球墨铸铁力学性能与化学成分(精)

合集下载

球 墨 铸 铁

球 墨 铸 铁

图1-11 球墨铸铁高温正火工艺曲线
2)低温正火
球墨铸铁
一般将铸件加热到820 ℃~860 ℃,保温1~4 h, 然后出炉空冷,获得珠光体 和分散铁素体的球墨铸铁。 低温正火后的铸件的塑性和 韧性提高了,但强度比高温 正火略低,其工艺曲线如图 1-12所示。
图1-12 球墨铸铁低温正火工艺曲线
球墨铸铁
球墨铸铁
图1-9 球墨铸铁低温石墨化退火工艺曲线
球墨铸铁
3)高温石墨化退火
由于球墨铸铁白口倾向较大,因而铸态组织中往往 出现自由渗碳体,为了获得铁素体球墨铸铁,需要进行 高温石墨化退火。
高温石墨化退火工艺是将铸件加热到900 ℃~950 ℃,保温2~4 h,使自由渗碳体石墨化,然后炉冷至 600 ℃,再出炉空冷,其工艺曲线如图1-10所示。
球墨铸铁
2)低温石墨化退火
当铸态基体组织为珠光体+铁素体而无自由渗 碳体存在时,为了获得塑性、韧性较高的铁素体球 墨铸铁,可进行低温石墨化退火。
低温石墨化退火工艺是将铸件加热到共析温度 范围附近,即720 ℃~760 ℃,保温2~8 h,使铸 件发生第三阶段石墨化,然后炉冷至600 ℃,再出 炉空冷,其工艺曲线如图1-9所示。
球墨铸铁的化学成分为ωC=3.6%~3.9%,ωSi=2.0% ~2.8%,ωMn=0.6%~0.8%,ωS<0.04%,ωP<0.1%, ωMg=0.03%~0.05%。与灰铸铁相比,球墨铸铁的碳、硅 含量较高,有利于石墨球化。
球墨铸铁
2. 球墨铸铁的显微组织
球墨铸铁按其基体组 织不同,可分为铁素体球 墨铸铁、铁素体+珠光体 球墨铸铁和珠光体球墨铸 铁三种,它们的显微组织 如图1-8所示。
球墨铸铁除了能采用上述热处理工艺外,还可以采用表面强化处 理,如表面淬火和渗氮等。

球墨铸铁性能

球墨铸铁性能

2、珠光体 在球墨铸铁中,珠光体的形态一般分三 级:粗状珠光体、片状珠光体、细片状珠 光体。 随着珠光体的细化,球墨铸铁的强度 和硬度有所提高。若基体为粒状珠光体, 则球墨铸铁在保持一定强度的同时,具有 更高的塑性。
3、奥氏体、贝氏体、马氏体 由奥氏体、上贝氏体或下贝氏体通过等温淬 火,加入适当元素获得。 4、渗碳体 渗碳体多呈针状、条状,在球墨铸铁中易使 基体变脆,故应避免其出现。 5、磷共晶体 磷共晶体在球墨铸铁中对性能的危害比在灰 铸铁中大得多。沿晶界分布的二元或三元磷共晶 体,强烈降低球墨铸铁的韧性、塑性和强度,受 冲击时,裂痕总是沿磷共晶体边缘开始开裂。
7、应力变形和裂纹 特征:收缩应力、相变应力之和超过 断面金属抗断裂后形成裂纹,热裂呈暗褐 色不平整端口,冷裂形成浅褐色光滑平直 断口。 原因:碳含量低,碳化物形成元素增 加,孕育不足,冷却过快等。 措施:适当提高碳当量,降低含磷量, 加强孕育等措施。
8、碎块状石墨 特征:出现在Ce等活性元素富集在共 晶团边界,促使该区域过饱和析出而形成 蠕虫状石墨,其断面形态为碎块状。 原因:冷却缓慢,共晶凝固时间过长 引起的成分偏析和孕育衰退。 措施:选用纯净炉料并限制Ce等元素 的含量,控制较低的碳当量,加入Sb、Y、 Bi等微量元素。
1、金相组织 球状石墨外貌接 近球形,内部呈放射 状,有明显的偏光效 应。 石墨是由很多角 锥体枝晶组成的多晶 体,各枝晶的基面垂 直于球径,C轴呈辐 射状指向球心。
2、球化分级
球化级别
1级 2级 3级 4级 5级
说明
石墨呈球状,少量团絮,允许极少量 团絮状 石墨大部分呈球状,余为团状和极少 量团絮状 石墨大部分呈团状,余为团絮状,允 许有极少量蠕虫状 石墨呈分散分布的蠕虫状、球状、团 状、团絮状 石墨呈聚集分布的蠕虫状、片状及球 状、团状、团絮状

