2018 初三数学中考复习 图形的旋转 专题综合练习题 含答案
【精品】2018版中考数学:6.2-轴对称、平移、旋转(含答案)

§6.2轴对称、平移、旋转A组2018年全国中考题组一、选择题1.(2018·浙江嘉兴,2,4分)下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()解析第一个和第三个属于中心对称图形,第二个和第四个属于轴对称图形.答案B2.(2018·浙江温州,4,4分)下列选项中的图形,不属于中心对称图形的是() A.等边三角形B.正方形C.正六边形D.圆解析等边三角形是轴对称图形,正方形、正六边形、圆既是轴对称图形又是中心对称图形.答案A3.(2018·福建福州,7,3分)如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()A.A点B.B点C.C点D.D点解析当以点B为原点时,A(-1,-1),C(1,-1),则点A和点C关于y轴对称,符合条件.答案B4.(2018·河北,3,3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()解析严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.答案C5.(2018·山东泰安,15,3分)如图,在平面直角坐标系中,正三角形OAB 的顶点B 的坐标为(2,0),点A 在第一象限内,将△OAB 沿直线OA 的方向平移至△O ′A ′B ′的位置,此时点A ′的横坐标为3,则点B ′的坐标为()A .(4,23)B .(3,33)C .(4,33)D .(3,23)解析作AM ⊥x 轴于点M .根据等边三角形的性质得出OA =OB =2,∠AOB =60°,在直角△OAM 中利用含30°角的直角三角形的性质求出OM =12OA =1,AM =3OM =3,则A (1,3),直线OA 的解析式为y =3x ,将x =3代入,求出y =33,那么A ′(3,33),由一对对应点A 与A ′的坐标求出平移规律,再根据此平移规律即可求出点B ′的坐标.答案A6.(2018·湖南邵阳,10,3分)如图,在矩形ABCD 中,已知AB =4,BC =3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A 在整个旋转过程中所经过的路程之和是()A .2015πB .3019.5πC .3018πD .3024π解析转动一次A 的路线长是:90π×4180=2π,。
2018届人教版数学中考专项训练(五)图形的旋转(含答案)

专项训练五图形的旋转一、选择题.(·淮安中考)下列图形是中心对称图形的是( ).(·莆田中考)规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为°的是( ) .正三角形.正方形.正六边形.正十边形.(·新疆中考)如图所示,将一个含°角的直角三角板绕点旋转,使得点,,′在同一条直线上,则三角板旋转的角度是( ).°.°.°.°第题图第题图第题图第题图.(·宜宾中考)如图,在△中,∠=°,=,=,将△绕点逆时针旋转,使点落在线段上的点处,点落在点处,则、两点间的距离为( )....(·贺州中考)如图,将线段绕点顺时针旋转°得到线段′′,那么(-,)的对应点′的坐标是( ) .(,) .(,) .(,-) .(,-).(·无锡中考)如图,△中,∠=°,∠=°,=,△绕点顺时针旋转得△,当落在边上时,连接,取的中点,连接,则的长度是( )...二、填空题.若点(,)与(-,)关于原点对称,则=..(·江西中考)如图所示,△中,∠=°,将△绕点按顺时针方向旋转°,对应得到△′′,则∠′的度数为..如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形序号是..(·大连中考)如图,将△绕点逆时针旋转得到△,点和点是对应点.若∠=°,=,则=.第题图第题图第题图第题图.(·温州中考)如图,将△绕点按顺时针方向旋转至△′′,使点′落在的延长线上.已知∠=°,∠=°,则∠′=度..★(·枣庄中考)如图,在△中,∠=°,==,将△绕点按顺时针方向旋转°到△′′的位置,连接′,则′=.三、解答题.(·厦门中考)如图,在△中,∠=°,=,=,将△绕点顺时针旋转°,若点,的对应点分别是点,,画出旋转后的三角形,并求点与点之间的距离(不要求尺规作图)..如图,四边形是正方形,,分别是和的延长线上的点,且=,连接,,.()求证:△≌△;()△可以由△绕旋转中心点,按顺时针旋转度得到;()若=,=,求△的面积..(·毕节中考)如图,已知△中,=,把△绕点沿顺时针方向旋转得到△,连接,交于点.()求证:△≌△;()若=,∠=°,当四边形是菱形时,求的长..★如图①,点是正方形两对角线的交点,分别延长到点,到点,使=,=,然后以、为邻边作正方形,连接,.()求证:⊥;()正方形固定,将正方形绕点逆时针旋转α角(°<α<°)得到正方形′′′,如图②.①在旋转过程中,当∠′是直角时,求α的度数;②若正方形的边长为,在旋转过程中,求′长的最大值和此时α的度数,直接写出结果不必说明理由.参考答案与解析.5.解析:∵线段绕点顺时针旋转°得到线段′′,∴△≌△′′,∠′=°,∴=′.作⊥轴于,′′⊥轴于′,∴∠=∠′′=°.∵∠′=°,∴∠′-∠′=∠′-∠′,∴∠=∠′′.在△和△′′中,∴△≌△′′(),∴=′′,=′.∵点的坐标为(-,),∴=,=,∴′′=,′=,∴点′的坐标为(,)..解析:∵∠=°,∠=°,=,∴∠=°-∠=°,=,=.∵=,∴△是等边三角形,∴==,∴∠=∠=°,=-=-=.∵=,∴△是等边三角形,∴==,∠=∠+∠=°+°=°,∴==,∴==.°.②.解析:∵∠=°,∠=°,∴∠′=∠+∠=°+°=°.∵△绕点按顺时针方向旋转至△′′,∴△≌△′′,∴∠=∠′′,∴∠-∠′=∠′′-∠′,即∠′=∠′,∴∠′=°,∴∠′=°-∠′-∠′=°-°-°=°.-解析:如图,连接′.∵△绕点按顺时针方向旋转°得到△′′,=,∠=°,∴=′,∠′=°,′=′′,∠′′=°,∴△′是等边三角形,∴=′.在△′和△′′中,∴△′≌△′′(),∴∠′=∠′′=°.延长′交′于,则⊥′,为′的中点,∴′=′=.∵∠=°,==,∴==,∴==,=,′==,∴′=-′=-.13.解:如图,∵在△中,∠=°,=,=,∴==.∵将△绕点顺时针旋转°,点,的对应点分别是点,,∴==,∠=°,∴==..()证明:∵四边形为正方形,∴=,∠=∠=°.∵=,∴△≌△;()解:()解:在△中,∵==,=,∴=.由题意可知==,∠=°,∴△=·=..()证明:由旋转的性质得△≌△,且=,∴===,∠=∠,∴∠+∠=∠+∠,即∠=∠.在△和△中,∵=,∠=∠,=,∴△≌△();()解:∵四边形是菱形,∴===,∥.又∵∠=°,∴∠=∠=°.由()可知=,∴∠=∠=°,∴△为直角边长为的等腰直角三角形,∴=,即=,∴=-=-..()证明:如图①,延长交于点.∵点是正方形两对角线的交点,∴=,⊥.在△和△中,∴△≌△,∴∠=∠.∵∠+∠=°,∴∠+∠=°,∴∠=°,即⊥;()解:①在旋转过程中,∠′成为直角有两种情况:(Ⅰ)α由°增大到°过程中,当∠′=°时,∵===′,∴在△′中,=,∴∠′=°.∵⊥,⊥′,∴∥′,∴∠′=∠′=°,即α=°;(Ⅱ)α由°增大到°过程中,当∠′=°时,同理可求∠′=°,∴α=°-°=°.综上所述,当∠′=°时,α=°或°.②如图③,当旋转到、、′在一条直线上时,′的长最大,∵正方形的边长为,∴====.∵=,∴′==,∴′=,∴′=+′=+.∵∠′=°,∴此时α=°.。
天津市和平区普通中学2018届初三数学中考复习 图形的旋转与中心对称 专项练习 含答案-word

