钢铁材料的应用及发展

钢铁材料的应用及发展
钢铁材料的应用及发展

钢铁材料的应用及发展

在经历了代用材料的强烈冲击后,人们通过对各种材料的比较,认识到在目前钢铁材料仍然是量大面广的材料。在可预见的未来,还没有任何一种材料能够全面取代钢铁材料,钢铁材料仍将是人类社会和经济发展的物质基础。

钢铁材料具有以下显著特点:良好的综合力学性能;质量稳定,价格低廉;资源丰富;回收率高。钢铁材料应用几乎涉及人类社会各个领域,高层建筑、深层地下和海洋设施、大跨度重载桥梁、轻型节能汽车、高速船舶、石油开采和长距离油气输送管线、大型储存容器、工程机械、精密仪器、航空航天、高速铁路、能源设施等国民经济的各个领域都需要综合性能优异、使用寿命长以及成本低的钢铁材料。因此,钢铁材料不仅关系到国家的经济发展,同时也起到了维护国家安全的重要作用。

此外,人类社会的发展对钢铁材料的生产、加工、使用和回收等环节提出了节约能源、节约资源、满足可持续发展战略的要求,因此在保持钢铁材料低成本和易回收等特点的基础上,提高钢铁材料的强度和寿命,开发新一代钢铁材料引起了世界各国的高度重视。

超级钢便是20世纪90年代末为更好地利用钢铁材料在使用性能上的有事,并进一步改进钢铁材料的一些不足,减少材料消耗、降低能耗而研制的新材料。超级钢既有高强度、高韧性的力学性能特征和超洁净、高均匀性、超组化的组织和成分特征。它作为新一代的钢铁材料,可用于汽车、道路、桥梁、高层建筑等许多方面。若将超级钢应用于汽车制造中,可有效地减轻车体重量,减少能源消耗和环境污染。若将其应用到道路、桥梁和高层建筑等方面,不仅可以减轻零件的重量,还可以延长这些基础设施更新换代的时间,有效节约能源。

超级钢不仅具有优异的性能,同时还符合节能和环保要求,因此可以断定,在不久的将来,超级钢必将得到广泛的应用。

复合材料的发展和应用

复合材料的发展和应用 复合材料的发展和应用 具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候 论文格式论文范文毕业论文 全球复合发展概况复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电气、、健身器材等领域,在近几年更是得到了飞速发展。另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。树脂基复合材料的增强材料树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。 1、玻璃纤维目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道

的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃纤维属于耐高温的玻璃纤维,是比较理想的耐热防火材料,用其增强酚醛树脂可制成各种结构的耐高温、耐烧蚀的复合材料部件,大量应用于火箭、导弹的防热材料。迄今为止,我国已经实用化的高性能树脂基复合材料用的碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维中,只有高强度玻璃纤维已达到国际先进水平,且拥有自主知识产权,形成了小规模的产业,现阶段年产可达500吨。 2、碳纤维 3、芳纶纤维 20世纪80年代以来,荷兰、日本、前苏联也先后开展了芳纶纤维的研制开发工作。日本及俄罗斯的芳纶纤维已投入市场,年增长速度也达到20%左右。芳纶纤维比强度、比模量较高,因此被广泛应用于航空航天领域的高性能复合材料零部件(如火箭发动机壳体、飞机发动机舱、整流罩、方向舵等)、舰船(如航空母舰、核潜艇、游艇、救生艇等)、汽车(如轮胎帘子线、高压软管、摩擦材料、高压气瓶等)以及耐热运输带、体育运动器材等。 4、超高分子量聚乙烯纤维超高分子量聚乙烯纤维的比强度在各种纤维中位居第一,尤其是它的抗化学试剂侵蚀性能和抗老化性能优良。它还具有优良的高频声纳透过性和耐海水腐蚀性,许多国家已用它来制造舰艇的高频声纳导流罩,大大提高了舰艇的探雷、扫雷能力。除在军事领域,在汽车制造、船舶制造、医疗器械、体育运动器材等领域超高分子量聚乙烯纤维也有广阔的应用前景。该纤维一经问世就引起了世界发达国家的极大兴趣和重视。 5、热固性树脂基复合材料热塑性树脂基复合材料热塑性树脂基复合材料是20世纪80年代发展起来的,主要有长纤维增强粒料、连

钢铁材料基础知识讲解

钢铁材料基础知识 1 材料:金属、非金属 2 金属材料: 共性:有光泽、良的导热导电性能,金属学中分为晶体 黑色金属:铁、钴、镍 有色金属(非黑色金属) 3 钢铁材料 纯铁、钢材、铸铁 3.1 纯铁: 铁的密度为7.9克/立方厘米,熔点,是1534℃, 3.2 钢: 铁中加入碳,0.02-2.11%之间,理论上讲,我们使用的是钢,丌是铁,有时将低碳钢叫做铁,是错误的。 3.3 钢的一些性能 物理性能 熔点在1148℃以上;密度在7.85克/立方厘米;线膨胀系数 10.6-12×10-6×/℃;弹性模量E=210GPa 材料力学中 简支梁公式 y=PX/12EI×(3l2/4-x2)最大挠度y=PL3/48EJ I 惯性矩 悬臂梁 y=PX2/6EI×(3l-x)最大挠度y= PL3/3EJ Rmax=Mmax/WZ

