聚酰亚胺的合成方法2

合集下载

聚酰亚胺基础知识-1(横田力男)

聚酰亚胺基础知识-1(横田力男)

第一编基础编第1章聚酰亚胺合成法1.前言正象主链含酰胺结构的聚合物被称为聚酰胺那样,主链含亚胺结构的聚合物统称为聚酰亚胺。

1)其中亚胺骨架在主链结构上的聚合物,也就是直链型聚酰亚胺不仅合成困难也无实用性。

相反具有环状结构的聚酰亚胺,特别是五元环状聚酰亚胺已知的品种很多,实用性很强。

因此,一般所说的聚酰亚胺都是指后面这种环状聚酰亚胺。

环状聚酰亚胺与聚苯并咪唑等同是含氮的杂环聚合物的一种。

示1聚酰亚胺进一步还可分为由芳香族四羧酸和二胺为原料通过缩聚反应得到的缩聚型聚酰亚胺和双马酰亚胺经加聚反应(或缩加聚)得到的加聚型聚酰亚胺。

其中前面的缩聚型聚酰亚胺是大家最熟悉也是应用最广的,一般所称的聚酰亚胺都是指这种缩聚型聚酰亚胺。

本书也是以这种缩聚型聚酰亚胺为主。

而后者为加聚型聚酰亚胺实际属耐热性热固型树脂的热固型聚酰亚胺(参考应用编第2章)。

具有代表性的聚酰亚胺就是由美国杜邦公司1960年开发成功,1965年商品化的二苯醚型聚酰亚胺。

也就是大家所熟悉的称为[Kapton]聚酰亚胺,经过40多年后至今仍然在高耐热性塑料中保持领先地位的一种优异的材料。

关于这种聚酰亚胺开发的经过Sroog (Dupont公司)有过详细的介绍。

2)图示2 这种聚酰亚胺由于具有刚直的主链且不溶于有机溶剂,而且还不熔融,所以是用特殊的两步合成法合成制造的。

即是用均苯四甲酸酐PMDA和二苯醚二胺ODA为原料,合成可溶性聚酰胺酸,在这个聚酰胺酸阶段进行成型加工后,通过加热(当然发生化学反应)脱水环化(亚胺化)得到Kapton薄膜等一系列聚酰亚胺制品(反应式1)。

3,4)从这种聚酰亚胺开始,虽然在广泛产业界起到了重要的作用,但由于大多数芳香族聚酰亚胺都是不溶不熔的,所以都通过(1)式所示的两步法来合成和制备。

由芳香族四甲酸酐和芳香族二胺为原料通过两步法合成聚酰亚胺的一般反应式如(2)式所示。

2)这种通过聚酰胺酸的两步合成法是从60年代开始采用的一种古典且具代表性的合成方法。

超级工程塑料中的“黄金”----聚酰亚胺(Polyimide)

超级工程塑料中的“黄金”----聚酰亚胺(Polyimide)

超级工程塑料中的“黄金”----聚酰亚胺(Polyimide)聚酰亚胺(PI)由含有酰亚胺基链节(─C─N─C─)构建的芳杂环高分子化合物,具备高强度高韧性、耐磨耗、耐高温、防腐蚀等特殊性能,是一种耐热性工程塑料。

聚酰亚胺可分为均苯型PI,可溶性PI,聚酰胺-酰亚胺(PAI)和聚醚亚胺(PEI)四类。

由于其性能与合成综合特点,作为结构材料或是功能材料均具有巨大前景,被称为是'解决问题的能手'(protion solver),并认为'没有聚酰亚胺就不会有今天的微电子技术'。

聚酰亚胺(PI)作为一种特种工程材料,广泛应用于航空、航天、电气电子、半导体工程、微电子及集成电路、纳米材料、液晶显示器、LED 封装、分离膜、激光、机车、汽车、精密机械和自动办公机械等领域。

01聚酰亚胺性能特点作为优秀的特种工程材料,聚酰亚胺的性能可以通吃所有材料品质中的高端性能。

1、适用温度范围广:高温部分:全芳香聚酰亚胺,分解温度500℃左右。

长期使用温度-200~300 ℃,无明显熔点。

低温部分:-269℃的液态氦中不会脆裂。

2、机械性能强:未填充的塑料的抗张强度都在100Mpa以上;均苯型聚酰亚胺的薄膜(Kapton)为170Mpa以上,而联苯型聚酰亚胺(UpilexS)达到400Mpa。