天津市和平区普通中学2019届初三数学中考复习 图形的旋转与中心对称 专项练习1.下列图形中是中心对称图形的有( B )A .1个B .2个C .3个D .4个2.下列图案中,是轴对称图形但不是中心对称图形的是( A )3.将含有30°角的直角三角板OAB 如图放置在平面直角坐标系中,OB 在x 轴上,若OA =2,将三角板绕原点O 顺时针旋转75°,则点A 的对应点A ′的坐标为( C )A .(3,-1)B .(1,-3)C .(2,-2)D .(-2,2)4.如图,在平面直角坐标系中,点B ,C ,E 在y 轴上,Rt △ABC 经过变换得到Rt △ODE .若点C 的坐标为(0,1),AC =2,则这种变换可以是( A )A .△ABC 绕点C 顺时针旋转90°,再向下平移3B .△ABC 绕点C 顺时针旋转90°,再向下平移1C .△ABC 绕点C 逆时针旋转90°,再向下平移1D .△ABC 绕点C 逆时针旋转90°,再向下平移35.如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC ,连接AD ,BD .则下列结论: ①AC =AD ;②BD ⊥AC ;③四边形ACED 是菱形.其中正确的个数是( D )A .0B .1C .2D .36.如图,将矩形ABCD 绕点A 旋转至矩形AB ′C ′D ′位置,此时AC ′的中点恰好与D 点重合,AB ′交CD 于点E .若AB =3,则△AEC 的面积为( D )A .3B .1.5C .2 3 D. 37. 如图,在平面直角坐标系中,A(-8,-1),B(-6,-9),C(-2,-9),D(-4,-1).先将四边形ABCD 沿x 轴翻折,再向右平移8个单位长度,向下平移1个单位长度后,得到四边形A 1B 1C 1D 1,最后将四边形A 1B 1C 1D 1,绕着点A 1旋转,使旋转后的四边形对角线的交点落在x 轴上,则旋转后的四边形对角线的交点坐标为( D )A .(4,0)B .(5,0) C.(4,0)或(-4,0) D .(5,0)或(-5,0)8. 如图,正方形ABCD 的边长为1,AC ,BD 是对角线.将△DCB 绕着点D 顺时针旋转45°得到△DGH ,HG 交AB 于点E ,连接DE 交AC 于点F ,连接FG .则下列结论:①四边形AEGF 是菱形;②△AED ≌△GED ;③∠DFG =112.5°;④BC +FG =1.5, 其中正确的结论是__①②③__.9.若点(a ,1)与(-2,b )关于原点对称,则a b =__12__. 10.如图,在平面直角坐标系xOy 中,△A ′B ′C ′由△ABC 绕点P 旋转得到,则点P 的坐标为__(1,-1).11.如图,正方形ABCD 绕点B 逆时针旋转30°后得到正方形BEFG ,EF 与AD 相交于点H ,延长DA 交GF 于点K .若正方形ABCD 的边长为3,则AK =.12.如图,把一个菱形绕着它的对角线的交点旋转“星形”(阴影部分),若菱形的一个内角为60°,边长为2,则该“星形”的面积是-6__.13.如图,在平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC 的三个顶点的坐标分别为A (-1,3),B (-4,0),C (0,0)(1)画出将△ABC 向上平移1个单位长度,再向右平移5个单位长度后得到的△A 1B 1C 1;(2)画出将△ABC 绕原点O 顺时针方向旋转90°得到△A 2B 2O ;(3)在x 轴上存在一点P ,满足点P 到A 1与点A 2距离之和最小,请直接写出P 点的坐标.解:(1)图略 (2)图略 (3)P (165,0) 14.如图,点P 是正方形ABCD 内一点,点P 到点A ,B 和D 的距离分别为1,22,10,△ADP 绕点A 旋转到△ABP′,连接PP′,并延长AP 与BC 相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ 的大小;(3)求CQ 的长.解:(1)由旋转得,AP ′=AP ,∠BAP ′=∠DAP,∴∠PAP ′=∠PAB+∠BAP′=∠PAB+∠DAP=∠BAD=90°,∴△APP ′是等腰直角三角形(2)在Rt △APP ′中,∵AP =1,∴PP ′2=12+12=2,又BP′=DP =10,BP =22,∴PP ′2+BP 2=BP′2,∴△BPP ′是直角三角形,∴∠P ′PB =90°,又∠APP′=45°,∴∠BPQ =180°-∠P′PB-∠APP′=45° (3)过点B 作BM⊥AQ 于M.∵∠BPQ=45°,∴△PMB 为等腰直角三角形,由BP =22,可求BM =PM =2,∴AM =AP +PM =1+2=3,在Rt △ABM中,AB =AM 2+BM 2=32+22=13,易证△ABM∽△AQB,∴AM AB =AB AQ ,∴AQ =AB 2AM =133,在Rt △ABQ 中,BQ =AQ 2-AB 2=(133)2-(13)2=2133,∴QC =BC -BQ =13-2133=13315.如图,在菱形ABCD 中,AB =2,∠BAD =60°,过点D 作DE⊥AB 于点E ,DF ⊥BC 于点F.(1)如图①,连接AC 分别交DE ,DF 于点M ,N ,求证:MN =13AC ; (2)如图②,将∠EDF 以点D 为旋转中心旋转,其两边DE′,DF ′分别与直线AB ,BC 相交于点G ,P ,连接GP ,当△DGP 的面积等于33时,求旋转角的大小并指明旋转方向.,图1),图2)解:(1)连接BD ,交AC 于O ,在菱形ABCD 中,∠BAD =60°,AD =AB ,∴△ABD 为等边三角形,∵DE ⊥AB ,∴AE =EB ,∵AB ∥DC ,∴AM MC =AE DC =12, 同理可得CN AN =12,∴MN =13AC (2)∵AB∥DC,∠BAD =60°,∴∠ADC =120°,又∠ADE=∠CDF=30°,∴∠EDF =60°,当∠EDF 顺时针旋转时,由旋转知∠EDG=∠FDP,∠GDP =∠EDF=60°, 又∵DE=DF =3,∠DEG =∠DFP=90°,可证△DEG≌△DFP(AAS ),∴DG =DP ,∴△DGP 为等边三角形,∴△DGP 的面积=34DG 2=33,∴DG =23, 则cos ∠EDG =DE DG =12,∴∠EDG =60°, ∴当顺时针旋转60°时,△DGP 的面积等于33,同理可得,当逆时针旋转60°时,△DGP 的面积也等于33,综上所述,将△EDF 以点D 为旋转中心,顺时针或逆时针旋转60°时,△DGP 的面积等于3 3。
2018年中考数学真题汇编 平移与旋转(含答案)

中考数学真题汇编:平移与旋转一、选择题1.下列图形中,可以看作是中心对称图形的是()A. B. C. D.【答案】A2.在平面直角坐标系中,点关于原点对称的点的坐标是()A. B. C. D.【答案】C3.在平面直角坐标系中,以原点为对称中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为()A.(4,-3)B.(-4,3)C.(-3,4)D.(-3,-4)【答案】B4.如图,在平面直角坐标系中,的顶点在第一象限,点,的坐标分别为、,,,直线交轴于点,若与关于点成中心对称,则点的坐标为()A. B.C. D.【答案】A5.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC 的度数是()A. 55°B. 60°C. 65°D. 70°【答案】C6.下列图形中,既是轴对称又是中心对称图形的是()A. B.C. D.【答案】B7.在平面内由极点、极轴和极径组成的坐标系叫做极坐标系如图,在平面上取定一点称为极点;从点出发引一条射线称为极轴;线段的长度称为极径点的极坐标就可以用线段的长度以及从转动到的角度(规定逆时针方向转动角度为正)来确定,即或或等,则点关于点成中心对称的点的极坐标表示不正确的是( )A. B.C. D.【答案】D8.如图,点是正方形的边上一点,把绕点顺时针旋转到的位置,若四边形的面积为25,,则的长为()A. 5B.C. 7D.【答案】D9.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A. 主视图B. 左视图 C. 俯视图 D. 主视图和左视图【答案】C10.如图,将沿边上的中线平移到的位置,已知的面积为9,阴影部分三角形的面积为4.若,则等于()A. 2B. 3C.D.【答案】A11.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB’,则点B的对应点B’的坐标是()A. (1,0)B. (,) C. (1,) D. (-1,)【答案】C12.