力学性能: GB228-1987 金属拉伸试验方法 GB/T228-2002 金属材料室温拉伸试验方法开始改 GB/T228.1-2010 金属材料拉伸试验第1部分:室温试验方法 抗拉强度Re(σb);屈服强度Rm(σs);断后伸长率A%;硬度(HB、HR、)不 抗拉强度紧密相关大约是Re=0.3-0.6HB GB/T229-2007 金属材料夏比摆锤冲击试验方法 冲击吸收能量K(94标准为吸收功) 化学性能: 五大元素 C Si Mn S P 影响韧性 碳对钢材性能的影响 铁中加入碳之后,随着碳含量增加,钢材的抗拉强度增加。韧性下降 4 钢材的种类 按化学成份分类 (1) 碳素钢: a.低碳钢(C≤0.25%); b.中碳钢(0.25≤C≤0.60%); c.高碳钢(C≥0.60%)。 (2)合金钢: a.低合金钢(合金元素总含量≤5%) b.中合金钢(合金元素总含量>5~10%) c.高合金钢(合金元素总含量>10%)。 按用途分 (1)普通钢 a.碳素结构钢:。b.低合金结构钢c.特定用途的普通结构钢 (2)优质钢(包括高级优质钢)

钢铁企业危险有害因素特点分析正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.钢铁企业危险有害因素特点分析正式版

钢铁企业危险有害因素特点分析正式 版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成 的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度 与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 以某炼钢厂为例,该炼钢厂拥有4台60 t氧气转炉,采用顶吹工艺。从炼铁厂用铁轨罐车运来铁水包,进入厂房后,用起重机 将铁水加入混铁炉内,混铁炉所出铁水吊运加入氧气转炉内,铁水在起始温度(1 200℃~1 250℃)至终点温度(1 700℃左右,吹炼过程温度在1 320℃~1 700℃)范围、顶吹喷氧、经自控系统严格控制条件下冶炼,得到所需工艺目标的钢水。钢水再吊运至厂房内的连铸机内,经铸造得到所需规格的连铸钢坯。 从冶炼过程与安全工程学角度分析,该

炼钢工艺危险有害因素特点简要概括如下: 1)炼钢过程基本为氧化过程,铁水在高温下进行脱碳、去磷、去气、去杂质。冶炼过程放出热量,热平衡上有热量富余,从而使铁水/钢水均维持在高温状态。高温铁水/钢水对现场工人始终具有烫伤、烧伤的危险。高温铁水/钢水遇水、遇湿可爆炸。 2)冶炼过程产生转炉煤气,主要成分为一氧化碳,一氧化碳为高毒类物质,如发生泄漏易引发急性中毒事故。冶炼过程不间断地喷吹具有一定压力要求(大于0. 6MPa)的氧气。高温、高压条件下的氧气氧化能力更强,若管线上更换的管件没有按安全要求严格脱脂,残存的脂肪类可燃物可发生燃爆,造成人员伤亡。氧气管线为压力管道,

钢铁材料的应用及发展

钢铁材料的应用及发展 在经历了代用材料的强烈冲击后,人们通过对各种材料的比较,认识到在目前钢铁材料仍然是量大面广的材料。在可预见的未来,还没有任何一种材料能够全面取代钢铁材料,钢铁材料仍将是人类社会和经济发展的物质基础。 钢铁材料具有以下显著特点:良好的综合力学性能;质量稳定,价格低廉;资源丰富;回收率高。钢铁材料应用几乎涉及人类社会各个领域,高层建筑、深层地下和海洋设施、大跨度重载桥梁、轻型节能汽车、高速船舶、石油开采和长距离油气输送管线、大型储存容器、工程机械、精密仪器、航空航天、高速铁路、能源设施等国民经济的各个领域都需要综合性能优异、使用寿命长以及成本低的钢铁材料。因此,钢铁材料不仅关系到国家的经济发展,同时也起到了维护国家安全的重要作用。 此外,人类社会的发展对钢铁材料的生产、加工、使用和回收等环节提出了节约能源、节约资源、满足可持续发展战略的要求,因此在保持钢铁材料低成本和易回收等特点的基础上,提高钢铁材料的强度和寿命,开发新一代钢铁材料引起了世界各国的高度重视。 超级钢便是20世纪90年代末为更好地利用钢铁材料在使用性能上的有事,并进一步改进钢铁材料的一些不足,减少材料消耗、降低能耗而研制的新材料。超级钢既有高强度、高韧性的力学性能特征和超洁净、高均匀性、超组化的组织和成分特征。它作为新一代的钢铁材料,可用于汽车、道路、桥梁、高层建筑等许多方面。若将超级钢应用于汽车制造中,可有效地减轻车体重量,减少能源消耗和环境污染。若将其应用到道路、桥梁和高层建筑等方面,不仅可以减轻零件的重量,还可以延长这些基础设施更新换代的时间,有效节约能源。 超级钢不仅具有优异的性能,同时还符合节能和环保要求,因此可以断定,在不久的将来,超级钢必将得到广泛的应用。