3、绝缘性能好:良好的介电性能,介电常数为3.4左右,引入氟,或将空气纳米尺寸分散在聚酰亚胺中,介电常数可以降到2.5左右。

4、耐辐射:聚酰亚胺具有很高的耐辐照性能,其薄膜在5×109rad快电子辐照后强度保持率为90%。

5、自熄性:聚酰亚胺是自熄性聚合物,发烟率低。

聚酰亚胺在极高的真空下放气量很少。

6、稳定性:一些聚酰亚胺品种不溶于有机溶剂,对稀酸稳定,一般的品种不大耐水解。

7、无毒:聚酰亚胺无毒,并经得起数千次消毒。

可用来制造餐具和医用器具,有一些聚酰亚胺还具有很好的生物相容性,例如,在血液相容性实验为非溶血性,体外细胞毒性实验为无毒。

聚酰亚胺

聚酰亚胺
聚酰亚胺
O N O O O N
聚酰亚胺是指主链上含有酰亚胺环的一类 聚合物,其中以含有酞酰亚胺结构的聚合 物尤为重要。
非环状聚酰亚胺
O R'' O R C N C R'
聚酰亚胺的特点
• 具有最高的热稳定性和耐热性 • 具有优越的综合性能 • 相对于其他芳杂环高分子,比较容易合 成 • 已经合成了几千个品种,有十多个品种 已经产业化 • 有很广泛的应用面。
取向剂
• TN-LCD:室温长寿命(1年)。 • STN-LCD:预倾角:4-10o,国内首家, 经紫晶公司试用,在工艺性能方面已基 本通过。 • TFT-LCD:采用脂肪聚酰亚胺可以满足 200℃固化要求。 • 光控取向:聚酰亚胺基光控取向膜。
O N O
F O F F
F
F O
F
O N
F 10FEDA/4FMPD F F
O
O
C CH3
O
(CH2)n O n=2~5
1.10
二胺的碱性及对PMDA的活性
二胺 pKa 9.8 log k
H2N
(CH2)6
NH2
6.08 5.20 2.12 0.78
O
4.80 4.60 3.10
0 0.37 -2.15
C O
O S O
2.0
各种聚酰胺酸的贮存稳定性
二酐 聚酰胺酸 贮存期 ηinh 天 dL/g
N N N
R R
2,2-对环芳烃
(6) 利用聚酰胺酸中的羧基,进行 酯化或成盐,引入光敏基团或长链 烷基获得双亲聚合物,可得到光刻 胶或用于LB膜的制备。 (7) 一般的合成聚酰亚胺的过程都 不产生无机盐,对于绝缘材料的制 备特别有利。

聚酰亚胺

聚酰亚胺
合成的配方,工业合成工艺以及在各个领域的应用。
关键词:二元酐、二元胺、聚酰亚胺、合成
一、概述:
聚酰亚胺(PI)是综合性能最佳的有机高分子材料之一,耐高温400℃以上,长期使用温度范围-200~300℃,无明显熔点,高绝缘性能,103赫下介电常数4.0,介电损耗仅0.004~0.007,属F至H级绝缘材料。聚酰亚胺是指主链上含有酰亚胺环(-CO-NH-CO-)的一类聚合物,其中以含有酞酰亚胺结构的聚合物最为重要。聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。近来,各国都在将聚酰亚胺的研究、开发及利用列入21世纪最有希望的工程塑料之一。聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手",并认为"没有聚酰亚胺就不会有今天的微电子技术"。
2、二酐与二胺高温溶液一步合成法
在高温溶液合成聚酰亚胺中,首先二胺与二酐单体聚合成聚酰胺酸,之后在高温下亚胺化。为了得到高分子量的聚酰亚胺,在最后亚胺化阶段就要不断地除去反应体系产生的水。高温溶液合成聚酰亚胺,发现所生成的聚酰亚胺产率接近100%。
3、熔融缩聚合成法
熔融缩聚是将单体、催化剂和分子质量调节剂等投入反应器中,加热熔融并逐步形成高聚物的过程。
三、聚酰亚胺的工业合成配方
聚酰亚胺可以由二酐和二胺在极性溶剂,如DMF,DMAC,NMP或THE/甲醇混合溶剂中先进行低温缩聚,获得可溶的聚酰胺酸,成膜或纺丝后加热至300℃左右脱水成环转变为聚酰亚胺;也可以向聚酰胺酸中加入乙酐和叔胺类催化剂,进行化学脱水环化,得到聚酰亚胺溶液和粉末。二胺和二酐还可以在高沸点溶剂,如酚类溶剂中加热缩聚,一步获得聚酰亚胺。此外,还可以由四元酸的二元酯和二元胺反应获得聚酰亚胺;也可以由聚酰胺酸先转变为聚异酰亚胺,然后再转化为聚酰亚胺。

