材料力学第10章压杆稳定

合集下载

材料力学10压杆稳定_2经验公式

材料力学10压杆稳定_2经验公式
其中,直线公式适用的柔度的界限值 s = (a-s) / b,为材料常数
这类杆称为中长杆(或中柔度杆),亦即直线公式适用于中长杆 (或中柔度杆)
说明: 当 ≤ s,称为粗短杆,则应按强度问题处理。
三、临界应力总图
压杆的临界应力 cr 可视作压杆柔度 的分段函数,即
π2E 2
cr
查表得 a = 461 MPa、b = 2.567 MPa
临界应力 临界力
cr a b 461 2.567 64.7 294.9 MPa Fcr cr A 162.7 kN
3)由于连杆在 x-y、x-z 两个平面内的柔度 z = 64.7、y = 57.4 比

π 2 EI min
0.7l 2
870 kN
2)两端固定但可沿轴向相对移动
长度因数 = 0.5, 立柱柔度
3600
zz
s


l
imin

0.5 3600 24
75 p
此时,立柱为中柔度杆,应用直线公式计算其临界力
由表 10-2 查得 a = 304 MPa,b = 1.12 MPa
临界应力 临界力
cr a b 304 1.12 75 220 MPa Fcr cr A 220 48.541 1068 kN
[例2] 图示连杆,已知材料为优质碳钢,弹性模量 E = 210×109 GPa, 屈服极限 s = 306 MPa。试确定该连杆的临界力Fcr ,并说明横截面的 设计是否合理。
解: 由于连杆在两 个方向上的约束情 况不同,故应分别 计算连杆在两个纵 向对称平面内的柔 度,柔度大的那个 平面即为失稳平面
1)计算柔度 在 x-y 平面(弯曲中性轴为 z 轴): 两端铰支

材料力学压杆稳定概念欧拉公式计算临界力

材料力学压杆稳定概念欧拉公式计算临界力

材料力学压杆稳定概念欧拉公式计算临界力材料力学是研究物体受力及变形行为的一门学科。

压杆稳定是材料力学中重要的概念之一、当一个杆件受到作用力时,如果杆件不发生任何形状上的变化,我们称之为杆件处于稳定状态。

然而,当作用力超过一定临界值时,杆件就会发生失稳,产生形状上的变化。

因此,欧拉公式就是用来计算杆件临界力的一种方式。

欧拉公式由瑞士数学家欧拉于18世纪中叶首次提出。

它的基本假设是杆件是理想化的,即杆件是均匀、无缺陷、具有均匀截面的杆件。

根据欧拉公式,杆件临界力可通过以下公式计算:Pcr = (π^2 * E * I) / L^2其中,Pcr表示临界力,E表示杨氏模量,I表示截面惯性矩,L表示杆件的有效长度。

从上述公式中可以看出,临界力与材料的弹性模量有关,即材料越硬,临界力越大;同时临界力与截面的形状也有关,即截面惯性矩越大,临界力越大;临界力还与杆件长度有关,即杆件越短,临界力越大。

例子:假设有一根长为L的无缺陷的圆柱形杆件,其截面半径为r,杨氏模量为E。

根据材料力学的知识,该圆柱形杆件的截面惯性矩可计算为I=(π*r^4)/4Pcr = (π^2 * E * ((π * r^4) / 4) ) / L^2通过上述公式,可以计算出该无缺陷的圆柱形杆件的临界力。

这个临界力表示了该杆件能够承受的最大作用力。

如果作用力超过了临界力,该杆件将发生失稳,产生形状上的变化。

总结起来,材料力学中的压杆稳定概念是指杆件在受力作用下不发生形状上的变化。

欧拉公式是用来计算杆件临界力的一种常用公式,可以帮助工程师们确定杆件的最大承载能力。

材料力学10压杆的稳定性问题

材料力学10压杆的稳定性问题

F
不稳定平衡
C
C C
闽 南
临界荷载与约束形式、材料性能、杆件几何 及刚度有关。
B 分叉点
稳定平衡
Fcr FC

工 稳定性准则

最大工作压力 F < 临界荷载 Fcr

o
v
Pinned-pinned
材料力学 Mechanics of Materials
第十章 压杆稳定
闽 南 理 工 学 院
材料力学 Mechanics of Materials
L / i 11.732 / 0.01 173.2 p 100
材料力学 Mechanics of Materials
第十章 压杆稳定
压杆的稳定条件
图示支架,材料均为Q235 钢。弹性模量E=200GPa,
许用应力[]=160MPa。
A
C端受垂直载荷F=15kN作
用。已知AC梁是14号工字