钢铁材料的发展演变

钢铁材料的发展演变 一、钢铁材料的历史 人类社会的发展历程,是以材料为主要标志的。历史上,材料被视为人类社会进化的里程碑。对材料的认识和利用的能力,决定着社会的形态和人类生活的质量。历史学家也把材料及其器具作为划分时代的标志:如石器时代、青铜器时代、铁器时代、高分子材料时代…… 100万年以前,原始人以石头作为工具,称旧石器时代。1万年以前,人类对石器进行加工,使之成为器皿和精致的工具,从而进入新石器时代。现在考古发掘证明我国在八千多年前已经制成实用的陶器,在六千多年前已经冶炼出黄铜,在四千多年前已有简单的青铜工具,在三千多年前已用陨铁制造兵器。我们的祖先在二千五百多年前的春秋时期已会冶炼生铁,比欧洲要早一千八百多年以上。18世纪,钢铁工业的发展,成为产业革命的重要内容和物质基础。19世纪中叶,现代平炉和转炉镍管炼钢技术的出现,使人类真正进入了钢铁时代。与此同时,铜、铅、锌也大量得到应用,铝、镁、钛等金属相继问世并得到应用。直到20世纪中叶,金属材料在材料工业中一直占有主导地位。 二、钢铁材料的概念 钢材是钢锭、钢坯或钢材通过压力加工制成我们所需要的各种形状、尺寸和性能的材料钢材是国家建设和实现四化必不可少的重要物资,应用广泛、品种繁多,根据断面形状的不同、钢材一般分为型材、板材、管材和金属制品四大类、为了便于组织钢材的生产、订货供应和搞经营管理工作,又分为重轨、轻轨、大型型钢、中型型钢、小型型钢、钢材冷弯型钢,优质型钢、线材、中厚钢板、薄钢板、电工用硅钢片、带钢、无缝钢管钢材、焊接钢管、金属制品等品种。 三、钢材的生产方法 大部分钢材加工都是钢材通过压力加工,使被加工的钢(坯、锭等)产生塑性变形。根据钢材加工温度不同分冷加工和热加工两种。钢材的主要加工方法有 轧制:将钢材金属坯料通过一对旋转轧辊的间隙(各种形状)因受轧辊的压缩使材料截面减小,长度增加的压力加工方法,这是生产钢材最常用的生产方式,主要用来生产钢材型材、板材、管材。分冷轧、热轧。 锻造钢材:利用锻锤的往复冲击力或压力机的压力使坯料改变成我们所需的形状和尺寸的一种压力加工方法。一般分为自由锻和模锻,常用作生产大型材、开坯等截面尺寸较大的材料。 拉拨钢材:是将已经轧制的金属坯料(型、管、制品等)通过模孔拉拨成截面减小长度增加的加工方法大多用作冷加工。 挤压:是钢材将金属放在密闭的挤压简内,一端施加压力,使金属从规定的模孔中挤出而得到有同形状和尺寸的成品的加工方法,多用于生产有色金属材钢材。 四、我国钢铁材料的现状 改革开放以来,随着市场的需求,我国钢产量和消费量不断增长。从1996年起,我国

复合材料的发展前景,发展与应用

复合材料的发展及应用 随着科学技术迅速发展,特别是尖端科学技术的突飞猛进,对材料性能提出越来越高,越来越严和越来越多的要求。在许多方面,传统的单一材料已不能满足实际需要。这时候复合材料就出现在了这百家争鸣的舞台上。 基本概论 复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。此定义来自ISO。在复合材料中,通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。从上述定义中可以看出,复合材料是两个或多个连续相与一个或多个分散相在连续相中的复合,复合后的产物为固体时才称为复合材料。所以我们可根据增强材料与基体材料的名称来给复合材料命名,增强基体复合材料。如:玻璃钎维环氧树脂复合材料,可写作玻璃/环氧复合材 料。 分类与性能 按增强材料形态分类可分为(1)连续纤维复合材料;(2)短纤维复合材料;(3)粒状填料复合材料;(4)编织复合材料。按增强纤维种类分类可分为(1)玻璃纤维复合材料;(2)碳纤维复合材料;(3)有机,金属,陶瓷纤维复合材料。在此篇文章中主要讨论以基体材料分类的几种复合材料。1.聚合物基复合材料——比强度,比模量大;耐疲劳性好;减震性好;过载时安全性好;具有多种功能性;

有很好的加工工艺性。2金属基复合材料——高比强度,高比模量;导热,导电性能;热膨胀系数小,尺寸稳定性好;良好的高温性能;耐磨性好;良好的疲劳性能和断裂韧性;不吸潮,不老化,气密性好。此外还有陶瓷,水泥基复合材料,都有与上类似的特点。 基体材料 一:金属材料 选择基体的原则:使用要求,组成特点,基体金属与增强物的相 容性。 结构复合材料的基体:450℃以下的轻金属基体(“铝基和镁基”用于航天飞机,人造卫星,空间站,汽车发动机零件,刹车盘等);450-700℃的复合材料的金属基体(“钛合金”用于航天发动机);1000℃以上的高温复合材料的金属基体(“镍基,铁基耐热合金和金属间化合物”用于燃气轮机)。 二:陶瓷材料 陶瓷是金属和非金属元素的固体化合物,其键合为共价键或离子键,与金属不同,它们不含有大量的电子。一般而言,陶瓷具有比金属更高的熔点和硬度,化学性质非常稳定,耐热性,抗老化性皆佳。常用的陶瓷基体主要包括玻璃(无机材料高温烧结),玻璃陶瓷,氧化物陶瓷(MgO,Al2O3,SiO2,莫来石等),非氧化物陶瓷(氮化物,碳化物,硼化物和硅化物等)。 三:聚合物材料