如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B.C. D.【答案】A二、填空题13.在平面直角坐标系中,将点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,则所得的点的坐标是________.【答案】(5,1)14.如图,将含有30°角的直角三角板ABC放入平面直角坐标系,顶点AB分别落在x、y轴的正半轴上,∠OAB=60°,点A的坐标为(1,0),将三角板ABC沿x轴右作无滑动的滚动(先绕点A按顺时针方向旋转60°,再绕点C按顺时针方向旋转90°,…)当点B第一次落在x轴上时,则点B运动的路径与坐标轴围成的图形面积是________.【答案】+ π15.如图,正方形的边长为1,点与原点重合,点在轴的正半轴上,点在轴的负半轴上将正方形绕点逆时针旋转至正方形的位置, 与相交于点,则的坐标为________.【答案】16.如图,正比例函数y=kx与反比例函数y= 的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是________ .【答案】y= x-317.如图,中,,,,将绕点顺时针旋转得到,为线段上的动点,以点为圆心,长为半径作,当与的边相切时,的半径为________.【答案】或18.设双曲线与直线交于,两点(点在第三象限),将双曲线在第一象限的一支沿射线的方向平移,使其经过点,将双曲线在第三象限的一支沿射线的方向平移,使其经过点,平移后的两条曲线相交于点,两点,此时我称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,为双曲线的“眸径”当双曲线的眸径为6时,的值为________.【答案】三、解答题19.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)①在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;②将线段绕点逆时针旋转90°得到线段.画出线段;(2)以为顶点的四边形的面积是________个平方单位.【答案】(1)解:如图所示:(2)2020.如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C 按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连结BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.【答案】(1)证明:∵线段CD绕点C按逆时针方向旋转90°得到线段CE,∴∠DCE=90°,CD=CE,又∵∠ACB=90°∴∠ACB=∠DCE.∴∠ACD=∠BCE.在△ACD和△BCE中,∵CD=CE,∠ACD=∠BCE,AC=BC,∴△ACD≌△BCE(SAS),(2)解:∵∠ACB=90°,AC=BC,∴∠A=45°由(1)知△ACD≌△BCE,∴AD=BE,∠CBE=∠A=45°,又∵AD=BF,∴BE=BF,∴∠BEF=∠BFE= =67.5°.21.在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:(1)①作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;②作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(2)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(-4,-2),请直接写出直线l的函数解析式. 【答案】(1)解:如图所示, C1的坐标C1(-1,2), C2的坐标C2(-3,-2)(2)解:∵A(2,4),A3(-4,-2),∴直线l的函数解析式:y=-x.22.如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为________(度);(2)在如图所示的网格中,是边上任意一点. 为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)【答案】(1)(2)解:如图,即为所求.23.在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点,,的对应点分别为,,.(1)如图①,当点落在边上时,求点的坐标;(2)如图②,当点落在线段上时,与交于点.①求证;②求点的坐标.(3)记为矩形对角线的交点,为的面积,求的取值范围(直接写出结果即可).【答案】(1)解:∵点,点,∴,.∵四边形是矩形,∴,,.∵矩形是由矩形旋转得到的,∴.在中,有,∴.∴.∴点的坐标为.(2)解:①由四边形是矩形,得.又点在线段上,得.由(Ⅰ)知,,又,,∴.②由,得.又在矩形中,,∴.∴.∴.设,则,.在中,有,∴.解得.∴.∴点的坐标为.(3)解:24.在中,,,,过点作直线,将绕点顺时针得到(点,的对应点分别为,)射线,分别交直线于点,.(1)如图1,当 与 重合时,求 的度数;(2)如图2,设与的交点为 ,当 为的中点时,求线段的长;(3)在旋转过程时,当点 分别在,的延长线上时,试探究四边形的面积是否存在最小值.若存在,求出四边形的最小面积;若不存在,请说明理由.【答案】(1)由旋转的性质得:.,,,,,.(2)为的中点,.由旋转的性质得:,., .,,.(3),最小,即最小,.法一:(几何法)取中点 ,则..当最小时,最小,,即与 重合时,最小.,,,.法二:(代数法)设 , .由射影定理得:,当最小,即最小,.当 时,“”成立,.。
北京市东城区普通中学2018届初三数学中考复习 图形的旋转 专项复习练习题 含答案

北京市东城区普通中学2018届初三数学中考复习 图形的旋转 专项复习练习题1.下列电视台的台标,是中心对称图形的是( )2.如图,将△ABC 绕点P 顺时针旋转得到△A ′B ′C ′,则点P 的坐标是( )A .(1,1)B .(1,2)C .(1,3)D .(1,4)3. 如图,△ABC 以点O 为旋转中心,旋转180°后得到△A ′B ′C ′.ED 是△ABC 的中位线,经旋转后为线段E ′D ′.已知BC =4,则E ′D ′=( )A .2B .3C .4D .1.54. 如图,边长为1的正方形ABCD 绕点A 逆时针旋转45°后得到正方形AB 1C 1D 1,边B 1C 1与CD 交于点O ,则四边形AB 1OD 的面积是( )A.34B.2-12C.2-1 D .1+ 2 5. 如图,图形中一个矩形是另一个矩形顺时针旋转90°后形成的,这个图形是( )6. 如图,在四边形ABCD中,AD∥BC,∠C=90°,AD=5,BC=9,以A为中心将腰AB顺时针旋转90°至AE,连结DE,则△ADE的面积等于( )A.10 B.11 C.12 D.137. 如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=____°.8. 如图,将等边三角形ABC绕顶点A顺时针方向旋转,使边AB与AC重合,得△ACD,BC的中点E的对应点为F,则∠EAF的度数是________.9. 如图,△ABC为等边三角形,D为△ABC内一点,△ABD经过旋转后到达△ACP的位置,(1)旋转中心是______;(2)旋转角度为______;(3)△ADP是_______三角形.10. 如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB,AC于点E,F,给出以下五个结论:①AE=CF;②∠APE=∠CPF;③△EPF是等腰三角形;④EF=AP;⑤S四边形AEPF=S△APC.当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),其中正确的序号有________________.11. 