,设AB=2a,根据直角三角形斜边中线是斜边一半得:BE=AE=CE=a,设A(x,x),则B(x,x+2a),C(x+a,x+a),因为B、C都在反比例函数的图象上,列方程可得结论.解:如图,过C作CD⊥y轴于D,交AB于E.∵AB⊥x轴,∴CD⊥AB,∵△ABC是等腰直角三角形,∴BE=AE=CE,设AB=2a,则BE=AE=CE=a,设A(x,x),则B(x,x+2a),C(x+a,x+a),∵B,C在反比例函数的图象上,∴x(x+2a)=(x+a)(x+a),解得x=a,∵S=AB•DE=•2a•x=8,△OAB∴ax=8,∴a2=8,∴a2=,=AB•CE=•2a•a=a2=.∵S△ABC故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.三.解答题(共7小题,满分55分)16.(6分)(5x+3y)(3y﹣5x)﹣(4x﹣y)(4y+x)【分析】由此代数式可见前面两项符合平方差公式,后面两项可根据多项式的乘法法则将其展开,再计算.解:(5x+3y)(3y﹣5x)﹣(4x﹣y)(4y+x),=9y2﹣25x2﹣(16xy+4x2﹣4y2﹣xy),=9y2﹣25x2﹣15xy﹣4x2+4y2,=13y2﹣29x2﹣15xy.【点评】本题考查了平方差公式和多项式的乘法运算,熟练掌握运算法则和公式是解题的关键.17.(7分)某中学为推动“时刻听党话永远跟党走”校园主题教育活动,计划开展四项活动:A:党史演讲比赛,B:党史手抄报比赛,C:党史知识竞赛,D:红色歌咏比赛.校团委对学生最喜欢的一项活动进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2两幅不完整的统计图.请结合图中信息解答下列问题:(1)本次共调查了40名学生;(2)将图1的统计图补充完整;(3)已知在被调查的最喜欢“党史知识竞赛”项目的4个学生中只有1名女生,现从这4名学生中任意抽取2名学生参加该项目比赛,请用画树状图或列表的方法,求出恰好抽到一名男生一名女生的概率.【分析】(1)根据A活动的人数及其百分比可得总人数;(2)总人数减去A、C、D的人数求出B活动的人数,据此补全统计图可得;(3)列表得出所有等可能结果,再从中找到恰好抽到一名男生一名女生的结果数,继而根据概率公式计算可得.解:(1)本次调查的学生总人数为6÷15%=40人,故答案为:40;(2)B项活动的人数为40﹣(6+4+14)=16,补全统计图如下:(3)列表如下:男男男女男(男,男)(男,男)(男,女)男(男,男)(男,男)(男,女)男(男,男)(男,男)(男,女)女(女,男)(女,男)(女,男)由表可知总共有12种结果,每种结果出现的可能性相同,其中恰好抽到一名男生和一名女生的结果有6种,所以抽到一名男生和一名女生的概率是,即.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.18.(7分)⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.【分析】(1)过点C作直径CD,由于AC=BC,=,根据垂径定理的推理得CD 垂直平分AB,所以CD将△ABC分成面积相等的两部分;(2)连结PO并延长交BC于E,过点A、E作弦AD,由于直线l与⊙O相切于点P,根据切线的性质得OP⊥l,而l∥BC,则PE⊥BC,根据垂径定理得BE=CE,所以弦AE 将△ABC分成面积相等的两部分.解:(1)如图1,直径CD为所求;(2)如图2,弦AD为所求.【点评】本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的性质.19.(7分)随着新能源汽车的发展,某公交公司将用新能源公交车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A型和B型新能源公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需300万元;若购买A型公交车2辆,B型公交车1辆,共需270万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为80万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1000万元,且确保这10辆公交车在该线路的年均载客量总和不少于900万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?【分析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A 型公交车1辆,B型公交车2辆,共需300万元;A型公交车2辆,B型公交车1辆,共需270万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过1000万元”和“10辆公交车在该线路的年均载客量总和不少于900万人次”列出不等式组探讨得出答案即可.解:(1)设购买A型新能源公交车每辆需x万元,购买B型新能源公交车每辆需y万元,由题意得:,解得,答:购买A型新能源公交车每辆需80万元,购买B型新能源公交车每辆需110万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:,因为a是整数,所以a=4,5;则共有两种购买方案:①购买A型公交车4辆,则B型公交车6辆:80×4+110×6=980万元;②购买A型公交车5辆,则B型公交车5辆:80×5+110×5=950万元;购买A型公交车5辆,则B型公交车5辆费用最少,最少总费用为950万元.【点评】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.20.(8分)在△ABC中,∠ACB=45°.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.(2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=,BC=3,CD=x,求线段CP的长.(用含x的式子表示)【分析】(1)由∠ACB=45°,AB=AC,得∠ABD=∠ACB=45°;∴∠BAC=90°,由正方形AD EF,可得∠DAF=90°,AD=AF,∠DAF=∠DAC+∠CAF;∠BAC=∠BAD+∠DAC;∴∠CAF=∠BAD.可证△DAB≌△F AC(SAS),得∠ACF=∠ABD=45°,∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)过点A作AG⊥AC交BC于点G,可得出AC=AG,易证:△GAD≌△CAF,所以∠ACF=∠AGD=45°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=,BC=3,CD=x,求线段CP的长.考虑点D的位置,分两种情况去解答.①点D在线段BC上运动,已知∠BCA=45°,可求出AQ=CQ=4.即DQ=4﹣x,易证△AQD∽△DCP,∴,∴,问题可求.②点D在线段BC延长线上运动时,∵∠BCA=45°,可求出AQ=CQ=4,∴DQ=4+x.