球墨铸铁技术介绍

球墨铸铁技术介绍
• QTσ0.2/σb=0.7-0.8,钢 σ0.2/σb= 0.3-0.57
弹性模量:159,000~172,000MPa
➢ 球墨铸铁的弹性模量随球化率的降低而降低。
球墨铸铁的验收
➢ 以抗拉强度和延伸率两个指标作为验收依据。 ➢ 生产工艺稳定的条件下,可根据硬度值进行验收。
硬度与强度的对应关系必须建立在球化合格,化学成 分、孕育稳定的基础上。
的基体类型。
焊补性
➢ 球墨铸铁不能焊接,只能焊补。
➢ 球墨铸铁中稀土镁合金含量较高时,在焊缝和近焊 缝区易产生白口或马氏体组织,形成内应力和裂 纹。
➢ 国家标准GB/T10044-1988规定了适用于球墨铸 铁焊补用的焊条,按照要求,可获得高强度珠光体 基体球墨铸铁的焊缝。
9
铁素体球墨铸铁(F体高韧性)
➢ 铸造工艺合理稳定,为保证性能,规定按硬度验收 时,必须检验金相组织,其球化率不得低于4级。
➢ 即使硬度和球化合格,由于基体其中存在渗碳体、 磷共晶、高硅固溶强化等,强度和韧性也可能达不 到要求。
➢ 生产工艺不稳定时,不能根据硬度值验收。
13
冲击韧度
➢ 铁素体球墨铸铁由于含硅量变化,贝氏体球墨铸铁 由于上、下贝氏体及奥氏体数量变化,冲击韧度的 变化范围较大。
强度和塑性
➢ 球墨铸铁的强度和塑性主要取决于基体组织
• 下贝氏体B下或回火马氏体M回强度最高; • 其次是上贝氏体B上、索氏体S体、珠光体P体、F体; • 铁素体增多,强度下降,延伸率增加; • 奥氏体或铁素体强度较低,塑性较好。
➢ 球墨铸铁的屈服点σ0.2高,超过正火45钢 ➢ 比强度σ0.2/σb也高于钢
布氏硬度HBS
四种退火球墨铸铁的高温硬度
180

球墨铸铁标准

球墨铸铁标准

球墨铸铁标准球墨铸铁是一种具有高强度、高韧性和良好耐腐蚀性能的材料,广泛应用于各种机械设备、建筑和市政工程等领域。

为了确保球墨铸铁产品的质量,各国都制定了相关的标准。

本文将介绍常见的球墨铸铁标准。

1. 国际标准1.1 ISO 1083: Spheroidal graphite cast ironsISO 1083是国际标准化组织(ISO)制定的球墨铸铁标准。

该标准对球墨铸铁的化学成分、机械性能和其他要求进行了规定。

其中包括球墨铸铁的各类级别、硬度要求、拉伸强度、冲击韧性等。

1.2 ISO 185: Grey cast ironsISO 185是ISO制定的灰铸铁标准,其中也包含了一些对球墨铸铁的要求。

该标准对灰铸铁和球墨铸铁的组织、力学性能、化学成分等进行了规定,并提供了一些有关材料检测的方法。

2. 欧洲标准2.1 EN 1563: Founding - Spheroidal graphite cast ironsEN 1563是欧洲标准化组织(CEN)制定的球墨铸铁标准。

该标准规定了球墨铸铁的材料级别、化学成分、机械性能和质量检测方法。

同时,该标准还分别对可用于不同工程领域的球墨铸铁进行了分类和要求。

2.2 EN 1561: Founding - Grey cast ironsEN 1561是CEN制定的灰铸铁标准,同样也包含了对球墨铸铁的一些要求。

该标准对灰铸铁和球墨铸铁的化学成分、机械性能、检验方法等进行了规定,并提供了不同环境条件下的使用温度范围。

3. 美国标准3.1 ASTM A536: Standard Specification for Ductile Iron CastingsASTM A536是美国材料与试验协会(ASTM)制定的球墨铸铁标准。

该标准覆盖了球墨铸铁的材料分类、化学成分、机械性能、试验方法等。

其中也对球墨铸铁的各类级别、硬度要求、拉伸强度等进行了规定。

3.2 ASTM A48: Standard Specification for Gray Iron CastingsASTM A48是ASTM制定的灰铸铁标准,其中也包含了对球墨铸铁的一些要求。

球墨铸铁

球墨铸铁

球墨铸铁铸铁是含碳量大于2.11%的铁碳合金,由工业生铁、废钢等钢铁及其合金材料经过高温熔融和铸造成型而得到,除Fe外,还含及其它铸铁中的碳以石墨形态析出,若析出的石墨呈条片状时的铸铁叫灰口铸铁或灰铸铁、呈蠕虫状时的铸铁叫蠕墨铸铁、呈团絮状时的铸铁叫白口铸铁或码铁、而呈球状时的铸铁就叫球墨铸铁。