如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,(0°<α<90°)若∠1=110°,则α=_______.12. 如图,在平面直角坐标系xOy中,点A的坐标为(-2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是____个单位长度;△AOC与△BOD关于直线对称,则对称轴是______;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是_______度;(2)连结AD,交OC于点E,求∠AEO的度数.13. 如图,将给出的4张扑克牌摆成第一行的样子,然后将其中的1张牌旋转180°成第二行的样子,你能判断出被旋转的1张牌是哪一张吗?为什么?14. 正方形ABCD的边长为3,E,F分别是AB,BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.15.如图①,将一个边长为2的正方形ABCD和一个长为2,宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为α.(1)当点D′恰好落在EF边上时,求旋转角α的值;(2)如图②,G为BC中点,且0°<α<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,说明理由.答案:1---6 ABACA A7. 558. 60°9. 点A 60° 等边10. ①②③⑤11. 20°12. (1) 2 y轴 120(2) 解:∠AEO=90°13. 解:被旋转过的1张牌是第二张牌.理由如下:第一张牌因为最中间的图案不是中心对称图形,所以不是中心对称图形;第二张牌是中心对称图形;第三张牌因为最中间的一个图案旋转180°后位置变了,所以不是中心对称图形;第四张牌,因为最中间的图案不是中心对称图形,所以不是中心对称图形.∵将其中的1张牌旋转180°成第二行的样子,∴被旋转过的1张牌只能是中心对称图形,即第二张牌14. 解:(1)由旋转知∠DCM=∠A=∠DCF=90°,DE=DM,∠ADE=∠CDM,∴F,C,M在一条直线上,又∠EDF=45°,∴∠EDA+∠FDC=45°,∴∠EDF=∠FDM,∴△DEF≌△DMF(SAS),∴EF=FM(2)∵AE=CM=1,设EF=x,则FC=x-1,BF=4-x,BE=2,在Rt△EBF中,x2=22+(4-x)2,解得x=52,即EF=5215. 解:(1)α=30°(2)∵G为BC的中点,∴GC=CE′=CE=1,∵∠D′CG=∠DCG+∠DCD′=90°+α,∠DCE′=∠D′CE′+∠DCD′=90°+α,∴∠D′CG=∠DCE′,又∵CD′=CD,∴△GCD′≌△E′CD,∴GD′=E′D(3)能,α=135°或315°。
2018版中考数学:6.2-轴对称、平移、旋转(含答案)

§6.2轴对称、平移、旋转一、选择题1.(原创题)永州的文化底蕴深厚,永州人民的生活健康向上,如瑶族长鼓舞,东安武术,宁远举重等,下面的四幅简笔画是从永州的文化活动中抽象出来的,其中是轴对称图形的是()解析由轴对称图形的定义可知选项C中图形是轴对称图形,故选C.答案C2.(原创题)如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长解析相邻电路的电线等距排列说明三条电线中水平部分是相等的,若将三条电线的铅直部分的下段都向右,使铅直部分在同一条直线上,可知这三条电线是相等的,故电线的总长相等,选D.答案D3.(改编题△)如图,在ABC中,AB=4,BC=6,∠B=60°,将△A BC沿射线BC的方向平移,得到△A′B′C△′,再将A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别A.4,30°()B.2,60°C.1,30°D.3,60°解析由平移的性质可得A′B′=AB=4,A′B′∥AB,∠A′B′C=∠B=60°.由旋转的性质可得A′C=A′B△′,∴A′B′C是等边三角形,∴B′C=A′B′=4.∴BB′=BC-B′C=2,即平移的距离为△2.∵A′B′C是等边三角形,∴∠B′A′C=60°,即旋转角的度数为60°.故选B.答案B4.(改编题△)如图,在ABC中,∠ACB=90°,∠A=△20°,若将ABC沿CD折叠,使B点落在AC边上的E处,则∠ADE的度数是()A.30°B.40°C.50°D.55°解析由折叠可知∠CED=∠B=90°-∠A=90°-20°=70°.又∵∠CED△是AED的外角,∴∠ADE=∠CED-∠A=70°-20°=50°,选C.答案C5.(原创题)在方格纸中,选择某一个白色小正方形涂黑,与图中阴影部分构成轴对称图形,则不同的涂法有()A.1种C.3种B.2种D.4种解析如图,可以有下面3种不同的涂法,分别涂黑①②③的位置.故选C.答案C6.(改编题)如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的F处,已知AB=6,AD=10,则CE等于()A.1B.1.58C.3D.2解析在矩形ABCD中,∠B=90°,AD=BC,AD=10,由勾股定理可得BF=8,∴CF=2.由折叠可知∠AFE=90°,∴∠EFC=AB BF FC·BF2×88∠BAF△.∴ABF∽△FCE,FC=CE.∴CE=AB=6=3.故选C.答案C二、填空题7.(原创题)使平行四边形ABCD是轴对称图形,只需添加一个条件,这个条件可以是________(只要填写一种情况).解析若平行四边形ABCD是矩形、菱形、正方形,就是轴对称图形,故可添加:∠A=90°(或其它角为直角)或AC=BD,使成为矩形;也可添加:AB =BC(或其它邻边相等),AC⊥BD,使成为菱形;因为添加一个条件不能成为正方形,故可添加的条件可以是∠A=90°,AC=BD,AB=BC,AC⊥BD等.答案答案不唯一,如∠A=90°(或AC=BD,AB=BC,AC⊥BD) 8.(改编题)矩形纸片ABCD,按如图所示的方式折叠,点A、点C恰好落在对角AD线BD上,若得到的四边形BEDF是菱形,则A B=________.解析由折叠与菱形的性质可知∠ABF=30°,∴∠ABD=60°.在Rt△ABDAD中,AB=tan60°= 3.答案3三、解答题9.(改编题)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2),B(1,△3).AOB绕点O逆时针旋转90°后得到△A1OB1.(1)点A关于点O成中心对称的点的坐标为________;(2)点A1的坐标为________;(3)在旋转过程中,求点B经过的路径的长.解(1)(-3,-2);(2)如图,在坐标系中画出将△AOB绕点O逆时针旋转△90°的A1OB1,点A1的坐标为(-2,3)︵︵(3)点B经过的路径为BB1,OB=12+32=10,BB1的长=90×π×1010180=2π.10.(改编题)实践与操作:如图1是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2是以图1为基本图案经过图形变换拼成的一个中心对称图形.(1)请你仿照图1,用两段相等的圆弧(小于或等于半圆),在图3中重新设计一个不同的轴对称图形.(2)以你在图3中所画的图形为基本图案,经过图形变换在图4中拼成一个中心对称图形.解答案不唯一,仅供参考:(1)在图3中设计出符合题目要求的图形如下图1.(2)在图4中画出符合题目要求的图形如下图2.。
北京市海淀区普通中学2018届初三中考数学复习 图形的旋转 专题复习练习题 含答案