新型钢铁材料的设计

一、项目名称:新型钢铁材料的设计、制备和性能研究 二、推荐单位:中国科学院沈阳分院 三、项目简介: 本项目以发展新型钢铁材料为目标,近10年来在多项国家及辽宁省科研项目的支持下,以合金化和结构/功能一体化设计、显微组织控制等为主要学术思想,通过成分优化、纯净化冶炼、组织细化、相变控制、强韧化匹配、生物医学功能化等途径,在新型钢铁材料的设计、制备及性能研究方面开展了系统而深入的研究工作,取得了众多高水平研究成果,发展了一批具有自主知识产权和市场应用前景的新型钢铁材料,在国内外相关领域形成了很高的影响力。项目研究成果对于推动我国钢铁材料的发展与应用,提升钢铁材料的品质具有重要指导意义。项目取得的主要创新性研究成果包括:(1)高强高韧钢铁材料的设计理论,以解决钢铁结构材料强度与塑(韧)性之间的矛盾为切入点,形成了通过成分优化、纯净化、细晶化和复相组织控制等手段获得高强高韧钢铁材料的设计理论与制备技术。(2)结构/功能一体化钢铁新材料的设计理论,以环境保护和生物医用为主要方向,提出了具有抗菌抑菌、生物医学等功能特性的结构/功能一体化钢铁新材料设计思想,通过添加铜元素、以氮代镍等方式,使不锈钢具备了强烈和广谱杀菌特性、在人体中无有害镍离子溶出、抗凝血、抗感染、降低支架内再狭窄等特殊功能。相关研究成果具有独创性。(3)研究开发出一批具有自主知识产权和应用价值的高性能钢铁新材料,包括X80级高强度管线钢、X120级超高强度管线钢、X65级抗大变形管线钢、2800MPa级超高强度马氏体时效钢、2400MPa级无钴超高强度马氏体时效钢、应变诱发相变型高强韧马氏体时效不锈钢、氮化物强化型高铬耐热钢、高速列车转向架用特种弹簧钢、系列抗菌不锈钢、医用高氮无镍奥氏体不锈钢、抗感染医用不锈钢、抗支架内再狭窄不锈钢等钢铁新材料,性能均达到国际先进水平。在国内外相关学术期刊上总计发表文章140篇(其中SCI收录76篇,EI收录125篇),他引次数超过400次,授权23项国家发明专利。 四、完成人: 第1完成人:杨柯 学术贡献:全面负责项目的总体设计和实施,课题申请,国际合作项目的申请和执行,提出一系列创新学术思想。通过纯净化、细晶化、均质化来显著提高高性能结构钢铁材料的强度以及改善其强韧性配合。创造性地提出了钢铁材料的结构/生物医学功能一体化的创新思想,在国际上首次设计并开发出具有抗细菌感染、抑制支架内再狭窄等先进生物医学功能的

钢铁材料相关总结

钢铁材料(黑色金属) 纯铁(熟铁) 铸铁(生铁) 工业用钢 一.分类: 二.命名: 三.性能和应用: 四.成型方法: 五.钢铁生产过程 钢铁材料的力学性能和加工性能 力学性能: 加工性能: 钢铁材料性能的定性总结 型材成型与冷热加工 钢铁材料(黑色金属) 纯铁(熟铁) 含碳量小于0.04%,软、塑性好(可锻),容易变形,强度和硬度较低,用途不广。 铸铁(生铁) 主要由Fe、C、Si、Mn、P、S组成的合金,平均含碳量2.11%—4%,硬而脆、几乎没有塑性,力学性能较

差,只能用铸造的方法成型。 分类:(根据碳的存在形式不同分) 1.白口铸铁(白口生铁):C是以游离碳化铁形式存在,断口呈亮白色。 ●特点:硬度高,脆性大,难加工; ●主要用途:炼钢、做可锻铸铁。 2.灰口铸铁(灰口生铁):C主要以石墨的形式存在,断口呈灰色。 ●分类:(按石墨的存在形状分) 1)灰铸铁:石墨大部分为片层状 命名:“HT”+“φ30mm试棒的最小抗拉强度(MPa)”,eg.HT300; 优点:铸造性能好、切削性能好、减震性能好、减磨性能好、价格低廉; 缺点:塑性差、韧性差、抗拉强度低、焊接性能差。 2)球磨铸铁:石墨大部分为球状 命名:“QT”+“最低抗拉强度—最低伸长率”,eg.QT600-3; 特点:强度高(和钢差不多)、工艺要求高。 3)蠕墨铸铁:石墨大部分为蠕虫状 命名:“RuT”+“最低抗拉强度”,eg.RuT300; 特点:兼具灰铸铁和球墨铸铁的性能。 4)可锻铸铁(玛钢或马铁):对白口铸铁加热到900°C—980°C后长时间保温并分阶段石 墨化,使其内部石墨变成团絮状得来,其实并不能锻造,现已少用。 工业用钢 将生铁进一步冶炼降低含碳量(一般在0.04%—2.11%)、减少杂质元素或加入一些合金元素得到。在保证有害杂质不超标和采用合适的热处理工艺的情况下,影响钢性能的主要因素是含碳量与合金元素含量。 一、分类: 1.按用途分:结构钢、工具钢、专门用途钢、特殊性能钢; 2.按含碳量的多少分:低碳钢(0.04%—0.25%)、中碳钢(0.25%—0.6%)、高碳钢(0.6%—2.11%); 3.按有害杂(S,P)质含量的多少分:普通质量钢、优质钢、高级优质钢; 4.按合金元素含量的多少分:非合金钢、低合金钢、合金钢; 5.按成型方法分:锻钢、铸钢、热轧钢、冷拉钢。 二、命名:按第4种分类方法进行命名 有产品牌号和统一数字代号两种命名方式。 1.非合金钢(碳素钢) ●碳素结构钢: 产品牌号:“Q(屈)”+“屈服点值”+“质量等级(A、B、C、D,其中D最高)”+“〃脱氧程度F(沸腾钢)、b(半镇静钢)、Z(镇静钢)、TZ(特殊镇静钢)”,eg.Q235A〃F。 ●优质碳素结构钢: 产品牌号:两位数字表示钢的平均含碳量,以万分之几来计。分普通含锰量的优质碳素结构钢(eg.45)和较高含锰量的优质碳素结构钢,eg.45Mn。 统一数字代号:U+xxxxx ●碳素工具钢: 产品牌号:“T(碳)”+“平均碳的质量分数,以千分之几计”+“质量等级(A)”,eg.T12A。 ●铸造碳钢: 产品牌号:“ZG(铸钢)”+“屈服点+抗拉强度”,eg.ZG200-400。