过A作AQ⊥BC交CB延长线于点Q,则△AGD∽△ACF,得CF⊥BD,由△AQD∽△DCP,得,∴,问题解决.解:(1)CF与BD位置关系是垂直;证明如下:∵AB=AC,∠ACB=45°,∴∠ABC=45°.由正方形ADEF得AD=AF,∵∠DAF=∠BAC=90°,∴∠DAB=∠F AC,∴△DAB≌△F AC(SAS),∴∠ACF=∠ABD.∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)AB≠AC时,CF⊥BD的结论成立.理由是:过点A作GA⊥AC交BC于点G,∵∠ACB=45°,∴∠AGD=45°,∴AC=AG,同理可证:△GAD≌△CAF∴∠ACF=∠AGD=45°,∠BCF=∠ACB+∠ACF=90°,即CF⊥BD.(3)过点A作AQ⊥BC交CB的延长线于点Q,①点D在线段BC上运动时,∵∠BCA=45°,可求出AQ=CQ=4.∴DQ=4﹣x,△AQD∽△DCP,∴,∴,∴.②点D在线段BC延长线上运动时,∵∠BCA=45°,∴AQ=CQ=4,∴DQ=4+x.过A作AQ⊥BC,∴∠Q=∠F AD=90°,∵∠C′AF=∠C′CD=90°,∠AC′F=∠CC′D,∴∠ADQ=∠AFC′,则△AQD∽△AC′F.∴CF⊥BD,∴△AQD∽△DCP,∴,∴,∴.【点评】此题综合性强,须运用所学全等、相似、正方形等知识点,属能力拔高性的类型.21.(9分)某公司对一款新高压锅进行测试,放入足量的水和设定某一模式后,在容积不变的情况下,根据温度t(℃)的变化测出高压锅内的压强p(kpa)的大小,压强在加热前是100pa,达到最大值后高压锅停止加热,为方便分析,测试员记y=p﹣100,表示压强在测试过程中相对于100kpa的增加值,部分数据如下表:温度0102030405060……09.51825.53237.542……压强增大值y(kpa)(1)根据表中的数据,在给出的坐标系中画出相应的点(坐标系已画在答卷上);(2)y与t之间是否存在函数关系?若是,请求出函数关系式;否则请说明理由;(3)①在该模式下,压强p的最大值是多少?②当t分别为t1,t2(t1<t2)时,对应y的值分别为y1,y2,请比较与的大小,并解释比较结果的实际意义.【分析】(1)利用描点法即可解决问题;(2)设解析式为y=ax2+bx,利用待定系数法即可解决问题;(3)利用一次函数的性质即可判断;解:(1)坐标系中描点如图所示:(2)观察图象可知函数是二次函数,设解析式为y=at2+bt,把(10.9.5),(20,18)代入得到,解得,∴y=﹣t2+t,经验证,其他各个点的坐标都返回该函数关系式.(3)①由y=﹣t2+t可得,当t=100时,y有最大值50,∴在该模式下,压强p的最大值是150kpa.②由上式可得:=﹣t1+1,=﹣t2+1,∵t1<t2,∴>.实际意义:从加热起到t1℃,平均每摄氏度增加的压强,要大于从加热到t2℃时,平均每摄氏度增加的压强;【点评】本题考查二次函数的应用、一次函数的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(11分)如图,抛物线y=﹣x2+bx+c经过点B(2,0)、C(0,2)两点,与x轴的另一个交点为A.(1)求抛物线的解析式;(2)点D从点C出发沿线段CB以每秒个单位长度的速度向点B运动,作DE⊥CB 交y轴于点E,以CD、DE为边作矩形CDEF,设点D运动时间为t(s).①当点F落在抛物线上时,求t的值;②若点D在运动过程中,设△ABC与矩形CDEF重叠部分的面积为S,请直接写出S与t之间的函数关系式,并写出自变量t的取值范围.【分析】(1)把B与C的坐标代入抛物线解析式求出b与c的值,即可确定出解析式;(2)①如图1所示,构造全等三角形,表示出F坐标,代入抛物线解析式求出即可;②分三种情况考虑:(i)如图2所示,△ABC与矩形CDEF重叠部分的面积为矩形CDEF;(ii)如图3所示,△ABC与矩形CDEF重叠部分的面积为五边形CDHGF;(iii)如图4所示,△ABC与矩形CDEF重叠部分的面积为四边形CDMN,分别表示出S与t的关系式,并写出t的范围即可.解:(1)把B(2,0)、C(0,2)两点代入抛物线解析式得:,解得:b=,c=2,则抛物线解析式为y=﹣x2+x+2;(2)①如图1所示,点F在抛物线上,作DG⊥y轴,FH⊥y轴,易得△CDG≌△EFH,即CG=HE,GD=FH,由题意得:CD=EF=t,∵△CGD∽△COB,∴==,即CG=HE=t,DG=FH=t,∴OH=2﹣t,即F(﹣t,t﹣2),代入抛物线解析式得:t﹣2=﹣×t2+×(﹣t)+2,解得:t=;②分三种情况考虑:(i)如图2所示,△ABC与矩形CDEF重叠部分为矩形CDEF,在Rt△CDE中,CD=t,∠ECD=60°,∴DE=3t,∴S=3t•t=3t2(0<t≤);(ii)如图3所示,△ABC与矩形CDEF重叠部分为五边形CDHGF,由题意得:CD=t,在Rt△CED中,∠ECD=60°,∴CE=2t,∴OE=2t﹣2,在Rt△OGE中,GE=2OE=4t﹣4,=GE•EH=(2t﹣2)(4t﹣),同理可得EH=4t﹣,即S△GEH则S=t•3t﹣(2t﹣2)(4t﹣)=﹣5t2+16t﹣(<t≤);(iii)如图4,△ABC与矩形CDEF重叠部分为四边形CDMN,由题意得:CN==,CD=t,BD=4﹣t,在Rt△BMD中,DM=,则S=S△BCN ﹣S△BDM=CN•BC﹣BD•DM=××4﹣×(4﹣t)×=﹣t2+4t(<t≤).【点评】此题属于二次函数综合题,涉及的知识有:待定系数法求函数解析式,矩形的性质,解直角三角形,利用了分类讨论及数形结合的思想,熟练掌握各自的性质是解本题的关键.课后小知识--------------------------------------------------------------------------------------------------小学生每日名人名言1、读书要三到:心到、眼到、口到2、一日不读口生,一日不写手生。
山东省济宁市2019年中考数学试卷含答案解析(Word版)

2019年山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.在:0,﹣2,1,这四个数中,最小的数是()A.0 B.﹣2 C.1 D.2.下列计算正确的是()A.x2•x3=x5B.x6+x6=x12 C.(x2)3=x5D.x﹣1=x3.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°4.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C. D.5.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°6.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.97.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm8.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学)A.96,88, B.86,86 C.88,86 D.86,889.