钢,其抗弯截面系数Wz= 102cm3, 截 面 积 A=21.5cm2。
南 BD为直径40mm的圆截面杆,
理 p=100,稳定安全系数nst=
材料力学 Mechanics of Materials
第十章 压杆稳定
临界应力
欧拉公式的适用范围
欧拉公式限于材料处于线弹性的情况。所以,欧拉公式也只能在
杆内压应力不超过比例极限p时才适用。于是要求
cr
2E 2
p
闽 南
称为杆的柔度或长细比
l
i
理 工 或者是 学
E
p
p

材料力学 Mechanics of Materials
材料力学 Mechanics of Materials

材料力学 第十章 压杆稳定问题

材料力学 第十章 压杆稳定问题

由杆,B处内力偶
MB Fcraq1 , q1
由梁,B处转角
MB Fcr a
q2

MBl 3EI
q1 B
MB MBl Fcra 3EI
3EI Fcr al
q2 C
l
Page21
第十章 压杆稳定问题
作业
10-2b,4,5,8
Page22
第十章 压杆稳定问题
§10-3 两端非铰支细长压杆的临界载荷
稳定平衡
b. F k l
临界(随遇)平衡
c. F k l
不稳定平衡
Fcr kl 临界载荷
F
k l
F 驱动力矩 k l 恢复力矩
Page 5
第十章 压杆稳定问题
(3)受压弹性杆受微干扰
F Fcr 稳定平衡 压杆在微弯位置不能平衡,要恢复直线
F >Fcr 不稳定平衡 压杆微弯位置不能平衡,要继续弯曲,导致失稳
(

w)
令 k2 F
EI
d 2w dx2

k
2w

k
2
l
l
FM w
x
F B
F

B F
Page24
第十章 压杆稳定问题
d 2w dx2

k2w

k 2
F
w

通解:
A
x
B
w Asinkx Bcoskx
l
考虑位移边界条件:
x 0, w 0,
B
x 0, q dw 0
Page31
第十章 压杆稳定问题
二、类比法确定临界载荷
l