聚酰亚胺的合成方法2

聚酰亚胺的合成方法2

聚酰亚胺的合成方法聚酰亚胺是一类环链化合物,根据其结构和制备方法,可分成主链含有脂肪链的聚酰亚胺和主链中含有芳环链的聚酰亚胺2大类。

其通式为:聚酰亚胺由四酸二酐与二胺聚合而成,合成方法有一步法、二步法、三步法和气相沉积法。

一步法一步法是二酐和二胺在高沸点溶剂中直接聚合生成聚酰亚胺,即单体不经由聚酰胺酸而直接合成聚酰亚胺。

该法的反应条件比热处理要温和得多,关键要选择合适的溶剂。

为提高聚合物的相对分子质量,应尽量脱去水份。

通常采用带水剂进行共沸以脱去生成的水,或用异氰酸酯替代二胺和生成的聚酰胺酸盐在高温高压下聚合。

此法的控制工艺尚需完善,并正向实用化迈进。

反应方程式如图1。

二步法二步法是先由二酐和二胺获得前驱体聚酰胺酸,再通过加热或化学方法,分子内脱水闭环生成聚酰亚胺。

化学亚胺化法,即用脱水剂处理聚酰胺酸;化学环化后生成的聚酰亚胺中含有大量异酰亚胺,该法制得的聚酰亚胺与用加热方法制得的聚酰亚胺,物理和化学性能有差异,特别是异酰亚胺环具有较低的热稳定性和高化学反应活性;应用不同的脱水剂,环化产物中亚胺/异酰亚胺的比例不同,可认为是互变异构的高度不稳定所引起的。

二步法工艺成熟,但聚酰胺酸溶液不稳定对水汽很敏感,储存过程中常发生分解,所以又出现聚酰胺酸烷基酯法、聚酰胺酸硅烷基酯法等改进方法聚酰亚胺的另一种前驱体聚酰胺酯,是一种相对稳定的聚合物,能以固态或溶液形式长期存放高相对分子质量的聚酰胺酯通常是由芳香二酸二酯经酰氯化后,与芳香二胺进行溶液缩聚或界面缩聚制得;聚酰胺酯受热或在有机碱的催化下发生酰亚胺化反应生成聚酰亚胺,但脱掉的小分子化合物是醇或α-烯烃而不是水。

中间体聚酰胺酯的溶解性好于聚酰胺酸,可溶于常用低沸点有机溶剂,如二氯甲烷、四氢呋喃等,并可获得高浓度溶液而且可通过改变酯基结构使聚酰胺酯性能各异,可用于制备高强高模材料,是合成聚酰亚胺的典型方法。

但其酰亚胺化反应活性低,工艺复杂,制造成本高,有待优化。

聚酰亚胺性能及合成方法_曹红葵

聚酰亚胺性能及合成方法_曹红葵

N R N R′
CO CO

聚酰亚胺由四酸二酐与二胺聚合而成,合成方 法有一步法、二步法、三步法和气相沉积法。
收稿日期: 2008-03-04 作者简介: 曹红葵(1970-),女,湖南湘乡人,副教授,硕士,主要从事材料工程专业和环境工程专业的教学工作。 电子信箱: chk12345@126.com
· 24 ·
化学推进剂与高分子材料 Chemical Propellants & Polymeric Materials
2008 年第 6 卷第 3 期
聚酰亚胺性能及合成方法
曹红葵
(湖南城建职业技术学院材料工程系,湖南湘潭 411101)
摘 要: 聚酰亚胺兼具有机高聚物和无机材料的优点,是迄今为止在工业应用中耐热等级最高的聚合 物材料。概述了聚酰亚胺的优异性能,并对其合成方法作了初步探讨与比较,指出二步合成法是合成聚 酰亚胺的典型方法。
2.2 二步法
二步法是先由二酐和二胺获得前驱体聚酰胺
酸,再通过加热或化学方法,分子内脱水闭环生
成聚酰亚胺。化学亚胺化法,即用脱水剂处理聚
酰胺酸;化学环化后生成的聚酰亚胺中含有大量异
酰亚胺,该法制得的聚酰亚胺与用加热方法制得的
聚酰亚胺,物理和化学性能有差异,特别是异酰
亚胺环具有较低的热稳定性和高化学反应活性;应
聚酰亚胺是主链上含有酰亚胺环(酰亚胺基团) 的一类聚合物,其中以含有肽酰亚胺环的聚合物尤 为重要,是由二元酸和二元胺缩聚得到的。聚酰 亚胺分子中含有十分稳定的芳杂环结构单元,作为 特种工程材料具有其他高分子材料所无法比拟的高 耐热性能、优良的机械性能和电性能:①耐热性 非常好,由联苯二酐和对苯二胺合成的聚酰亚胺, 热分解温度达到 600℃,是迄今聚合物中热稳定最 高的品种之一,并能在短时间耐受 555℃高温而基 本保持其各项物理性能,可在 3 3 3 ℃以下长期使