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.10.如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.40二、填空题:本大题共5小题,每小题3分,共15分11.若式子有意义,则实数x的取值范围是.12.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.13.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.14.已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是km/h.15.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.三、解答题:本大题共7小题,共55分16.先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.17.2019年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2019年父亲节当天甲品牌剃须刀的销售额.18.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.19.某地2019年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2019年在2019年的基础上增加投入资金1600万元.(1)从2019年到2019年,该地投入异地安置资金的年平均增长率为多少?(2)在2019年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?20.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.21.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.22.如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.2019年山东省济宁市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.在:0,﹣2,1,这四个数中,最小的数是()A.0 B.﹣2 C.1 D.【考点】有理数大小比较.【分析】根据有理数大小比较的法则解答.【解答】解:∵在0,﹣2,1,这四个数中,只有﹣2是负数,∴最小的数是﹣2.故选B.2.下列计算正确的是()A.x2•x3=x5B.x6+x6=x12 C.(x2)3=x5D.x﹣1=x【考点】负整数指数幂;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】原式利用同底数幂的乘法,合并同类项,幂的乘方及负整数指数幂法则计算,即可作出判断.【解答】解:A、原式=x5,正确;B、原式=2x6,错误;C、原式=x6,错误;D、原式=,错误,故选A3.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°【考点】平行线的性质.【分析】由垂线的性质和平角的定义求出∠3的度数,再由平行线的性质即可得出∠2的度数.【解答】解:∵AB⊥BC,∴∠ABC=90°,∴∠3=180°﹣90°﹣∠1=35°,∵a∥b,∴∠2=∠3=35°.故选:C.4.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C. D.【考点】简单几何体的三视图.【分析】观察几何体,找出左视图即可.【解答】解:如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是,故选D5.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°【考点】圆心角、弧、弦的关系.【分析】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.【解答】解:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选C.6.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.9【考点】代数式求值.【分析】将3﹣2x+4y变形为3﹣2(x﹣2y),然后代入数值进行计算即可.【解答】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选:A.7.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm【考点】平移的性质.【分析】先根据平移的性质得到CF=AD=2cm,AC=DF,而AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD,然后利用整体代入的方法计算即可【解答】解:∵△ABE向右平移2cm得到△DCF,∴EF=AD=2cm,AE=DF,∵△ABE的周长为16cm,∴AB+BE+AE=16cm,∴四边形ABFD的周长=AB+BE+EF+DF+AD=AB+BE+AE+EF+AD=16cm+2cm+2cm=20cm.故选C.8.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学)A.96,88, B.86,86 C.88,86 D.86,88【考点】众数;中位数.【分析】找出五位同学演讲成绩出现次数最多的分数即为众数,将分数按照从小到大的顺序排列,找出中位数即可.【解答】解:这五位同学演讲成绩为96,88,86,93,86,按照从小到大的顺序排列为86,86,88,93,96,则这五位同学演讲成绩的众数与中位数依次是86,88,故选D9.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.【考点】概率公式;利用轴对称设计图案.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选B.10.如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.40【考点】反比例函数与一次函数的交点问题.【分析】过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b 的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.【解答】解:过点A 作AM ⊥x 轴于点M ,过点F 作FN ⊥x 轴于点N ,如图所示.设OA=a ,BF=b ,在Rt △OAM 中,∠AMO=90°,OA=a ,sin ∠AOB=,∴AM=OA •sin ∠AOB=a ,OM==a ,∴点A 的坐标为(a , a ).∵点A 在反比例函数y=的图象上,∴a ×a==48, 解得:a=10,或a=﹣10(舍去).