材料力学压杆稳定

材料力学压杆稳定

材料力学压杆稳定材料力学是研究物质内部力的作用和变形规律的一门学科。

在材料力学中,压杆稳定是一个重要的概念,它涉及到杆件在受压作用下的稳定性问题。

本文将围绕材料力学中的压杆稳定问题展开讨论,旨在帮助读者更好地理解和掌握这一概念。

首先,我们需要了解什么是压杆稳定。

在材料力学中,压杆稳定是指杆件在受到压力作用时不会发生失稳现象,保持原有形状和结构的能力。

对于一个长细杆件来说,当受到外部压力作用时,如果其稳定性不足,就会出现侧向挠曲或屈曲等失稳现象,这将导致结构的破坏。

因此,压杆稳定是材料力学中一个至关重要的问题。

接下来,我们将从材料的选择、截面形状和支撑条件等方面来探讨如何提高压杆的稳定性。

首先,材料的选择对于压杆稳定至关重要。

一般来说,高强度、高刚度的材料更有利于提高压杆的稳定性。

此外,材料的表面质量和加工工艺也会对压杆的稳定性产生影响,因此在实际工程中需要对材料的选择和加工过程进行严格控制。

其次,截面形状也是影响压杆稳定性的重要因素。

通常情况下,圆形截面是最有利于抵抗压力的,因为圆形截面能够均匀分布受力,减小局部应力集中的可能性。

相比之下,矩形或其他非圆形截面的压杆在受到压力作用时往往稳定性较差,容易发生失稳现象。

最后,支撑条件也是影响压杆稳定性的关键因素之一。

压杆的支撑条件直接影响其在受力时的变形和稳定性。

合理的支撑设计能够有效地提高压杆的稳定性,减小失稳的可能性。

综上所述,材料力学中的压杆稳定是一个复杂而重要的问题,需要综合考虑材料的选择、截面形状和支撑条件等因素。

只有在这些方面都做到合理设计和严格控制,才能保证压杆在受力时不会发生失稳现象,从而确保结构的安全可靠。

希望本文能够帮助读者更好地理解和掌握材料力学中压杆稳定的相关知识,为工程实践提供一定的参考价值。

同时,也希望读者能够在实际工程中注重压杆稳定性的设计和控制,确保结构的安全可靠。

第十章 材料力学压杆稳定

第十章 材料力学压杆稳定
2
y
即 : 189.325.612.74(1.52a/2) 时合理
a4.32 cm
求临界力:

L 0.76
i Iz 2A1

0.76 396.610 212.74104
8
106.5
2 E 220010 9 p 99.3 6 P 20010
2 EI
(2l ) 2
=1
0.7
=0.5
=2
2l
l
例1钢质细长杆,两端铰支,长l=1.5m,横截面是矩形截面, h=50 mm,b=30 mm,材料是A3钢,弹性模量E=200GPa; 求临界力和临界应力。 解:
(1)由于杆截面是矩形,杆在不同方向发生弯曲的难易程度不同, 如下图
因为 Iy<Iz,所以在各个方向上发生弯曲时约束条件相同的情况下, 压杆最易在xz平面内发生弯曲;
三、其它支承情况下,压杆临界力的欧拉公式
2 EI min Pcr ( L) 2
压杆临界力欧拉公式的一般形式
—长度系数(或约束系数)。
1.一端固定一端自由的细长压杆,它相当于两端铰支长为2l的 压杆的挠曲线的一半部分;
2 EI 2 EI
4l
2
Pcr
2l
2

P l l
2.二端固定的细长压杆,其中间部分(0.5l) 相当于两端铰支长为 0.5l的压杆;
②挠曲线近似微分方程: M P y y EI EI P y y y k 2 y0 EI P 2 其中 :k EI
y
P x
M
P
③微分方程的解: ④确定积分常数:
y Asin xBcosx y(0) y( L)0
A0B0 即 : AsinkLBcoskL0

材料力学-压杆稳定

材料力学-压杆稳定

1.直线型经验公式
对于柔度(λs≤λ<λp)的中柔 度杆(中长压杆),临界应力 与λ的关系采用直线公式:
cr a b 13 8
式(13-8)中的系数a,b可查书中表 13-1。 λ的最低界限:
s
a
s
b
(塑性材料)
b
a
b
b
(脆性材料)
---------(13-9)
图13-3
2.抛物线型经验公式
式中有c1,c2,k三个未知量。根据边界条件:当x=0时, yA=0;代入式(c)得c2=0。式(c)成为
y c1 sinkx (d )
当x=l时,yB=0;代入式(d)后可得 c1 sinkl 0 (e)
要满足式(e),必然是c1或sinkl等于零,若c1=0,则压杆 上各点的位移都为零,这显然与压杆在微弯状态下保持平衡 的前提不符,故必须是sinkl=0。要满足这一条件的kl值为:
kl 0, ,2 ,L ,n (n为正整数)
由k P n 可得:
EI l
P
n2 2 EI
l2
(
f
)
使压杆可能在微弯状态下保持平衡的最大轴向压力,应
该是式(f) 中n=1时的P值,这就是所求的两端铰支压杆的临
界力Pcr,即
Pcr
2 EI
l2
(13 1)
式(13-1)习惯上称为两端铰支压杆的欧拉公式。当各个 方向的支承情况相同时(如两端为球铰),压杆总是在它的 抗弯能力最小的纵向平面内失稳,所以式(13-1)中的EI是压 杆的最小抗弯刚度,即I应取截面的最小形心主惯性矩Imin。
2
图13-4 对于柔度(λ<λc)的杆件,临界应力与λ的关系采用抛物线公式:

材料力学-压杆的稳定性

材料力学-压杆的稳定性

压杆的平衡条件
压杆在平衡状态下需要满足一定的条件,包括受力平衡和挠度平衡。我们将详细讨论这些条件,并是否能够保持稳定的重要方法。我们将介绍常用的稳 定性分析方法,包括欧拉稳定性理论和能量法。
影响压杆稳定性的因素
压杆的稳定性受到多种因素的影响,包括几何形状、材料性质、外部载荷等。我们将讨论这些因 素,并分析它们对压杆稳定性的影响。
建筑
压杆在建筑结构中起着支撑和 稳定的作用,使得建筑物能够 抵抗外部压力。
机械
压杆在机械设计中用于传递力 量和实现稳定性,使得机械装 置能够正常运行。
航空航天
压杆在航空航天工程中起着支 撑和稳定的作用,使得飞机和 航天器能够在飞行过程中保持 结构的完整性。
材料力学基础知识回顾
在开始讨论压杆的稳定性之前,让我们回顾一些材料力学的基础知识,包括材料的应力和应变,杨氏模 量等。
总结和展望
通过本次演讲,我们深入了解了压杆的定义和应用,回顾了材料力学的基础知识,讨论了压杆的平衡条 件和稳定性分析方法,并分析了影响压杆稳定性的因素。希望这些知识能对大家的学习和实际工程应用 有所帮助。
几何形状
压杆的几何形状对其稳定性有重要影响,包括长度、直径等。
材料性质
材料的强度和刚度对压杆稳定性起着关键作用。
外部载荷
外部载荷会改变压杆的受力状态,从而影响其稳定性。
实际工程中的应用案例
在实际工程中,压杆的稳定性是一个重要的设计考虑因素。我们将介绍一些真实的工程案例,并探讨如 何应用稳定性分析来改进设计。
材料力学-压杆的稳定性
欢迎大家来到本次关于材料力学中压杆的稳定性的演讲。在这个演讲中,我 们将探讨压杆的定义和应用,材料力学基础知识回顾,压杆的平衡条件,稳 定性分析的方法,影响压杆稳定性的因素,实际工程中的应用案例,以及对 这个话题的总结和展望。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)承受外压的薄壁圆筒当 外压达到一定数值时,会 突然失稳变成椭圆形 。
F
a)
q
b)
§10.2 两端铰支细长压杆临界力的欧
拉公式
x
一、欧拉公式
Fcr
x l
压杆在临界力Fcr作用下保持微弯的平衡状态
弯矩为
M (x) Fcr y
y
挠曲线近似微分方程
y
y M (x) Fcr y
EI
相应的临界力分别
Fcr
n=1
Fcr
n=2
2EI / l2 4 2EI / l 2
Fcr
n=3
9 2EI / l 2
§10.2 两端铰支细长压杆临界力的欧拉公式
最大挠度ymax与轴向压力F之间的理论关系,如图中的
OAC所示。
F
(1)当F < Fcr时,压杆的直线 平衡状态(ymax=0)是稳定的;
二阶非齐次线性微分方程,其全解为
y

C1
cos kx

C2
sin
kx

M0 Fcr
一阶导数为 y C1k sin kx C2k coskx
两端固定压杆的边界条件是
x 0处,y 0, y' 0; x l处,y 0, y' 0
EI

Fcr k 2 EI
Fcr

y k 2 y 0
x
§10.2 两端铰支细长压杆临界力的欧拉公式
通解
y Asin kx B cos kx
Fcr
边界条件
y(0) 0
由 y(0) 0 ,得 B 0
y(l) 0
y
y Asin kx
x l
y
由 y(l) 0 ,得 Asin kl 0
压杆的临界力与横截面面积无关,而与横截面的惯 性矩有关。
(1)对于同样长度的杆,用相同截面积的材料做成空 心截面形状(图c,d),其临界力可以增加很多。
(2)在各个方向约束相同(如球形铰) 的情况下,压杆的弯曲发生在刚 度最小的平面内,因此欧拉公式 中的I应取截面的最小惯性矩。
l
a) b)
c)
d)
§10.3 不同端部约束细长压杆临界力
Fcr
一、一端固定、一端自由
l 2l
2 EI
Fcr (2 l )2
Fcr
二、两端固定
C
l 0.5l l 0.7l
Fcr