钢铁行业特点

钢铁行业特点钢铁行业特点

1钢铁工业 钢铁工业指从事铁、锰、铬及其合金的金属矿的采掘、洗选、烧结、冶炼并加工成材的工业。又称黑色金属工业,是冶金工业的一部分。钢铁工业属于资金、劳动力密集型工业,也属于基础工业,它是为国民经济各部门提供原材料的重要工业部门。 随着科技的进步,钢铁材料向高、精、轻、薄耐用方向发展。随着一些非金属材料和新型化学材料的广泛使用,主要产钢国家从70年代后,钢产量有所下降,而发展中国家的产量不断增长。 2000年,中国钢铁行业主要产品,钢、铁、成品钢材产量再创历史新记录,分别达到12723.61万吨,13103.42万吨和13146万吨;比上年同期净增388.90万吨,1115.56万吨和1320.04万吨,同比增长3.15%,9.31%和11.16%;增长幅度比1993一1999年年均增长5.8%有一定回落。扣除增加出口和以产顶进的产量后,基本实现了把钢产量控制在1.1亿吨的总量控制目标。其中,13家特大型钢铁企业全部按计划实现了总量控制目标。 2钢铁联合企业 钢铁工业的基本生产过程是在炼铁炉内把铁矿石炼成生铁,用生铁水炼成钢,再铸成钢锭或连铸坯,经轧钢等方法加工成各种用途的钢材。拥有上述全过程生产设备的企业就是钢铁联合企业。以下简称联合企业。目前,世界上90%以上的生铁和70%以上的钢是联合企业生产的。 2.1 钢铁联合企业组成 钢铁联合企业的组成,因具体条件而异。靠近矿山的企业可与矿山合成一个单位;炼焦设施一般设在联合企业内,但也可单独经营;热电、耐火材料、备件制造,可设在联合企业内

部,也可单独设置,向联合企业提供产品和服务。联合企业一般由以下几个部分组成:原料处理选矿厂一般与矿山构成一个采选联合企业。粉矿经球团或烧结造块。球团厂可在矿山,也可在钢铁厂内。烧结厂一般均设在钢铁厂内。钢铁厂内都设原料场,贮存铁矿、钢铁冶炼辅料和焦煤、燃料,并将原料分级、混匀。近年,普遍重视精料问题,原料处理已是钢铁联合企业的重要组成部分。炼铁目前世界上95以上的生铁是用高炉冶炼的。。 2.1.1 炼钢 60年代以前,在联合企业中一直是以平炉炼钢为主,50年代氧气顶吹转炉炼钢兴起,逐渐取代了平炉。最大的氧气顶吹转炉容量达400吨。新建的大型转炉车间年产能力达500~700万吨钢。这两种车间均以高炉铁水为主要原料,废钢供应较多以及有直接还原铁作原料的联合企业也采用电弧炉炼钢。 2.1.2 轧钢 过去,钢锭首先经初轧机轧成钢坯,再经大、中、小型轧钢机组轧制成各种钢材。初轧机的能力决定了联合企业的规模。大型板坯初轧机的年产能力达500万吨钢。自70年代起,连续铸钢工艺大规模发展后 ,新建的初轧机减少了。现代大型联合企业的主要加工设备为宽带钢轧机。这种轧机发展很快,产品应用范围广。世界热轧宽带钢轧机约有230台,新建的这种轧机每座的年产能力可达400~500万吨钢材。为进一步进行宽带钢的加工,多数配有冷轧宽带钢轧机。联合企业根据产品结构配备其他轧机,这些轧机的共同特点是生产能力大,适于大批量生产。 2.1.3能源 联合企业是大量消耗能源的工业,每吨钢综合消耗的能源为0.7~1. 6吨标准煤。钢铁厂能源品种为炼焦煤、动力煤、燃料油、天然气和电能等。联合企业每吨钢消耗电能400~600千瓦· 时,一般均由地区电网供电,并可利用企业的剩余高炉煤气设置热电站作为补充。热电站除供电外,还可向钢铁厂供热能。联合企业用氧数量很大,一般设有大型制氧站。每吨钢消耗的新水量,采用循环供水方式为5~20米 3 , 采用直流供水时高达200米 3 以上,一般要有专用的水源和给排水设施。