∴AM=8,OM=6.∵四边形OACB 是菱形,∴OA=OB=10,BC ∥OA ,∴∠FBN=∠AOB .在Rt △BNF 中,BF=b ,sin ∠FBN=,∠BNF=90°,∴FN=BF •sin ∠FBN=b ,BN==b ,∴点F 的坐标为(10+b , b ).∵点B 在反比例函数y=的图象上,∴(10+b )×b=48,解得:b=,或b=(舍去).∴FN=,BN=﹣5,MN=OB+BN ﹣OM=﹣1.S △AOF =S △AOM +S 梯形AMNF ﹣S △OFN =S 梯形AMNF =(AM+FN )•MN=(8+)×(﹣1)=×(+1)×(﹣1)=40.故选D .二、填空题:本大题共5小题,每小题3分,共15分11.若式子有意义,则实数x 的取值范围是 x ≥1 .【考点】二次根式有意义的条件.【分析】根据二次根式的性质可以得到x﹣1是非负数,由此即可求解.【解答】解:依题意得x﹣1≥0,∴x≥1.故答案为:x≥1.12.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:AH=CB等(只要符合要求即可),使△AEH≌△CEB.【考点】全等三角形的判定.【分析】开放型题型,根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【解答】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.13.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.【考点】平行线分线段成比例.【分析】首先求出AD的长度,然后根据平行线分线段成比例定理,列出比例式即可得到结论.【解答】解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=,故答案为:.14.已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是80km/h.【考点】分式方程的应用.【分析】设这辆汽车原来的速度是xkm/h,由题意列出分式方程,解方程求出x的值即可.【解答】解:设这辆汽车原来的速度是xkm/h,由题意列方程得:,解得:x=80经检验,x=80是原方程的解,所以这辆汽车原来的速度是80km/h.故答案为:80.15.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.【考点】规律型:数字的变化类.【分析】把整数1化为,可以发现后一个数的分子恰是前面数的分母,分析即可求解.【解答】解:把整数1化为,得,,,(),,,…可以发现后一个数的分子恰是前面数的分母,所以,第4个数的分子是2,分母是3,故答案为:.三、解答题:本大题共7小题,共55分16.先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.【考点】整式的混合运算—化简求值.【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2﹣2ab+a2+2ab+b2=2a2+b2,当a=﹣1,b=时,原式=2+2=4.17.2019年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2019年父亲节当天甲品牌剃须刀的销售额.【考点】条形统计图;折线统计图.【分析】(1)将销售总额减去2019、2019、2019年的销售总额,求出2019年的销售额,补全条形统计图即可;(2)将2019年的销售总额乘以甲品牌剃须刀所占百分比即可.【解答】解:(1)2019年父亲节当天剃须刀的销售额为5.8﹣1.7﹣1.2﹣1.3=1.6(万元),补全条形图如图:(2)1.3×17%=0.221(万元).答:该店2019年父亲节当天甲品牌剃须刀的销售额为0.221万元.18.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)由新坡面的坡度为1:,可得tanα=tan∠CAB==,然后由特殊角的三角函数值,求得答案;(2)首先过点C作CD⊥AB于点D,由坡面BC的坡度为1:1,新坡面的坡度为1:.即可求得AD,BD的长,继而求得AB的长,则可求得答案.【解答】解:(1)∵新坡面的坡度为1:,∴tanα=tan∠CAB==,∴∠α=30°.答:新坡面的坡角a为30°;(2)文化墙PM不需要拆除.过点C作CD⊥AB于点D,则CD=6,∵坡面BC的坡度为1:1,新坡面的坡度为1:,∴BD=CD=6,AD=6,∴AB=AD﹣BD=6﹣6<8,∴文化墙PM不需要拆除.19.某地2019年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2019年在2019年的基础上增加投入资金1600万元.(1)从2019年到2019年,该地投入异地安置资金的年平均增长率为多少?(2)在2019年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?【考点】一元二次方程的应用.【分析】(1)设年平均增长率为x,根据:2019年投入资金给×(1+增长率)2=2019年投入资金,列出方程组求解可得;(2)设今年该地有a户享受到优先搬迁租房奖励,根据:前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万,列不等式求解可得.【解答】解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:从2019年到2019年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.20.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.【考点】正方形的性质.【分析】(1)根据正方形的性质以及勾股定理即可求得;(2)根据等腰三角形三线合一的性质证得CE⊥AF,进一步得出∠BAF=∠BCN,然后通过证得△ABF≌△CBN得出AF=CN,进而证得△ABF∽△COM,根据相似三角形的性质和正方形的性质即可证得CN=CM.【解答】解:(1)∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∴2AB2=BD2,∵BD=,∴AB=1,∴正方形ABCD的边长为1;(2)CN=CM.证明:∵CF=CA,AF是∠ACF的平分线,∴CE⊥AF,∴∠AEN=∠CBN=90°,∵∠ANE=∠CNB,∴∠BAF=∠BCN,在△ABF和△CBN中,,∴△ABF≌△CBN(AAS),∴AF=CN,∵∠BAF=∠BCN,∠ACN=∠BCN,∴∠BAF=∠OCM,∵四边形ABCD是正方形,∴AC⊥BD,∴∠ABF=∠COM=90°,∴△ABF∽△COM,∴=,∴==,即CN=CM.21.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.【考点】一次函数综合题.