聚酰亚胺的生产设计

聚酰亚胺的生产设计

B线题目:聚酰亚胺的生产设计聚酰亚胺生产摘要本文介绍了生产聚酰亚胺的基本情况以及生产工艺流程,介绍了聚酰亚胺的性能,来源以及的生产工艺,聚酰亚胺通过均苯四甲酸二酐和4,4’-二氨基二苯醚经缩聚及环化两步反应而得。

进一步介绍了聚酰亚胺的应用。

认识聚酰亚胺车间设计的基本流程,以及车间布置和厂址的选择方法。

关键词:聚酰亚胺均苯四酸二酐4,4’-二氨基二苯醚生产工艺1、概述聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。

近来,各国都在将聚酰亚胺的研究、开发及利用列入21世纪最有希望的工程塑料之一。

聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手"(protion solver),并认为"没有聚酰亚胺就不会有今天的微电子技术"。

2、聚酰亚胺的性能1、全芳香聚酰亚胺按热重分析,其开始分解温度一般都在500℃左右。

由联苯二酐和对苯二胺合成的聚酰亚胺,热分解温度达到600℃,是迄今聚合物中热稳定性最高的品种之一。

2、聚酰亚胺可耐极低温,如在-269℃的液态氦中不会脆裂。

3、聚酰亚胺具有优良的机械性能,未填充的塑料的抗张强度都在100Mpa以上,均苯型聚酰亚胺的薄膜(Kapton)为170Mpa以上,而联苯型聚酰亚胺(UpilexS)达到400Mpa。

作为工程塑料,弹性膜量通常为3-4Gpa,纤维可达到200Gpa,据理论计算,均苯二酐和对苯二胺合成的纤维可达500Gpa,仅次于碳纤维。

4、一些聚酰亚胺品种不溶于有机溶剂,对稀酸稳定,一般的品种不大耐水解,这个看似缺点的性能却使聚酰亚胺有别于其他高性能聚合物的一个很大的特点,即可以利用碱性水解回收原料二酐和二胺,例如对于Kapton薄膜,其回收率可达80%-90%。

改变结构也可以得到相当耐水解的品种,如经得起120℃,500小时水煮。

聚酰亚胺的概念

聚酰亚胺的概念

聚酰亚胺的概念聚酰亚胺(Polyimide,简称PI)是一种具有优良综合性能和广泛应用前景的高性能聚合物材料。

它具有良好的高温稳定性、耐化学腐蚀性、良好的机械性能,是一种重要的高分子工程材料。

聚酰亚胺材料在化学结构上是以嵌段共聚物的形式存在,它由两种或多种不同的单体通过缩聚反应合成。

聚酰亚胺的主要链是由酰亚胺结构(Imide)组成的,这种结构具有高度的稳定性和热性能。

同时,聚酰亚胺的结构中还存在其他的官能团,如酰氨基(Amide)、酮基(Ketone)等,这些官能团赋予了聚酰亚胺良好的溶解性和加工性能。

由于聚酰亚胺材料具有出色的性能和广泛的应用前景,它已经被广泛应用于航空航天、电子、光学、生物医学、汽车等领域。

例如,在航空航天领域中,聚酰亚胺材料具有低比重、高机械强度、耐高温、耐腐蚀等特点,被广泛应用于飞机零件、导弹外壳、卫星结构等;在电子领域中,聚酰亚胺材料因具有优异的电气性能和低介电常数而被广泛应用于电子器件、印刷电路板等;在光学领域中,聚酰亚胺材料因具有低透射损失、低折射率等特点而被广泛应用于光学镜片、相机镜头等。

此外,聚酰亚胺材料还具有良好的耐化学腐蚀性和耐热性能,因此在化工设备、石油勘探等领域也有广泛应用。

聚酰亚胺材料的制备方法可以分为两种:一种是通过两种或多种不同的单体通过缩聚反应合成,这种方法适用于制备嵌段共聚物的聚酰亚胺材料;另一种是通过聚酰亚胺前驱体经热处理或化学改性等方法制备聚酰亚胺材料,这种方法适用于制备交联型聚酰亚胺材料。