北京市海淀区普通中学2018届初三中考数学复习图形的旋转专题复习练习题1. 如图,把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是( )A.6 2 B.6 C.3 2 D.3+3 22. 将如图所示的正方形图案绕中心O旋转180°后,得到的图案是( )3. 如图,该图形围绕自己的旋转中心旋转之后能够与它自身相重合,最少需要旋转( )A.60° B.30° C.90° D.120°4. 如图,按a,b,c的排列规律,在空格d上的图形应该是( )A B C D5. 如图,如果正方形ABCD旋转后能与正方形CDEF重合,那么图形所在的平面内可作为旋转中心的点共有( )A .1个B .2个C .3个D .4个6. 如图,边长为1的正方形ABCD 绕点A 逆时针旋转30°得到正方形AB′C′D′,则图中阴影部分的面积为_______________.7. 如图,在△ABC 中,已知∠ABC =30°,将△ABC 绕点B 逆时针旋转50°后得到△A′BC′,若A′C′∥BC,则∠A =________.8. 如图,在正方形ABCD 中,AD =23,把边BC 绕点B 逆时针旋转30°得到线段BP ,连接AP 并延长交CD 于点E ,连接PC ,则三角形PCE 的面积为_______________.9. 如图,在△ABC 中,AB =BC ,将△ABC 绕点B 顺时针旋转α度,得到△A 1BC 1,A 1B 交AC 于点E ,A 1C 1分别交AC ,BC 于点D ,F ,下列结论:①∠CDF =α度;②A 1E =CF ;③DF =FC ;④BE =BF.其中正确的有____________.(只填序号)10. (1)如图1,在△ABC 中,BA =BC ,D ,E 是AC 边上的两点,且满足∠DBE=12∠ABC(0°<∠CBE<12∠ABC).以点B为旋转中心,将△BEC按逆时针方向旋转∠ABC,得到△BE′A(点C的对应点A,点E的对应点E′),连接DE′.求证:DE′=DE;(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=12∠ABC(0°<∠CBE<45°).求证:DE2=AD2+EC2.11. 如图,点O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)证明:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)请直接写出当α为多少度时,△AOD是等腰三角形.12. 如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)图中哪两个三角形可以通过旋转得到?怎样进行旋转?(3)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?答案: 1---5 ACADC 6. 1-337. 100° 8. 9-5 3 9. ①②④10. 证明:(1)由题意,得BE ′=BE ,∠E ′BA =∠EBC.∵∠DBE =12∠ABC,∴∠ABD+∠EBC =12∠ABC.∴∠ABD +∠E′BA =12∠ABC,即∠E ′BD =12∠ABC .∴∠E ′BD =∠DBE.又∵BD=BD ,∴△E ′BD ≌△EBD(SAS),∴DE ′=DE.(2)如图所示,把△CBE 逆时针旋转90°得到△AE′B(点C 的对应点A ,点E 的对应点E′),连接DE′,由(1)知DE′=DE.由旋转的性质知E′A=EC ,∠E′ AB =∠ECB.又∵BA =BC ,∠ABC =90°,∴∠BAC =∠ACB =45°.∴∠E′AD=∠E′AB+∠BAC =90°.在Rt △DE′A 中,DE′2=AD 2+E′A 2,∴DE 2=AD 2+EC 2.11. 解:(1)∵将△BOC 绕点C 顺时针旋转60°得△ADC ,∴∠OCD =60°,OC =CD ,∴△COD 是等边三角形.(2)△AOD 为直角三角形,理由如下:∵△COD 是等边三角形,∴∠ODC =60°,由旋转的性质知∠ADC =∠BOC =α=150°,∴∠ADO =∠ADC -∠ODC =150°-60°=90°,∴△AOD 是直角三角形.(3)α=125°或110°或140°时,△AOD 是等腰三角形.12. 解:(1)证明:∵四边形ABCD 为正方形, ∴BC =DC ,∠B =∠CDF=90°.在△CBE 和△CDF 中,⎩⎪⎨⎪⎧BC =CD ,∠B =∠CDF,BE =DF ,∴△CBE ≌△CDF(SAS).∴CE=CF.(2)∵△CBE≌△CDF,∠BCD =90°, ∴△CBE 可以通过△CDF 绕点C 逆时针旋转90°得到,△CDF 可以通过△CBE 绕点C 顺时针旋转90°得到.(3)GE =BE +GD 成立. 理由如下:由(1)知△CBE≌△CDF, ∴∠BCE =∠DCF ,∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF =∠GCE=45°.在△ECG 和△FCG 中,⎩⎪⎨⎪⎧CE =CF ,∠GCE =∠GCF,GC =GC ,∴△ECG≌△FCG(SAS ). ∴GE=GF.∴GE=DF +GD =BE +GD.。
九年级中考数学三轮复习专项练习:《图形旋转》(含答案)

三轮复习专项练习:《图形旋转》1.在平面直角坐标系xOy中,已知A(4,0)、B(1,3),直线l是绕着△OAB的顶点A 旋转,与y轴相交于点P,探究解决下列问题:(1)如图1所示,当直线l旋转到与边OB相交时,试用无刻度的直尺和圆规确定点P 的位置,使顶点O、B到直线l的距离之和最大(保留作图痕迹);(2)当直线l旋转到与y轴的负半轴相交时,使顶点O、B到直线l的距离之和最大,请直接写出点P的坐标是.(可在图2中分析)2.如图,点E是正方形ABCD的边BC上一点,连接DE,将DE绕着点E逆时针旋转90°,得到EG,过点G作GF⊥CB,垂足为F,GH⊥AB,垂足为H,连接DG,交AB于I.(1)求证:四边形BFGH是正方形;(2)求证:ED平分∠CEI;(3)连接IE,若正方形ABCD的边长为3,则△BEI的周长为.3.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=4,将△ABC绕点C逆时针旋转90°后得到△A1B1C,再将△A1B1C沿CB向右平移,使点B2恰好落在斜边AB上,A2B2与AC相交于点D.(1)判断四边形A1A2B2B1的形状,并说明理由;(2)求A2C的长度.4.在菱形ABCD中,∠ABC=60°,点P是对角线BD上一动点,将线段CP绕点C顺时针旋转120°到CQ,连接DQ.连接QP并延长,分别交AB、CD于点M,N.(1)如图1,求证:△BCP≌△DCQ;(2)如图2,已知PM=QN;若MN的最小值为,求菱形ABCD的面积.5.四边形ABCD是正方形,PA是过正方形顶点A的直线,作DE⊥PA于E,将射线DE绕点D 逆时针旋转45°与直线PA交于点F.(1)如图1,当∠PAD=45°时,点F恰好与点A重合,则的值为;(2)如图2,若45°<∠PAD<90°,连接BF、BD,试求的值,并说明理由.6.如图,在△ABC中,AC=BC,∠ACB=120°,点D是AB边上一点,连接CD,以CD为边作等边△CDE.(1)如图1,若∠CDB=45°,AB=6,求等边△CDE的边长;(2)如图2,点D在AB边上移动过程中,连接BE,取BE的中点F,连接CF,DF,过点D作DG⊥AC于点G.①求证:CF⊥DF;②如图3,将△CFD沿CF翻折得△CFD′,连接BD′,直接写出的最小值.7.(1)观察与发现:小明将三角形纸片ABC(AC>AB)沿过点A的直线折叠,使得AB落在AC边上,折痕为AD,展开纸片(如图1);在第一次的折叠基础上第二次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图2).小明认为△AEF是等腰三角形,你同意他的结论吗?请说明理由:(2)模型与运用:如图3,在△ABC中,∠BAC=90°,AB=AC,BE平分∠ABC交AC于点E,过点C作CD⊥BD,交BE的延长线于点D.若CD=4,求△BCE的面积.8.[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF 是三角形,从而求得∠DCE=°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.9.问题背景:如图①设P是等边△ABC内一点,PA=6,PB=8,PC=10,求∠APB的度数.小君研究这个问题的思路是:将△ACP绕点A逆时针旋转60°得到△ABP',易证:△APP'是等边三角形,△PBP'是直角三角形,所以∠APB=∠APP'+∠BPP'=150°.