【分析】(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q到直线y=x+9,然后根据切线的判定方法可判断⊙Q与直线y=x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.【解答】解:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.22.如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)抛物线顶点在x轴上则可得出顶点纵坐标为0,将解析式进行配方就可以求出a的值,继而得出函数解析式;(2)利用轴对称求最短路径的方法,首先通过B点关于l的对称点B′来确定P点位置,再求出直线B′E的解析式,进而得出P点坐标;(3)可以先求出直线FD的解析式,结合以线段FQ为直径的圆恰好经过点D这个条件,明确∠FDG=90°,得出直线DG解析式的k值与直线FD解析式的k值乘积为﹣1,利用D 点坐标求出直线DG解析式,将点Q坐标用抛物线解析式表示后代入DG直线解析式可求出点Q坐标.【解答】解:(1)∵抛物线y=ax2﹣6ax+c(a>0)的顶点A在x轴上∴配方得y=a(x﹣3)2﹣9a+1,则有﹣9a+1=0,解得a=∴A点坐标为(3,0),抛物线m的解析式为y=x2﹣x+1;(2)∵点B关于对称轴直线x=3的对称点B′为(6,1)∴连接EB′交l于点P,如图所示设直线EB ′的解析式为y=kx+b ,把(﹣7,7)(6,1)代入得解得,则函数解析式为y=﹣x+把x=3代入解得y=,∴点P 坐标为(3,);(3)∵y=﹣x+与x 轴交于点D ,∴点D 坐标为(7,0),∵y=﹣x+与抛物线m 的对称轴l 交于点F ,∴点F 坐标为(3,2),求得FD 的直线解析式为y=﹣x+,若以FQ 为直径的圆经过点D ,可得∠FDQ=90°,则DQ 的直线解析式的k 值为2,设DQ 的直线解析式为y=2x+b ,把(7,0)代入解得b=﹣14,则DQ 的直线解析式为y=2x ﹣14,设点Q 的坐标为(a ,),把点Q 代入y=2x ﹣14得=2a ﹣14解得a 1=9,a 2=15.∴点Q 坐标为(9,4)或(15,16).2019年6月25日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学精品复习资料山东省济宁市兖州市中考数学一模试卷一、选择题:本大题共10道小题,每小题给出的四个选项中,只有一项符合题意,每小题选对得3分,满分共30分1.在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣4 B.2 C.﹣1 D.32.计算﹣3(x﹣2y)+4(x﹣2y)的结果是()A.x﹣2y B.x+2y C.﹣x﹣2y D.﹣x+2y3.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直4.函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠15.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A.6 B.7 C.8 D.96.质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机抽取100件进行检测,检测出次品5件,由此估计这一批次产品中的次品件数是()A.5 B.100 C.500 D.100007.下列二次根式中的最简二次根式是()A. B. C.D.8.如图是二次函数y=ax2+bx+c=(a≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab <0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤方程ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有()A.①③④ B.②④⑤ C.①②⑤ D.②③⑤9.一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.11 B.12 C.13 D.1410.如图,已知直线y=x﹣3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是()A.8 B.12 C.D.二、填空题:本大题5道小题,每小题3分,满分共15分,要求只写出最后结果11.端午节期间,“惠民超市”销售的粽子打8折后卖a元,则粽子的原价卖元.12.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为cm(参考数据sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm,可用科学计算器).13.若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b=.14.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数y=(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为.15.已知,正六边形ABCDEF在直角坐标系内的位置如图所示,A(﹣2,0),点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2015次翻转之后,点B 的坐标是.三、解答题:本大题共7道小题,满分共55分,解答应写出文字说明和推理步骤16.计算:2cos45°﹣(π+1)0++()﹣1.17.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:BE=CE.(2)求∠BEC的度数.18.为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(3)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润.19.在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为S=ma+nb﹣1,其中m,n为常数.(1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;(2)利用(1)中的格点多边形确定m,n的值.20.【发现】如图∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图①)【思考】如图②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C 三点的圆上吗?请证明点D也不在⊙O内.【应用】利用【发现】和【思考】中的结论解决问题:若四边形ABCD中,AD∥BC,∠CAD=90°,点E在边AB上,CE⊥DE.(1)作∠ADF=∠AED,交CA的延长线于点F(如图④),求证:DF为Rt△ACD的外接圆的切线;(2)如图⑤,点G在BC的延长线上,∠BGE=∠BAC,已知sin∠AED=,AD=1,求DG的长.21.