植物纤维的现状及其发展前景

植物纤维的现状及其发展前景 植物纤维的现状及其发展前景 植物纤维用于复合材料的潜在优势越来越引起人们的注意,它价格低廉,密度小,具有较高的弹性模量,与无机纤维相近,而它的生物 降解性和可再生性是最突出的优点,是其它任何增强材料无法比拟的;另一方面,植物纤维与通用塑料共混制得的塑料是不完全生物降解的,即在微生物作用下,合成高分子仅能被分解为散乱碎片,这种材料使 用后仍会对环境带来负面影响,因而植物纤维在全生物降解、复合材料中得到了重视并迅速发展。国外采用植物纤维改性的复合材料,已经在汽车内部装饰、室内外装修饰材、建筑结构部件等一些领域有 广泛的应用。但国内的研究发展相对较落后,近年来对植物纤维复合材料的研究有了较大的进展,特别是对生物降解材料的复合已成为研究开发的热点。本文综述了植物纤维改性高分子材料的一些性能变化,影响植物纤维复合材料综合性能的因素以及植物纤维的发展前景。 1.不同种类的植物纤维复合材料 植物纤维与高分子材料制备的复合材料中,采用的天然植物纤维主要有麻蕉、黄麻、xx、亚麻、剑麻等麻类材料及木材、竹材、棉 纤维、纸浆纤维等。材料形态主要是纤维态和粉态。麻纤维由于强 度好、可再生等优点,用来增强聚烯烃塑料用于汽车内饰及部件,在 欧洲汽车工业已广泛应用。随着各行各业对环保的关注,用天然麻类纤维与高分子材料制备复合材料的研究较多,而使用木纤维或木粉与高分子材料制备复合材料的研究相对较少。就生物降解材料而言目 前研究较多的是PLA。PLA结晶温度介于170~180℃之间,其力学性 能接近于聚丙烯和聚酯树脂,所以其复合材料具有较高强度,某些性 能接近于天然植物纤维/聚丙烯复合材料。椰纤维和竹纤维同样具有非常好的力学性能,具有较高的韧性,也比较适合作增强材料。

先进钢铁材料技术的进展

先进钢铁材料技术的进展 钢铁研究总院先进钢铁材料技术国家工程研究中心董瀚 摘要:钢铁材料是不断发展的先进材料,它依然是本世纪的主要结构材料。先进钢铁材料具有环境友好、性能优良、资源节约、成本低廉的特征。本文从钢铁材料理论进展出发,评述微合金化钢、超细晶粒钢、氮合金化不锈钢、高质量特殊钢、钢材组织性能预报和材料信息化技术等重要的先进钢铁材料技术进展。 关键词:先进钢铁材料技术、微合金化钢、超细晶粒钢、氮合金化不锈钢、高质量特殊钢、钢材组织性能预报 WTHZRecent Progress in Advanced Steel TechnologiesWT (Yong GAN and Han DONG Central Iron and Steel Research Institute, Beijing 100081, China National Engineering Research Center for Advanced Steel Technology, China) WTHZAbstractWTSteel is generally believed to be as one of the dominant structural materials in the 21st century due to its environmental benign, high performance, resource saving and low cost characteristics. The paper overviewed the newly developments in advanced steel technology. It was stressed on the important progresses of microalloyed steel, ultrafine grained steel, nitrogen alloyed stainless steel, high quality specialty steel, process modeling and steel database technology. WTHZKeywordsWTadvanced steel technology, microalloyed steel, ultrafine grained steel, nitrogen alloyed stainless steel, high quality steel, process modeling, steel databaseWT 一、引言 钢铁材料具有资源相对丰富、生产规模庞大、加工制造容易、性能多样可靠、成本低廉稳定、使用便利习惯和回收利用方便等特点,是基础设施建设、工业设备制造和人民日常生活中广泛使用的材料。目前和可预见的未来还没有任何材料能够全面取代钢铁材料,钢铁材料仍然是占据主导地位的结构材料,是社会和经济发展的物质基础。 经过人类不懈的努力积累和创造,在钢铁材料科学和技术上取得了巨大的进步。钢铁材料的宏观性能和微观组织结构之间的关系已逐渐清楚,可运用量子力学理论解释钢铁材料的某些宏观行为。人们逐渐地可以从理论出发设计和生产钢铁材料。铁水脱硫、转炉复吹、超高功率电炉冶炼、炉外精炼、中间包冶金、连铸、控轧控冷、微合金化等迅速进步的冶金生产工艺技术为钢铁材料的设计和生产提供了技术基础。而计算机等相关行业的技术发展也为钢铁材料设计和生产提供了先进的控制手段。纵观钢铁材料的发展历史,归纳当前钢铁材料精采纷呈的理论和技术的发展,人们不难得出一个结论:基于当前的理论和技术发展,钢铁材料本身在21世纪还会发生重要的变革,最终将会导致钢铁材料的性能显著提高,并将对整个社会发展起巨大的推动作用。先进钢铁材料的含义