两种方法各有优缺点,具体应根据需要选择合适的方法。

聚酰亚胺材料的性能受到多种因素的影响,如原料单体的选择、反应条件、聚合度等。

为了提高聚酰亚胺材料的性能,可以通过以下方法进行改性:一是通过引入不同的官能团对聚酰亚胺进行共聚或接枝改性;二是通过引入纳米颗粒等纳米填料对聚酰亚胺进行填充改性;三是通过交联等方法对聚酰亚胺进行固化改性。

这些方法可以改善聚酰亚胺材料的机械性能、热性能、耐化学腐蚀性等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚酰亚胺的合成方法
聚酰亚胺是一类环链化合物,根据其结构和制备方法,可分成主链含有脂肪链的聚酰亚胺和主链中含有芳环链的聚酰亚胺2大类。

其通式为:
聚酰亚胺由四酸二酐与二胺聚合而成,合成方法有一步法、二步法、三步法和气相沉积法。

2.1一步法
一步法是二酐和二胺在高沸点溶剂中直接聚合生成聚酰亚胺,即单体不经由聚酰胺酸而直接合成聚酰亚胺。

该法的反应条件比热处理要温和得多,关键要选择合适的溶剂。

为提高聚合物的相对分子质量,应尽量脱去水份。

通常采用带水剂进行共沸以脱去生成的水,或用异氰酸酯替代二胺和生成的聚酰胺酸盐在高温高压下聚合。

此法的控制工艺尚需完善,并正向实用化迈进。

反应方程式如图1。

2.2二步法
二步法是先由二酐和二胺获得前驱体聚酰胺酸,再通过加热或化学方法,分子内脱水闭环生成聚酰亚胺。

化学亚胺化法,即用脱水剂处理聚酰胺酸;化学环化后生成的聚酰亚胺中含有大量异酰亚胺,该法制得的聚酰亚胺与用加热方法制得的聚酰亚胺,物理和化学性能有差异,特别是异酰亚胺环具有较低的热稳定性和高化学反应活性;应用不同的脱水剂,环化产物中亚胺/异酰亚胺的比例不同,可认为是互变异构的高度不稳定所引起的。

二步法工艺成熟,但聚酰胺酸溶液不稳定对水汽很敏感,储存过程中常发生分解,所以又出现聚酰胺酸烷基酯法、聚酰胺酸硅烷基酯法等改进方法
聚酰亚胺的另一种前驱体聚酰胺酯,是一种相对稳定的聚合物,能以固态或溶液形式长期存放高相对分子质量的聚酰胺酯通常是由芳香二酸二酯经酰氯化后,与芳香二胺进行溶液缩聚或界面缩聚制得;聚酰胺酯受热或在有机碱的催化下发生酰亚胺化反应生成聚酰亚胺,但脱掉的小分子化
合物是醇或α-烯烃而不是水。

中间体聚酰胺酯的溶解性好于聚酰胺酸,可溶于常用低沸点有机溶剂,如二氯甲烷、四氢呋喃等,并可获得高浓度溶液而且可通过改变酯基结构使聚酰胺酯性能各异,可用于制备高强高模材料,是合成聚酰亚胺的典型方法。

但其酰亚胺化反应活性低,工艺复杂,制造成本高,有待优化。

反应方程式如图2。

2.3三步法
三步法是经由聚异酰亚胺得到聚酰亚胺的方法。

聚异酰亚胺结构稳定,作为聚酰亚胺的先母体,由于热处理时不会放出水等低分子物质,容易异构化成酰亚胺,能制得性能优良的聚酰亚胺。

聚异酰亚胺是由聚酰胺酸在脱水剂作用下,脱水环化为聚异酰亚胺,然后在酸或碱等催化剂作用下异构化成聚酰亚胺,此异构化反应在高温下很容易进行。

聚异酰亚胺溶解性好,玻璃化转变温度较低,加工性能优良。

聚酰亚胺为不溶、不熔性材料,难于加工,通常采用先在预聚物聚酰亚胺阶段加工,但由于在高温下进行,亚胺化时闭环脱水易使制品产生气孔,导致制品的机械性能和电性能下降,难以获得理想的产品,作为聚酰亚胺预聚的聚异酰亚胺,其玻璃化温度低于对应的聚酰亚胺,热处理时不会放出水分,易异构化成聚酰亚胺,因此用聚异酰亚胺代替聚酰胺酸作为聚酰亚胺的前身材料,可制得性能优良的制品。

该法较新颖,正受到广泛关注。

2.4气相沉积法
气相沉积法主要用于制备聚酰亚胺薄膜,反应是在高温下使二酸酐与二胺直接以气流的形式输送到混炼机内进行混炼,制成薄膜,这是由单体直接合成聚酰亚胺涂层的方法。

相关文档
最新文档