一次函数y=﹣x的图象如图所示,它与二次函数y=ax2+4ax+c的图象交于A、B两点(其中点A在点B的右侧),与这个二次函数图象的对称轴交于点C.(1)求点C的坐标.(2)设二次函数图象的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式.②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.山东省济宁市兖州市中考数学一模试卷参考答案与试题解析一、选择题:本大题共10道小题,每小题给出的四个选项中,只有一项符合题意,每小题选对得3分,满分共30分1.在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣4 B.2 C.﹣1 D.3【考点】有理数大小比较.【分析】根据有理数大小比较的法则直接求得结果,再判定正确选项.【解答】解:∵正数和0大于负数,∴排除2和3.∵|﹣2|=2,|﹣1|=1,|﹣4|=4,∴4>2>1,即|﹣4|>|﹣2|>|﹣1|,∴﹣4<﹣2<﹣1.故选:A.【点评】考查了有理数大小比较法则.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.2.计算﹣3(x﹣2y)+4(x﹣2y)的结果是()A.x﹣2y B.x+2y C.﹣x﹣2y D.﹣x+2y【考点】整式的加减.【专题】计算题.【分析】原式去括号合并即可得到结果.【解答】解:原式=﹣3x+6y+4x﹣8y=x﹣2y,故选:A.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直【考点】直线的性质:两点确定一条直线.【专题】应用题.【分析】根据公理“两点确定一条直线”来解答即可.【解答】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.【点评】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.4.函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠1【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:2﹣x≥0且x﹣1≠0,解得:x≤2且x≠1.故选:B.【点评】本题考查函数自变量的取值范围,涉及的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A.6 B.7 C.8 D.9【考点】扇形面积的计算.=,【分析】由正方形的边长为3,可得弧BD的弧长为6,然后利用扇形的面积公式:S扇形DAB计算即可.【解答】解:∵正方形的边长为3,∴弧BD的弧长=6,∴S==×6×3=9.扇形DAB故选D.=.【点评】此题考查了扇形的面积公式,解题的关键是:熟记扇形的面积公式S扇形DAB6.质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机抽取100件进行检测,检测出次品5件,由此估计这一批次产品中的次品件数是()A.5 B.100 C.500 D.10000【考点】用样本估计总体.【分析】先求出次品所占的百分比,再根据生产这种零件10000件,直接相乘得出答案即可.【解答】解:∵随机抽取100件进行检测,检测出次品5件,∴次品所占的百分比是:,∴这一批次产品中的次品件数是:10000×=500(件),故选C.【点评】此题主要考查了用样本估计总体,根据出现次品的数量求出次品所占的百分比是解题关键.7.下列二次根式中的最简二次根式是()A. B. C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、符合最简二次根式的定义,故本选项正确;B、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;C、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、被开方数含分母,不是最简二次根式,故本选项错误;故选:A【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.8.如图是二次函数y=ax2+bx+c=(a≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab <0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤方程ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有()A.①③④ B.②④⑤ C.①②⑤ D.②③⑤【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵﹣=﹣2,∴b=4a,ab>0,∴①错误,④正确,∵抛物线与x轴交于﹣4,0处两点,∴b2﹣4ac>0,方程ax2+bx=0的两个根为x1=0,x2=﹣4,∴②⑤正确,∵当x=﹣3时y>0,即9a﹣3b+c>0,∴③错误,故正确的有②④⑤.故选:B.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用9.一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.11 B.12 C.13 D.14【考点】由三视图判断几何体.【分析】从俯视图可得:碟子共有3摞,结合主视图和左视图,可得每摞碟子的个数,相加可得答案.【解答】解:由俯视图可得:碟子共有3摞,由几何体的主视图和左视图,可得每摞碟子的个数,如下图所示:故这张桌子上碟子的个数为3+4+5=12个,故选:B.【点评】本题考查的知识点是简单空间图形的三视图,分析出每摞碟子的个数是解答的关键.10.如图,已知直线y=x﹣3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是()A.8 B.12 C.D.【考点】圆的综合题.【专题】压轴题.【分析】求出A、B的坐标,根据勾股定理求出AB,求出点C到AB的距离,即可求出圆C上点到AB的最大距离,根据面积公式求出即可.【解答】解:∵直线y=x﹣3与x轴、y轴分别交于A、B两点,∴A点的坐标为(4,0),B点的坐标为(0,﹣3),3x﹣4y﹣12=0,即OA=4,OB=3,由勾股定理得:AB=5,过C作CM⊥AB于M,连接AC,则由三角形面积公式得:×AB×CM=×OA×OC+×OA×OB,∴5×CM=4×1+3×4,∴CM=,∴圆C上点到直线y=x﹣3的最大距离是1+=,∴△PAB面积的最大值是×5×=,故选:C.【点评】本题考查了三角形的面积,点到直线的距离公式的应用,解此题的关键是求出圆上的点到直线AB的最大距离,属于中档题目.二、填空题:本大题5道小题,每小题3分,满分共15分,要求只写出最后结果11.端午节期间,“惠民超市”销售的粽子打8折后卖a元,则粽子的原价卖a元.【考点】列代数式.【分析】8折=80%,把原价当作单位“1”,则现价是原价的80%,根据分数除法的意义原价是:a÷80%=,得结果.【解答】解:8折=80%,a÷80%=,故答案为:.