简单应用:(1)如图2,在等腰直角△ABC中,∠ACB=90°.P为△ABC内一点,且PA =5,PB=3,PC=2,则∠BPC=°(2)如图3,在等边△ABC中,P为△ABC内一点,且PA=5,PB=12,∠APB=150°,则PC=.拓展廷伸:①如图4,∠ABC=∠ADC=90°,AB=BC.求证:BD=AD+DC.②若图4中的等腰直角△ABC与Rt△ADC在同侧如图5,若AD=2,DC=4,请直接写出BD的长.10.在Rt△ABC中,∠ACB=90°,AC=1,记∠ABC=α,点D为射线BC上的动点,连接AD,将射线DA绕点D顺时针旋转α角后得到射线DE,过点A作AD的垂线,与射线DE 交于点P,点B关于点D的对称点为Q,连接PQ.(1)当△ABD为等边三角形时,①依题意补全图1;②PQ的长为;(2)如图2,当α=45°,且BD=时,求证:PD=PQ;(3)设BC=t,当PD=PQ时,直接写出BD的长.(用含t的代数式表示)11.已知等边△ABC,点D为BC上一点,连接AD.(1)若点E是AC上一点,且CE=BD,连接BE,BE与AD的交点为点P,在图(1)中根据题意补全图形,直接写出∠APE的大小;(2)将AD绕点A逆时针旋转120°,得到AF,连接BF交AC于点Q,在图(2)中根据题意补全图形,用等式表示线段AQ和CD的数量关系,并证明.12.如图,MO⊥NO于点O,△OAB为等腰直角三角形,∠OAB=90°,当△OAB绕点O旋转时,记∠MOA=α(0°≤α≤90°),OA=5.(1)过点B作BC⊥ON交射线ON于点C,作射线CA交射线OM于点D.①依题意补全图形,求∠ODC的度数;②当sinα=时,求OD的长.(2)若ON上存在一点P,且OP=10,作射线PB交射线OM于点Q,直接写出QP长度的最大值.13.如图a,P、Q是△ABC的边BC上的两点,且△APQ为等边三角形,AB=AC,(1)求证:BP=CQ.(2)如图a,若∠BAC=120°,AP=3,求BC的长.(3)若∠BAC=120°,沿直线BC向右平行移动△APQ得到△A′P′Q′(如图b),A′Q′与AC交于点M.当点P移动到何处时,△AA′M≌△CQ′M?证明你的结论.14.如图,点A,B在直线1上,AB=20cm,∠BAC=120°.(1)点P从A出发,沿射线AB以每秒2cm的速度向右运动,同时点Q从B出发,沿射线BA以每秒lcm的速度向左运动,求点P出发多少秒时与点Q重合?(2)在(1)的条件下,求点P出发多少秒时与点Q相距5cm?(3)点M为射线AC上﹣点,AM=4cm,现将射线AC绕点A以每秒30°的速度顺时针旋转一周后停止,同时点N从点B出发沿直线AB向左运动,在这一运动过程中,是否存在某一时刻,使得点N为BM的中点?若存在,求出点N运动的速度:若不存在,请说明理由.15.在△ABC中,AB=AC,在△ABC的外部作等边三角形△ABD,E为AB的中点,连接DE并延长交BC于点F.(1)如图1,若∠BAC=90°,连接CD,求证:CD平分∠ADF;(2)如图2,过点A折叠∠CAD,使点C与点D重合,折痕AM交EF于点M,若点M正好在∠ABC的平分线上,连接BM并延长交AC于点N,课堂上两个学习小组分别得出如下两个结论:①∠BAC的度数是一个定值,为100°;②线段MN与NC一定相等.请你选择其中一个结论,判断是否正确?若正确,给予证明:若不正确,说明理由.参考答案1.解:(1)如图1,过A点作直线l⊥OB于点F,l与y轴的交点即为所确定的P点位置.理由如下:如图2所示,过点O作OD⊥l于D,过点B作BC⊥l于C.∵S△OAB=FA•OD+FA•BC=FA(OD+BC)=3为定值.要使点O、B到直线l的距离之和最大,即OD+BC最大,只要使FA最小,∴过A点作直线l⊥OB于点F,此时FA即为最小值(此时,点F、D、C重合).∴l与y轴的交点即为所确定的P点位置;(2)由(1)的解题过程知,如图2所示,延长BA到G点,使BA=AG,连接OG,则S△OAG =S△OAB,旋转直线l至l⊥OG于点F,与y轴的交点即为所确定的P点,过点B作BE⊥OA于点E,∵B(1,3),A(4,0),∴EB=EA=3,过点G作GH⊥x轴于点H,∴△ABE≌△AGH(AAS),∴AH=GH=3,∴OH=7,∴tan∠HOG=,又∵直线l⊥OG于点F,∴∠OPA=∠HOG,∴tan∠OPA=tan∠HOG=,∴=,∴=,∴OP=,∴P(0,﹣),故答案为:(0,﹣).2.(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠DCE=∠ABC=∠ABF=90°,∵GF⊥CF,GH⊥AB,∴∠F=∠GHB=∠FBH=90°,∴四边形FBHG是矩形,∵ED=EG,∠DEG=90°,∵∠DEC+∠FEG=90°,∠DEC+∠EDC=90°,∴∠FEG=∠EDC,∵∠F=∠DCE=90°,∴△DCE≌△EFG(AAS),∴FG=EC,EF=CD,∵CB=CD,∴EF=BC,∴BF=EC,∴BF=GF,(2)证明:延长BC到J,使得CJ=AI.∵DA=DC,∠A=∠DCJ=90°,AI=CJ,∴△DAI≌△DCJ(SAS),∴DI=DJ,∠ADI=∠CDJ,∴∠IDJ=∠ADC=90°,∵∠IDE=45°,∴∠EDI=∠EDJ=45°,∵DE=DE,∴△IDE≌△JDE(SAS),∴∠DEI=∠DEJ,∴DE平分∠IEC.(3)解:∵△IDE≌△JDE,∴IE=EJ,∵EJ=EC+CJ,AI=CJ,∴IE=EC=AI,∴△BIE的周长=BI+BE+IE=BI+AI+BE+EC=2AB=6.故答案为6.3.解:(1)四边形A1A2B2B1是平行四边形,理由:∵∠ACB=∠B2C=90°,∴B1C∥C2B2,∵再将△A1B1C沿CB向右平移,∴B1C=C2B2,122∴B 2B 1∥B 1C ,∴B 2B 1∥A 1A 2,∵再将△A 1B 1C 沿CB 向右平移,∴A 1B 1∥A 2B 2,∴四边形A 1A 2B 2B 1是平行四边形;(2)在Rt △ABC 中,BC ===3,由题意:BC =CB 1=C 2B 2=3,∴AB 1=1,∵B 1B 2∥BC ,∴△AB 1B 2∽△ACB , ∴, ∴, ∴B 1B 2=,∴B 1B 2=CC 2=,∴CA 2=A 2C 2﹣CC 2=4﹣=.4.(1)证明:四边形ABCD 是菱形,∴BC =DC ,AB ∥CD ,∴∠PBM =∠PBC =∠ABC =30°,∠ABC +∠BCD =180°, ∴∠BCD =180°﹣∠ABC =120°由旋转的性质得:PC =QC ,∠PCQ =120°,∴∠BCD =∠DCQ ,∴∠BCP =∠DCQ ,在△BCP 和△DCQ 中,,∴△BCP ≌△DCQ (SAS );(2)解:过点C作CG⊥PQ于点G,连接AC,∵PC=QC,∠PCQ=120°,∴∠PCG=60°,PG=QG,∴PG=PC,∴PQ=PC.∵PM=QN,∴MN=PQ=PC,∴当PC⊥BD时,PC最小,此时MN最小,∴PC=2,BC=2PC=4,∵菱形ABCD中,∠ABC=60°,∴△ABC是等边三角形,∴=4,∴菱形ABCD的面积=2S=2×4=8;△ABC5.解:(1)∵∠PAD=45°,DE⊥AP,∴∠DAE=∠EDA,∴AE=DE,∴AD=AE,∵四边形ABCD是正方形,∴AD=AB=BF=AE,∴=;(2)过点B作BH⊥AP于H,∵四边形ABCD是正方形,∴AD=AB,∠ABD=45°,∠BAD=90°,∴∠BAH+∠DAE=90°,又∵∠BAH+∠ABH=90°,∴∠ABH=∠DAE,又∵AD=AB,∠DEA=∠AHB=90°,∴△ADE≌△BAH(AAS),∴AE=BH,∵将射线DE绕点D逆时针旋转45°与直线PA交于点F,∴∠EDF=45°,∴∠EFD=45°=∠ABD,∴点A,点F,点B,点D四点共圆,∴∠BFH=∠ADB=45°,又∵BH⊥AP,∴∠FBH=∠BFH=45°,∴BH=FH,∴BF=BH=AE,∴==.6.