2EI
(l /2)2
(a)
Fcr
D
三、一端固定、一端铰支
Fcr

2EI
(0.7l )2
(b)
C
(c)
§10.3 不同端部约束细长压杆临界力
细长压杆临界力公式可统一写成
等不利因素,压杆的失稳试验曲线略如图中曲线
OH所示。
F
(1)当F低于Fcr时,压杆就已 经开始弯曲,但增长缓慢。
D
EC
A
B
H
Fcr
(2)当压力接近于Fcr时,挠度
增长骤快,直至弯断。
O
y max
§10.2 两端铰支细长压杆临界力的欧拉公式
例10-1 一钢质细长压杆,两端铰支,长l = 1.5m,横截
Fcr
由于压杆处于微弯的平衡状态,A≠0,故有

sin kl 0
kl n (n 0,1, 2,3L )
§10.2 两端铰支细长压杆临界力的欧拉公式
kl n (n 0,1, 2,3L )
由于临界力是使压杆失稳的最小压力,取n=1
代入
Fcr k 2 EI
Fcr

2EI
l2
第10章 压杆稳定
§10.1 压杆稳定的概念 §10.2 两端铰支细长压杆临界力的欧拉公式 §10.3 不同端部约束细长压杆的临界力 §10.4 欧拉公式的适用范围 经验公式 §10.5 压杆的稳定条件与合理设计
§10.1 压杆稳定的概念
1. 稳定平衡
F
压杆在轴向压力F作用 下处于直线的平衡状态。 F1
Fcr l 2
1.52
277.2 kN
压缩屈服的轴向压力为
a) b)
Fs

d
4
4

s


0.050 2 235 4
10 6

461 .4
Fcr
细长压杆的承压能力是由稳定性要求,而不是由
强度要求确定的。
§10.2 两端铰支细长压杆临界力的欧拉公式
Fcr

2EI (l)2
式中μ称为长度系数,与杆端的约束情况有关。
μl称为压杆的相当长度。
表10−1 各种支承条件下细长压杆的长度系数
支承情况 两端铰支 一端固定,一端自由 一端固定,一端铰支 两端固定
长度系数 μ=1 μ=2 μ=0.7 μ=0.5
§10.3 不同端部约束细长压杆临界力
下面以两端固定的压杆为例,说明挠曲线“拐点”
当干扰力撤消后杆件仍能恢 复到原来的直线平衡状态
2. 不稳定平衡
F a)
3. 临界力
F<Fcr
F>Fcr
F<Fcr b)
F>Fcr c)
使压杆直线形式的平衡由稳定转变为不稳定时 的轴向压力称为临界力,用Fcr表示。
§10.1 压杆稳定的概念
其他形式的工程构件的失稳问题
(1) 狭长矩形截面梁在横向 力超过一定数值时,会突 然发生侧向弯曲和扭转。
上式即为两端铰支细长压杆临界力的计算公式,通 常称为欧拉公式。
§10.2 两端铰支细长压杆临界力的欧拉公式
二、临界力作用下的挠曲线方程
k n l 代入 y Asin kx y Asin nx
l Fcr A为曲线的最大挠度ymax n为正弦半波的数目
Fcr
Fcr
当n = 1,2,3时对应挠 曲线如图
D
EC
A
B
H
(2)当F > Fcr时,压杆既可以 Fcr 处于直线平衡状态(如D点所
示),又可在曲线状态下保持
平衡(如E点所示)。
O
y max
A点是压杆的直线状态从稳定平衡向不稳定平衡的 转折点,称为平衡的分岔点,与分岔点对应的载荷 即为临界载荷。
§10.2 两端铰支细长压杆临界力的欧拉公式
实际的压杆难免有初曲率、压力偏心和材料不均匀
面直径d = 50 mm,如图10-6a所示。材料为Q235钢,弹
性模量E=206GPa,试确定其临界力。
解 压杆横截面对任一轴的惯性矩为
I d 4 0.054 0.307 108 m4
64 64
临界力为
l
2EI 2 206109 0.307 108
的确定方法。
M0 Fcr
C
EI
D
M0
压杆失稳后的挠曲线
l
Fcr
x截面处的弯矩为
M M o Fcr y
M0 Fcr
Fcr y
M
x
根据挠曲线近似微分方程,应有
EIy M 0 Fcr y
引入记号
k 2 Fcr EI
y k 2 y M0 EI
§10.3 不同端部约束细长压杆临界力
相关文档
最新文档