【点评】本题主要考查了打折问题,找准单位“1”,弄清各种量的关系是解答此题的关键.12.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为14.1cm(参考数据sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm,可用科学计算器).【考点】解直角三角形的应用.【分析】作BE⊥CD于E,根据等腰三角形的性质和∠CBD=40°,求出∠CBE的度数,根据余弦的定义求出BE的长.【解答】解:如图2,作BE⊥CD于E,∵BC=BD,∠CBD=40°,∴∠CBE=20°,在Rt△CBE中,cos∠CBE=,∴BE=BC•cos∠CBE=15×0.940=14.1cm.故答案为:14.1.【点评】本题考查的是解直角三角形的应用,掌握锐角三角函数的概念是解题的关键,作出合适的辅助线构造直角三角形是解题的重要环节.13.若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b=2015.【考点】一元二次方程的解.【分析】由方程有一根为﹣1,将x=﹣1代入方程,整理后即可得到a+b的值.【解答】解:把x=﹣1代入一元二次方程ax2﹣bx﹣2015=0得:a+b﹣2015=0,即a+b=2015.故答案是:2015.【点评】此题考查了一元二次方程的解的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,关键是把方程的解代入方程.14.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数y=(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为6+2.【考点】反比例函数图象上点的坐标特征.【专题】压轴题.【分析】设E(x,x),则B(2,x+2),根据反比例函数系数的几何意义得出x2=x(x+2),求得E的坐标,从而求得k的值.【解答】解:设E(x,x),∴B(2,x+2),∵反比例函数y=(k≠0,x>0)的图象过点B、E.∴x2=2(x+2),解得x1=1+,x2=1﹣(舍去),∴k=x2=6+2,故答案为6+2.【点评】本题考查了反比例函数图象上点的坐标特征,关键是掌握反比例函数图象上点与反比例函数中系数k的关系.15.已知,正六边形ABCDEF在直角坐标系内的位置如图所示,A(﹣2,0),点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2015次翻转之后,点B 的坐标是(4031,).【考点】坐标与图形变化-旋转.【专题】规律型.【分析】根据正六边形的特点,每6次翻转为一个循环组循环,用2015除以6,根据商和余数的情况确定出点B的位置,然后求出翻转前进的距离,过点B作BG⊥x于G,求出∠BAG=60°,然后求出AG、BG,再求出OG,然后写出点B的坐标即可.【解答】解:∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,∴每6次翻转为一个循环组循环,∵2015÷6=335余5,∴经过2015次翻转为第336循环组的第5次翻转,点B在开始时点C的位置,∵A(﹣2,0),∴AB=2,∴翻转前进的距离=2×2015=4030,如图,过点B作BG⊥x于G,则∠BAG=60°,所以,AG=2×=1,BG=2×=,所以,OG=4030+1=4031,所以,点B的坐标为(4031,).故答案为:(4031,).【点评】本题考查了坐标与图形变化﹣旋转,正六边形的性质,确定出最后点B所在的位置是解题的关键,难点在于作辅助线构造出直角三角形.三、解答题:本大题共7道小题,满分共55分,解答应写出文字说明和推理步骤16.计算:2cos45°﹣(π+1)0++()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用零指数幂法则计算,第三项利用算术平方根定义计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=2×﹣1++2=+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:BE=CE.(2)求∠BEC的度数.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)根据正方形的性质,可得AB=AD=CD,∠BAD=∠ADC=90°,根据正三角形的性质,可得AE=AD=DE,∠EAD=∠EDA=60°,根据全等三角形的判定与性质,可得答案;(2)根据等腰三角形的性质,∠ABE=∠AEB,根据三角形的内角和定理,可得∠AEB,根据角的和差,可得答案.【解答】(1)证明:∵四边形ABCD为正方形∴AB=AD=CD,∠BAD=∠ADC=90°∵三角形ADE为正三角形∴AE=AD=DE,∠EAD=∠EDA=60°∴∠BAE=∠CDE=150°在△BAE和△CDE中,∴△BAE≌△CDE∴BE=CE;(2)∵AB=AD,AD=AE,∴AB=AE,∴∠ABE=∠AEB,又∵∠BAE=150°,∴∠ABE=∠AEB=15°,同理:∠CED=15°∴∠BEC=60°﹣15°×2=30°.【点评】本题考查了正方形的性质,(1)利用了正方形的性质,等腰三角形的性质,全等三角形的判定与性质;(2)利用了等腰三角形的判定与性质,角的和差.18.为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(3)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润.【考点】一次函数的应用;分式方程的应用.【分析】(1)分式方程中的销售问题,题目中有两个相等关系,①每台电冰箱的进价比每台空调的进价多400元,用80000元购进电冰箱的数量与用64000元购进空调的数量相等,用第一个相等关系,设每台空调的进价为m元,表示出每台电冰箱的进价为(m+400)元,用第二个相等关系列方程,=.(2)销售问题中的确定方案和利润问题,题目中有两个不等关系,①要求购进空调数量不超过电冰箱数量的2倍,②总利润不低于13000元,根据题意设出设购进电冰箱x台(x为正整数),这100台家电的销售总利润为y元,列出不等式组,确定出购买电冰箱的台数的范围,从而确定出购买方案,再利用一次函数的性质确定出,当x=34时,y有最大值,即可.【解答】解:(1)设每台空调的进价为m元,则每台电冰箱的进价为(m+400)元,根据题意得:=,解得:m=1600经检验,m=1600是原方程的解,m+400=1600+400=2000,答:每台空调的进价为1600元,则每台电冰箱的进价为2000元.(2)设购进电冰箱x台(x为正整数),这100台家电的销售总利润为y元,则y=(2100﹣2000)x+(1750﹣1600)(100﹣x)=﹣50x+15000,…根据题意得:,解得:33≤x≤40,∵x为正整数,∴x=34,35,36,37,38,39,40,∴合理的方案共有7种,即①电冰箱34台,空调66台;②电冰箱35台,空调65台;③电冰箱36台,空调64台;④电冰箱37台,空调63台;⑤电冰箱38台,空调62台;⑥电冰箱39台,空调61台;⑦电冰箱40台,空调60台;∵y=﹣50x+15000,k=﹣50<0,∴y随x的增大而减小,∴当x=34时,y有最大值,最大值为:﹣50×34+15000=13300(元),答:当购进电冰箱34台,空调66台获利最大,最大利润为13300元.