解:(1)如图1,过点C作CH⊥AB于点H,∵AC=BC,∠ACB=120°,CH⊥AB,∴∠A=∠B=30°,AH=BH=3,∴CH==,∵∠CDH=45°,CH⊥AB,∴∠CDH=∠DCH=45°,∴DH=CH=,CD=CH=;(2)①如图2,延长BC到N,使CN=BC,∵AC=BC,∠ACB=120°,∴∠A=∠ABC=30°,∠NCA=60°,∵△ECD是等边三角形,∴EC=CD,∠ECD=60°,∴∠NCA=∠ECD,∴∠NCE=∠DCA,又∵CE=CD,AC=BC=CN,∴△CEN≌△CDA(SAS),∴EN=AD,∠N=∠A=30°,∵BC=CN,BF=EF,∴CF∥EN,CF=EN,∴∠BCF=∠N=30°,∴∠ACF=∠ACB﹣∠BCF=90°,又∵DG⊥AC,∴CF∥DG,∵∠A=30°,DG⊥AC,∴DG=AD,∴DG=CF,∴四边形CFDG是平行四边形,又∵∠ACF=90°,∴四边形CFDG是矩形,∴∠CFD=90°∴CF⊥DF;②如图3,连接BD',∵将△CFD沿CF翻折得△CFD′,∴CD=CD',DF=D'F,∠CFD=∠CFD'=90°,又∵EF=BF,∠EFD=∠BFD',∴△EFD≌∠BFD'(SAS),∴BD'=DE,∴BD'=CD,∵当BD'取最小值时,有最小值,∴当CD取最小值时,有最小值,∵当CD⊥AB时,CD有最小值,∴AD=CD,AB=2AD=2CD,∴最小值=.7.解:(1)同意,理由如下:如图2,设AD与EF交于点G,由折叠知,AD平分∠BAC,∴∠BAD=∠CAD.由折叠知,∠AGE=∠DGE,∴∠AGE=∠AGF=90°,∴∠AEF=∠AFE,∴AE=AF.即:△AEF为等腰三角形.(2)如图3,延长CD与BA并交于点F,由(1)知,BC=BF,又∵BE平分∠ABC,∴BD是△CBF的中线,即FD=CD=4,CF=2CD=8,∵∠BAC=90°,∴∠ABD+∠AEB=90°,∵CD⊥BD,∴∠EDC=90°,∴∠ACD+∠CED=90°,∵∠AEB=∠CED,∴∠ACD=∠ABD,∵AC=AB,∴△CAF≌△BAE(ASA)∴BE=CF=8,∴S=BE•CD=×8×4=16.△BCE8.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,=BC=,∴BE最小即:BE的最小值为.9.解:简单应用:(1)如图2,∵△ABC是等腰直角三角形,∴∠ACB=90°,AC=BC,将△ACP绕点C逆时针旋转90°得到△CBP',连接PP',∴BP'=AP=5,∠PCP'=90°,CP'=CP=2,∴∠CPP'=∠CP'P=45°,根据勾股定理得,PP'=CP=4,∵BP'=5,BP=3,∴PP'2+BP2=BP',∴△BPP'是以BP'为斜边的直角三角形,∴∠BPP'=90°,∴∠BPC=∠BPP'+∠CPP'=135°,故答案为:135;(2)如图3,∵△ABC是等边三角形,∴∠BAC=60°,AC=AB,将△ACP绕点A逆时针旋转60°得到△ABP',连接PP',∴BP'=CP,AP'=AP=5,∠PAP'=60°,∴△APP'是等边三角形,∴PP'=AP=5,∠APP'=60°,∵∠APB=150°,∴∠BPP'=∠APB﹣∠APP'=90°,根据勾股定理得,BP'==13,∴CP=13,故答案为:13;拓展廷伸:①如图4,在△ABC中,∠ABC=90°,AB=BC,将△ABD绕点B顺时针旋转90°得到△BCD',∴BD'=BD,CD'=AD,∠BCD'=∠BAD,∵∠ABC=∠ADC=90°,∴∠BAD+∠BCD=180°,∴∠BCD+∠BCD'=180°,∴点D'在DC的延长线上,∴DD'=CD+CD'=CD+AD,在Rt△DBD'中,DD'=BD,∴BD=CD+AD;②如图5,在△ABC中,∠ABC=90°,AB=BC,将△CBD绕点B顺时针旋转90°得到△ABD',∴BD'=BD,CD=AD',∠DBD'=90°,∠BCD=∠BAD',AB与CD的交点记作G,∵∠ADC=∠ABC=90°,∴∠DAB+∠AGD=∠BCD+∠BGC=180°,∵∠AGD=∠BGC,∴∠BAD=∠BCD,∴∠BAD=∠BAD',∴点D'在AD的延长线上,∴DD'=AD'﹣AD=CD﹣AD=2,在Rt△BDD'中,BD=DD'=.10.(1)解:①补全图形如图所示.②∵△ABD是等边三角形,AC⊥BD,AC=1,∴∠ADC=60°,∠ACD=90°,∴AD==,∵∠ADP=∠ADB=60°,∠PAD=90°,∴PA=AD•tan60°=2,∵∠ADP=∠PDQ=60°,DP=DP.DA=DB=DQ,∴△PDA≌△PDQ(SAS),∴PQ=PA=2.故答案为2.(2)作PF⊥BQ于F,AH⊥PF于H.∵PA⊥AD,∴∠PAD=90°.由题意可知∠ADP=45°.∴∠APD=90°﹣45°=45°=∠ADP,∴PA=PD,∵∠ACB=90°,∴∠ACD=90°,∵AH⊥PF,PF⊥BQ,∴∠AHF=∠HFC=∠ACF=90°∴四边形ACFH是矩形,∴∠CAH=90°,AH=CF,∵∠ACH=∠DAP=90°,∴∠CAD=∠PAH,.又∵∠ACD=∠AHP=90°,∴△ACD≌△AHP(AAS),∴AH=AC=1,∴CF=AH=1,∵BD=,BC=1,B,Q关于点D对称,∴CD=BD﹣BC=,DQ=BD=,∴DF=CF﹣CD==DQ,∴F为DQ中点.∴PF垂直平分DQ.∴PQ=PD.(3)如图3中,作PF⊥BQ于F,AH⊥PF于H.设BD=x,则CD=x﹣t,AD=,∵PD=PQ,PF⊥DQ,∴DF=FQ=x∵四边形AHFC是矩形,∴AH=CF=CD+DF=(x﹣t)+x=x﹣t,∵△ACB∽△PAD,∴=,∴=,∴PA=,∵△PAH∽△DAC,∴=,∴=,解得x=,∴BD=.11.(1)补全图形图1,证明:在△ABD和△BEC中,∴△ABD≌△BEC(SAS)∴∠BAD=∠CBE.∵∠APE是△ABP的一个外角,∴∠APE=∠BAD+∠ABP=∠CBE+∠ABP=∠ABC=60°;(2)补全图形图2,,证明:在△ABD和△BEC中,∴△ABD≌△BEC(SAS)∴∠BAD=∠CBE,∵∠APE是△ABP的一个外角,∴∠APE=∠BAD+∠ABP=∠CBE+∠ABP=∠ABC=60°.∵AF是由AD绕点A逆时针旋转120°得到,∴AF=AD,∠DAF=120°.∵∠APE=60°,∴∠APE+∠DAF=180°.∴AF∥BE,∴∠1=∠F,∵△ABD≌△BEC,∴AD=BE.∴AF=BE.在△AQF和△EQB中,△AQF≌△EQB(AAS),∴AQ=QE,∴,∵AE=AC﹣CE,CD=BC﹣BD,且AE=BC,CD=BD.∴AE=CD,∴.12.解:(1)①图形如图1所示.过点A作AH⊥OC于点H,AG⊥CB交CB的延长线于点G.∵BC⊥OC,AH⊥OC,AG⊥CB,∴∠AHC=∠HCG=∠G=90°,∴四边形AHCG是矩形,∴∠HAG=∠OAB=90°,∴∠OAH=∠BAG,∵AO=AB,∴△AHO≌△AGB(AAS)∴AH=AG,∴四边形AHCG为正方形,∴∠ODC=45°.②如图2中,延长GA交OD于点K.∵,OA=5,∴AK=4,OK=3,∴DK=AK=4,∴OD=7.(2)如图3中,∵OA=AB=5,∠OAB=90°,∴OB=OA=5,观察图象可知,当OB⊥PQ时,△OPB是等腰直角三角形,此时PQ的值最大,最大值=2PB =10.13.(1)证明:过点A作AD⊥BC,在△ABC中,AB=AC,AD⊥BC,∴BD=CD,在等边△AQP中,AP=AQ,AD⊥BC,∴PD=QD,∴BD﹣PD=CD﹣QD,即BP=CQ;(2)解:在△ABC中,AB=AC,∠BAC=120°,∴∠B=∠C=30o,已知△APQ为等边三角形,∴∠APQ=∠AQP=60°,∴∠BAP=∠B=∠C=∠CAQ=30°,∴AP=BP,AQ=CQ,已知△APQ为等边三角形,∴BP=PQ=QC=AP=3,∴BC=9;(3)当点P移动到BC的中点,即,P′为BC的中点时,△AA′M≌△CQ′M,理由如下:沿直线BC向右平行移动△APQ得到△A′P′Q′,由平移的性质可知:PP'=AA'=QQ',AA'∥BC,∴∠C=∠MAA'①,当P′为BC的中点时,BP'=CP',由(2)的解答可知,PB=QC=PQ,∴BP'﹣PB=CP'﹣QC,∴PP'=AA'=QQ'=PQ=QC,∴点Q'为QC的中点,Q'C=QQ'=AA'②,又∠AMA'=∠CMQ'③,∴由①②③可得△AA′M≌△CQ′M(AAS).14.