未来最有潜力的20种新材料

2014年度评未来最有潜力的20种新材料1.石墨烯 突破性:非同寻常的导电性能、极低的电阻率极低和极快的电子迁移的速度、超出钢铁数十倍的强度和极好的透光性。 发展趋势:2010年诺贝尔物理学奖造就近年技术和资本市场石墨烯炙手可热,未来5年将在光电显示、半导体、触摸屏、电子器件、储能电池、显示器、传感器、半导体、航天、军工、复合材料、生物医药等领域将爆发式增长。 主要研究机构(公司):Graphene Technologies,Angstron Materials,Graphene Square,常州第六元素,宁波墨西等。 2.气凝胶 突破性:高孔隙率、低密度质轻、低热导率,隔热保温特性优异。 发展趋势:极具潜力的新材料,在节能环保、保温隔热电子电器、建筑等领域有巨大潜力。 主要研究机构(公司):阿斯彭美国,W.R. Grace,日本Fuji-Silysia公司等 3.碳纳米管 突破性:高电导率、高热导率、高弹性模量、高抗拉强度等。 发展趋势:功能器件的电极、催化剂载体、传感器等。 主要研究机构(公司):Unidym, Inc.,Toray Industries,Inc.,Bayer Materials Science AG,Mitsubishi Rayon Co., Ltd.深圳市贝特瑞,苏州第一元素等。 4.富勒烯 突破性:具有线性和非线性光学特性,碱金属富勒烯超导性等。 发展趋势:未来在生命科学、医学、天体物理等领域有重要前景,有望用在光转换器、信号转换和数据存储等光电子器件上。 主要研究机构(公司):Michigan State University,厦门福纳新材等。5.非晶合金

铸铁铸钢的材料特性与结构特点

铸铁铸钢的材料特性和结构特点 来源:对钩网 工业用的铁和钢都是铁碳两种元素达的合金,含碳量在2.11%以上的是铁,在2.11%以下的是钢。铸铁和铸钢是工业机加工中常用的加工材料。下面,我们介绍几种常见的铸铁和铸钢材料,以及它们的材料特性和结构特点。 灰铸铁 灰铸铁是含有片状石墨的铸铁,是应用最为广泛的铸铁,产量占铸铁总产量的80%以上。灰铸铁材料综合力学性能低,抗压强度大,是本身抗拉强度的3到4倍。消振能力比钢大10倍,故经常用来制造承受振动的机座。弹性模量较低,其壁厚变化对力学性能影响较大。 由于其对冷却速度有很大的敏感性,灰铸铁铸件在厚度较薄的截面上经常出现白口和裂纹,而在厚度较厚的截面上又经常导致琉松情况。因此,灰铸铁件截面厚度存在一个临界值,如果超过了这个值,随着壁厚增加,其强度、消振能力、弹性模量等力学性能不仅不会增强,反而显著减弱。由于灰铸铁热稳定性较低,因此不能用于制造那些长时间工作在超过250摄氏度环境下的零件。相比于铸钢材料,采用灰铸铁可以得到厚度更薄,几何形状更复杂的铸件,而且铸件中的残余内应力和翘曲变形都要更小一些。由于在各截面上性能比较均匀,灰铸铁常用于制造要求高,但截面不一定较厚的铸件。 蠕墨铸铁 蠕墨铸铁是呈蠕虫状的铸铁,它掺入的石墨形态是介于片状石和球状之间的,化学结构与灰铸铁类似。蠕墨铸铁综合力学性能比灰铸铁略好一点,而比球墨铸铁略逊一筹,其冲击韧性、延长率抗压强度、屈服强度等均在二者之间,壁厚变化对力学性能影响比灰铸铁小。 蠕墨铸铁对冷却速度的敏感性比灰铸铁小得多,且具有良好的导热性,所以经常用来制造工作环境温度苛刻,温度梯度比较大的零件。由于蠕墨铸铁材料强度较高,致密性好,对于缺口的敏感性小,具有良好的工艺性能,可以用来制造几何形状复杂的大型零件。为了节约废钢,减轻铸件的重量,蠕墨铸铁还可用来替代孕育铸铁件,这样做还可以达到有效提升成品率、增强铸件气密性的目的,特别适于生产液压件。 球墨铸铁 经过球化处理以及孕育处理而获得的球状石墨称为球墨铸铁,这是上世纪中叶发展起来的一种高强度铸铁材料,综合性能较高,接近于钢,在工业上有十分广泛的应用。球墨铸铁强度、塑性和弹性模量都要比灰铸铁好,抗磨性比灰铸铁

复合材料的发展和应用的论文

复合材料的发展和应用的论文 全球复合材料发展概况 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。 随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商ppg公司统计,2000年欧洲的复合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国gdp增长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,2000年的总产量约为145万吨,预计2005年总产量将达180万吨。 从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达万吨,欧洲汽车复合材料用量到2003年估计可达万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达万吨,汽车等领域的用量仅为万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,用植物纤维与废塑料加工而成的复合材料,在北美已被大量用作托盘和包装箱,用以替代木制产品;而可降解复合材料也成为国内外开发研究的重点。 另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。 树脂基复合材料的增强材料 树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。 1、玻璃纤维 目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃

复合材料的发展和应用(1)

复合材料的发展和应用(1) 全球复合材料发展概况 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。 随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商PPG公司统计,20XX年欧洲的复

合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国GDP增长率的2倍,达到4%~6%。20XX年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,20XX年的总产量约为145万吨,预计20XX年总产量将达180万吨。 从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。20XX年美国汽车零件的复合材料用量达万吨,欧洲汽车复合材料用量到20XX年估计可达万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在20XX年的用量达万吨,汽车等领域的用量仅为万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,

(完整word版)钢铁产业调整政策(2018年修订)

附件 钢铁产业调整政策(2015年修订) (征求意见稿) 钢铁产业是我国国民经济的重要基础产业,在推进工业化、城镇化进程中发挥着重要作用。为贯彻落实党中央关于全面深化改革的战略部署,使市场在资源配置中起决定性作用和更好发挥政府作用,着力解决钢铁产业产能严重过剩、无序竞争、自主创新能力不足和综合竞争力不强等问题,推动钢铁产业适应经济发展新形势、新常态,实现结构调整和转型升级,对2005年国家发布的《钢铁产业发展政策》进行修订,制定《钢铁产业调整政策》。 第一章政策目标 到2025年,钢铁产品与服务全面满足国民经济发展需要,实现钢铁企业资源节约、环境友好、创新活力强、经济效益好、具有国际竞争力的转型升级。产品服务、工艺装备、节能环保、自主创新等达到世界先进水平,公平开放的市场环境基本形成。 第一条〔结构调整〕 产品结构实现升级。大中型钢铁企业品种质量达到国际 1