【点评】本题是一次函数的应用题,主要考查了列分式方程解应用题,列不等式组,确定方案,涉及的知识点有,列分式方程=,列不等式组,一次函数的性质,由y=﹣50x+15000,k=﹣50<0,得出y随x的增大而减小,解本题的关键是找出题目中相等和不等关系,本题容易丢掉分式方程的检验.19.在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为S=ma+nb﹣1,其中m,n为常数.(1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;(2)利用(1)中的格点多边形确定m,n的值.【考点】作图—应用与设计作图.【专题】作图题.【分析】(1)利用格点图形的定义结合三角形以及平行四边形面积求法得出即可;(2)利用已知图形,结合S=ma+nb﹣1得出关于m,n的关系式,进而求出即可.【解答】解:(1)如图所示:;(2)∵格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为S=ma+nb ﹣1,其中m,n为常数,∴三角形:S=3m+8n﹣1=6,平行四边形:S=3m+8n﹣1=6,菱形:S=5m+4n﹣1=6,则,解得:.【点评】此题主要考查了应用设计与作图以及三角形、平行四边形面积求法和二元一次方程组的解法,正确得出关于m,n的方程组是解题关键.20.【发现】如图∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图①)【思考】如图②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C 三点的圆上吗?请证明点D也不在⊙O内.【应用】利用【发现】和【思考】中的结论解决问题:若四边形ABCD中,AD∥BC,∠CAD=90°,点E在边AB上,CE⊥DE.(1)作∠ADF=∠AED,交CA的延长线于点F(如图④),求证:DF为Rt△ACD的外接圆的切线;(2)如图⑤,点G在BC的延长线上,∠BGE=∠BAC,已知sin∠AED=,AD=1,求DG的长.【考点】圆的综合题.【专题】压轴题.【分析】【思考】假设点D在⊙O内,利用圆周角定理及三角形外角的性质,可证得与条件相矛盾的结论,从而证得点D不在⊙O内;【应用】(1)作出RT△ACD的外接圆,由发现可得点E在⊙O上,则证得∠ACD=∠FDA,又因为∠ACD+∠ADC=90°,于是有∠FDA+∠ADC=90°,即可证得DF是圆的切线;(2)根据【发现】和【思考】可得点G在过C、A、E三点的圆O上,进而易证四边形ACGD是矩形,根据已知条件解直角三角形ACD可得AC的长,即DG的长.【解答】解:【思考】如图1,假设点D在⊙O内,延长AD交⊙O于点E,连接BE,则∠AEB=∠ACB,∵∠ADB是△BDE的外角,∴∠ADB>∠AEB,∴∠ADB>∠ACB,因此,∠ADB>∠ACB这与条件∠ACB=∠ADB矛盾,所以点D也不在⊙O内,所以点D即不在⊙O内,也不在⊙O外,点D在⊙O上;【应用】(1)如图2,取CD的中点O,则点O是RT△ACD的外心,∵∠CAD=∠DEC=90°,∴点E在⊙O上,∴∠ACD=∠AED,∵∠FDA=∠AED,∴∠ACD=∠FDA,∵∠DAC=90°,∴∠ACD+∠ADC=90°,∴∠FDA+∠ADC=90°,∴OD⊥DF,∴DF为Rt△ACD的外接圆的切线;(2)∵∠BGE=∠BAC,∴点G在过C、A、E三点的圆上,如图3,又∵过C、A、E三点的圆是RT△ACD的外接圆,即⊙O,∴点G在⊙O上,∵CD是直径,∴∠DGC=90°,∵AD∥BC,∴∠ADG=90°∵∠DAC=90°∴四边形ACGD是矩形,∴DG=AC,∵sin∠AED=,∠ACD=∠AED,∴sin∠ACD=,在RT△ACD中,AD=1,∴CD=,∴AC==,∴DG=.【点评】本题综合考查了圆周角定理、反证法、三角形外角的性质、点和圆的位置关系、切线的判定、矩形的判定和性质以及解直角三角形等知识,熟练掌握性质定理是解题的关键.21.一次函数y=﹣x的图象如图所示,它与二次函数y=ax2+4ax+c的图象交于A、B两点(其中点A在点B的右侧),与这个二次函数图象的对称轴交于点C.(1)求点C的坐标.(2)设二次函数图象的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式.②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.【考点】一次函数综合题.【分析】(1)由抛物线的对称轴方程可知x=﹣2,将x=﹣2代入y=x得:y==,从而可知点C的坐标为(﹣2,);(2)①根据关于x轴对称的点的坐标特点可知D(﹣2,),从而得到CD=3,然后三角形的面积公式可求得CD边上的高,故此可知得到点A的横坐标为0,从而可知点A的坐标为(0,0),设抛物线的解析式为y=a(x+2)2﹣,将(0,0)代入得:a=.抛物线的解析式为y=;②如图所示,过点A作AE⊥DC,垂足为E.设点D的坐标为(﹣2,m),则CD=|m﹣|,由△ACD 的面积为10,可知=10,从而求得:m=6.5或m=﹣3.5,故此可求得点D与点A的坐标,最后利用待定系数法求解即可.【解答】解:(1)∵抛物线的对称轴方程为x=﹣,∴抛物线的对称轴为x=﹣=﹣2.∵将x=﹣2代入y=x得:y==,∴点C的坐标为(﹣2,).(2)①∵点D与点C关于x轴对称,∴点D的坐标为(﹣2,).∴CD=3.设点A的横坐标为x,则点A到CD的距离=(x+2).∵△ACD的面积等于3,∴=3.解得:x=0.将x=0代入y=﹣x得:y=0.∴点A的坐标为(0,0).设抛物线的解析式为y=a(x+2)2﹣,将(0,0)代入得;4a﹣=0,解得:a=.∴抛物线的解析式为y=.②如图所示,过点A作AE⊥DC,垂足为E.设点D的坐标为(﹣2,m),则CD=|m﹣|.∵DC=AC,∴AC=|m﹣|.∵EA∥x轴,∴∠COF=∠CAE.∴AE=AC=||.∵△ACD的面积为10,∴=10,即=10.解得:m=6.5或m=﹣3.5.当m=6.5时,点D的坐标为(﹣2,6.5).AE=×(6.5﹣1.5)=4.∴点A的横坐标为﹣2+4=2.将x=2代入y=﹣得;y==﹣.∴点A的坐标为(2,﹣).设抛物线的解析式为y=a(x+2)2+6.5,将点A的坐标代入得:16a+6.5=﹣1.5.解得:a=﹣.∴抛物线的解析式为y=.当m=﹣3.5时,点D的坐标为(﹣2,﹣3.5).AE==4.∴点A的坐标为(2,﹣).设抛物线的解析式为y=a(x+2)2﹣3.5,将点A的坐标代入得:16a﹣3.5=﹣1.5.解得:a=.∴抛物线的解析式为y=(x+2)2﹣3.5.【点评】本题主要考查的是一次函数、二次函数的综合应用,解答本题主要应用了二次函数的图象的性质、关于x轴对称点的坐标特点、三角形的面积公式,根据三角形的面积公式列出关于m的方程是解题的关键.。