解:(1)设点P出发t秒时与点Q重合,则由题意得,2t+t=20,解得,t=,∴点P出发秒时与点Q重合;(2)设点P出发的时间为t,则当点P与点Q在相遇前相距5cm时,2t+t=20﹣5,解得,t=5;当点P与点Q在相遇后相距5cm时,2t+t=20+5,解得,t=,综上所述,点P出发5秒或秒时与点Q相距5cm;(3)当点N为BM的中点时,点N,B,M在同一直线上,故当点M按顺时针方向旋转到直线AB上时,点N有可能为BM的中点,①如图1,当射线AC顺时针方向旋转120°时,第一次与AB重合,=4秒,若N为BM的中点,则BN=(AB﹣AM)=(20﹣4)=8cm,∴点N的运动速度为:=2cm/s;②如图2,当射线AC顺时针方向旋转300°时,第二次与AB重合,=10秒,若N为BM的中点,则BN=(AB+AM)=(20+4)=12cm,∴点N的运动速度为:=cm/s,综上所述,当射线AC绕点A以每秒30°的速度顺时针旋转4秒时,使得点N为BM的中点,点N运动的速度为2cm/s;当射线AC绕点A以每秒30°的速度顺时针旋转10秒时,使得点N为BM的中点,点N运动的速度为cm/s.15.证明:(1)∵△ABD是等边三角形,且E为AB的中点,∴DE⊥AB,AB=AD,∵AB=AC,∴AD=AC,∴∠ADC=∠ACD,∵∠BAC=90°,∴AC∥DE,∴∠ACD=∠FDC,∴∠ADC=∠FDC,∴CD平分∠ADF;(2)①∵△ABD是等边三角形,且E为AB的中点,∴DE垂直平分AB,∴AM=BM,∴∠MAB=∠MBA,∵BM平分∠ABC,∴∠MBA=∠MBC,设MAB=∠MBA=∠MBC=α,∵AB=AC,∴∠ACB=∠ABC=2α,由翻折知,∠MAC=∠MAD=∠DAB+∠MAB=60°+α,∴在△ABC中,∠ABC+∠ACB+∠BAM+∠MAC=2α+2α+α+60°+α=180°,∴α=20°,∴∠BAC=∠BAM+∠MAC=20°+60°+20°=100°,∴∠BAC的度数是一个定值,为100°;②如图2﹣1,连接MC,由①知,α=20°,∠BAC=100°,∴∠ABC=∠ACB=40°,由①知,DE垂直平分AB,∵DA=DB,∠ADB=60°,∴∠ADE=∠BDE=30°,由翻折知,△ADM≌△ACM,∴∠ACM=∠ADM=30°,∴∠BCM =∠ACB ﹣∠ACM =10°,∴∠NMC =∠MBC +∠MCB =20°+10°=30°,∴∠NMC =∠NCM ,∴MN =NC .1、最困难的事就是认识自己。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018 初三数学中考复习图形的旋转专题综合练习题
1. 图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( C )
A.① B.② C.③ D.④
2.下列图案中,中心对称图形是( D )
A.①② B.②③ C.②④ D.③④
3.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=25°,则∠BAA′的度数是( D )
A.55° B.60° C.65° D.70°
4.如图,用一个半径为5 cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了( C )
A.π cm B.2π cm C.3π cm D.5π cm
5.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在
AB延长线上,连结AD.下列结论一定正确的是( C )
A.∠ABD=∠E B.∠CBE=∠C
C.AD∥BC D.AD=BC
6.若点M(3,a-2),N(b,a)关于原点对称,则a+b=__-2__.
7.如图,直线a,b垂直相交于点O,曲线c关于点O成中心对称,点A的对称点是点A′,A B⊥a于点B,A′D⊥b于点D,若OB=3,OD=2,则阴影部分的面积之和为__6__.
8.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm,将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB 的中点,则线段B1D=__1.5__cm.
9. 如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于__5π__.
10.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次
旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2 017次后,点P的坐标为__(6_053,2)__.
11.如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(-2,-2),B(-4,-1),C(-4,-4).
(1)作出△ABC关于原点O成中心对称的△A1B1C1;
(2)作出点A关于x轴的对称点A′,若把点A′向右平移a个单位长度后落在△A1B1C1的内部(不包括顶点和边界),求a的取值范围.
解:(1)如图所示,△A1B1C1即为所求.
(2)∵点A′坐标为(-2,2),∴若要使向右平移后的A′落在△A1B1C1的内部,a 的取值范围为4<a<6.
12.如图,已知AC⊥BC,垂足为C,AC=4,BC=33,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连结DC,DB.
(1)线段DC=__4__;
(2)求线段DB 的长度.
解:作DE⊥BC 于点E.∵△ACD 是等边三角形,∴∠ACD =60°.又∵AC⊥BC,∴∠DCE =∠ACB-∠ACD=90°-60°=30°,
∴Rt △CDE 中,DE =12DC =2,CE =DC·cos30°=4×3
2=23,∴BE =BC -CE
=33-23=3.∴Rt △BDE 中,BD =DE 2+BE 2=22+(3)2=7.
13.已知△ABC 是等腰三角形,AB =AC.
(1)特殊情形:如图①,当DE∥BC 时,有DB___=__EC.(填“>”“<”或“=”) (2)发现探究:若将图①中的△ADE 绕点A 顺时针旋转α(0°<α<180°)到图②位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.
(3)拓展运用:如图③,P 是等腰直角三角形ABC 内一点,∠ACB =90°,且PB =1,PC =2,
PA =3,求∠BPC 的度数.
解:(2)成立.证明:由(1)易知AD =AE ,∴由旋转性质可知∠DAB=∠EAC.在△DAB 和△EAC 中,⎩⎪⎨⎪
⎧AD =AE ,∠DAB =∠EAC,AB =AC ,∴△DAB ≌△EAC(SAS),∴DB =EC.
(3)如图,
将△CPB绕点C顺时针旋转90°得△CEA,连结PE,∴△CPB≌△CEA,∴CE=CP =2,AE=BP=1,∠PCE=90°,∴∠CEP=∠CPE=45°.在Rt△PCE中,由勾股定理可得,PE=22,在△PEA中,PE2=(22)2=8,AE2=12=1,PA2=32=9.∵PE2+AE2=AP2,∴△PEA是直角三角形,∴∠PEA=90°,∴∠CEA=135°.又∵△CPB≌△CEA,∴∠BPC=∠CEA=135°.
14. 如图,将等腰△ABC绕顶点B逆时针方向旋转α到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F.
①求证:△BCF≌△BA1D;
②当∠C=α时,判定四边形A1BCE的形状并说明理由.
解:①证明:∵△ABC是等腰三角形,∴AB=BC,∠A=∠C.由旋转性质得A1B =AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,∴△BCF≌△BA1D(ASA).
②四边形A1BCE是菱形.理由:∵∠A1=∠A,∠ADE=∠A1DB,∴∠AED=∠A1BD =α,∴∠DEC=180°-α.∵∠C=α,∴∠A1=α,∴∠A1BC=360°-∠A1-∠C-∠A1EC=180°-α,∴∠A1=∠C,∠A1BC=∠A1EC.∴四边形A1BCE是平行四边形.∵A1B=BC,∴四边形A1BCE是菱形.。