先进水平,拥有一批国际化钢铁制造标准;服务体系和服务能力与国际接轨,实现由钢铁制造商向以用户为中心的材料服务商转变。 钢铁产能基本合理。到2017年,钢铁产能严重过剩矛盾得到有效化解,产能规模基本合理,产能利用率达到80%以上,行业利润率及资产回报率回升到合理水平。生产设备大型化、自动化水平进一步提高。 鼓励推广以废钢铁为原料的短流程炼钢工艺及装备应用。到2025年,我国钢铁企业炼钢废钢比不低于30%,废钢铁加工配送体系基本建立。大中型钢铁企业主业劳动生产率超过1000吨/人·年,先进企业超过1500吨/人·年。 组织结构优化调整。兼并重组步伐加快,混合所有制发展取得积极成效,到2025年,前十家钢铁企业(集团)粗钢产量占全国比重不低于60%,形成3~5家在全球范围内具有较强竞争力的超大型钢铁企业集团,以及一批区域市场、细分市场的领先企业。 空间布局得到优化。积极推进中心城市城区钢厂转型和搬迁改造,实现国内有效钢铁产能向优势企业和更具比较优势的地区集中。 技术创新体系不断完善。到2025年,形成可支撑行业发展的自主创新和研发体系,建成一批具有先期介入、后续服 2

我国金属复合材料的发展前景

我国金属复合材料的发展前景!! 金属复合材料技术可以发挥组元材料各自的优势,实现各组元材料资源的最优配置,节约贵重金属材料,实现单一金属不能满足的性能要求, 它既可以替代进口并填补国内空白,又具有广阔应用范围,具有很好的经济效益和社会效益,容易获得方方面面的扶持和帮助。如发展不锈钢复合材料就一直是国家发改委、科技部积极支持、倡导的高科技项目。 一、中国将成为金属加工业中心 由于异质金属复合材料的性能功能化和较低的成本及应用范围广泛,提高了传统金属材料的发展潜力。近期产业化的重点是:建设铝-不锈钢、铝-钢、钛-钢、铜-钢带液-固相复合工艺生产线,钢-不锈钢复合板坯离心浇铸工艺生产线,表面复合精饰技术制备薄覆层(0.008MM-0.1MM)金属复合板带生产线;开发颗粒增加铝基复合材料规模化生产技术、半固态成形技术、连续包敷复合高速钢材料及制品,并实现产业化。 中国制造业迅速崛起,作为制造业的基础行业之一的金属加工、成形行业,发展更为明显:在过去几年,整个行业以年均增长20-30%的速度发展,产品品质也在以惊人的速度提升,逐渐获得整个世界制造业的认可。以2005年为例,整个金属加工、成形行业消耗各种钢材8600多万吨,其中进口数量为2000多万吨;工装模具约395亿元,其中进口约占58亿元;新购设备约234亿元,其中进口约134亿元;冲压、钣金生产企业约4-5万家,从业人数近100万人。 据国家统计局等部门的数据显示,整个金属加工、成形行业包括设备、模具、原材料及成形零部件将保持在每年10-20%的增长速度。随着中国的进一步发展,强劲的市场需求拉动着金属板材、管材、型材、线材生产高增长,未来世界钢铁总产量及消耗量的60%都将来自亚洲,尤其是中国。目前中国钢产量约占全球钢产量的34%,市场消费量约占全球的33%,已成为全球钢铁产量与消费量最大的国家。预计到2010年,建筑、机械、汽车、造船、铁道、石油、家电、集装箱等八大行业2010年需用钢材达2.61亿吨。中国金属加工、成形行业的市场总量巨大,正成为亚洲乃至全球金属加工、成形行业的中心。 二、稀有金属复合材料增长速度依然较快 随着国家环保产业政策实施力度的加强,稀有金属复合材料在电力烟气脱硫设备的应用持续增长,同时化工行业的投资国产化程度大大加快,也为稀有金属材料的发展提供了良好发展机遇,07年上半年化工行业的销售比重已经超过50%,是主要的增长点。国家产业政策的支持、较高的技术壁垒、产业升级的需求拉动为行业的发展提供了广阔空间。 稀有金属复合材料行业,作为一种新型材料是国家鼓励类的产业结构,其传统应用领域的是电厂的烟气脱硫装置,国家节能排污环保政策的进一步推进,为稀有金属材料行业的发展提供政策上的支持也为行业需求的拉动提供了稳定的基础。而随着国家宏观经济的好转,化工行业的固定资产投资也在快速发展,化工设备的国产化为稀有金属材料行业发展提供的新的发展机遇。05年以后在化工行业的应用发展最为迅速,07年开始已经超过传统在电力行业的应用。中国装备制造业的结构升级尤其是在数控机床、大型成套设备上的更新换代也为稀有金属材料行业的发展提供广阔的发展空间。 稀有金属材料行业在技术门槛上相对也比较高。尤其是爆炸复合焊接需要现场爆炸,而民用爆炸需要取得许可证。

相关文档
最新文档