球墨铸铁是一种具有优良机械性能的灰口铸铁。

一般在浇注之前,在铁液中加入少量球化剂(通常为镁、稀土镁合金或含铈的稀土合金)和孕育剂(通常为硅铁),使铁水凝固后形成球状石墨。

此种铸铁的强度和韧性比其他铸铁高,有时可代替铸钢和可锻铸铁(malleablecastiron),在机械制造工业中得到了广泛应用。

球墨铸铁在国外是1947年用于工业生产的。

主要性能球铁铸件差不多已在所有主要工业部门中得到应用,这些部门要求高的强度、塑性、韧性、耐磨性、耐热和机械冲击、耐高温或低温、耐腐蚀以及尺寸稳定性等。

为了满足使用条件的这些变化、球墨铸铁有许多牌号,提供了机械性能和物理性能的一个很宽的范围。

如国际标准化组织ISO1083所规定的大多数球墨铸铁铸件,主要是以非合金态生产的。

显然,这个范围包括抗拉强度大于800牛顿/平方毫米,延伸率为2%的高强度牌号。

另一个极端是高塑性牌号,其延伸率大于17%,而相应的强度较低(最低为370牛顿/平方毫米)。

强度和延伸率并不是设计者选择材料的唯一根据,而其它决定性的重要性能还包括屈服强度、弹性模数、耐磨性和疲劳强度、硬度和冲击性能等。

另外,耐蚀性和抗氧化以及电磁性能对于设计者也许是关键的。

为了满足这些特殊使用,研制了一组奥氏体球铁,通常叫Ni一Resis球铁。

这些奥氏体球铁,主要用镍、铬和锰合金化,并且列入国际标准。

为珠光体型球墨铸铁,具有中高等强度、中等韧性和塑性,综合性能较高,耐磨性和减振性良好,铸造工艺性能良好等特点。

能通过各种热处理改变其性能。

球墨铸铁常用于生产受力复杂,强度、韧性、耐磨性等要求较高的零件,主要用于各种动力机械曲轴、凸轮轴、连接轴、连杆、齿轮、离合器片、液压缸体等零部件。

球墨铸铁性能及生产工艺

球墨铸铁性能及生产工艺
球墨铸铁特性及其应用
球墨铸铁的概念

球墨铸铁的概况 球墨铸铁是指铁液在凝固过程中碳以球型石 墨析出的铸铁。与灰铸铁相比,其金相组织的最 大不同是石墨形状的改变,避免了灰铸铁中尖锐 石墨的存在,使得石墨对金属基体的切口作用大 为减少,基本消除了片状石墨引起的应力集中现 象,使得金属基体的强度利用率达到70-90%, 从而使金属基体的性能得到很大程度的发挥。
7、应力变形和裂纹 特征:收缩应力、相变应力之和超过 断面金属抗断裂后形成裂纹,热裂呈暗褐 色不平整端口,冷裂形成浅褐色光滑平直 断口。 原因:碳含量低,碳化物形成元素增 加,孕育不足,冷却过快等。 措施:适当提高碳当量,降低含磷量, 加强孕育等措施。
8、碎块状石墨 特征:出现在Ce等活性元素富集在共 晶团边界,促使该区域过饱和析出而形成 蠕虫状石墨,其断面形态为碎块状。 原因:冷却缓慢,共晶凝固时间过长 引起的成分偏析和孕育衰退。 措施:选用纯净炉料并限制Ce等元素 的含量,控制较低的碳当量,加入Sb、Y、 Bi等微量元素。
gbgb规定的球墨铸铁牌号规定的球墨铸铁牌号牌号牌号最小值最小值布氏硬度布氏硬度主要金相组织主要金相组织抗拉强度抗拉强度bbmpampa屈服强度屈服强度0202mpampa延伸率延伸率11qt400qt4001818400400250250181813013018018022qt400qt4001515400400250250151513013018018033qt450qt4501010450450310310101016016021021044qt500qt5007750050032032077170170230230铁素体珠光体铁素体珠光体55qt600qt6003360060037037033190190270270珠光体铁素体珠光体铁素体66qt700qt7002270070042042022225225305305珠光体珠光体77qt800qt8002280080048048022245245335335珠光体或回火组织珠光体或回火组织88qt900qt9002290090060060022280280360360贝氏体或回火索氏体贝氏体或回火索氏体一球墨铸铁的力学性能一球墨铸铁的力学性能11净荷载性能净荷载性能11硬度硬度球墨铸铁的硬度主要取决于基体组织而球墨铸铁的硬度主要取决于基体组织而且与抗拉强度延伸率等净荷载性能有相应的关且与抗拉强度延伸率等净荷载性能有相应的关22强度和塑性强度和塑性球墨铸铁的强度和塑性主要取决于基体组球墨铸铁的强度和塑性主要取决于基体组织下贝氏体或回火马氏体强度最高其次是上织下贝氏体或回火马氏体强度最高其次是上贝氏体索氏体珠光体

球墨铸铁化学成分(检规附件)

球墨铸铁化学成分(检规附件)
的关键因素。本文档详细列出了球墨铸铁件在铸态和热处理状态下的化学成分范围,这些范围是根据不同的铁素体和珠光体组织来设定的。具体来说,碳(C)的含量在铸态铁素体球墨铸铁中为3.6~4.1%,而在热处理后则降低到2.8~3.4%。硅(Si)的含量在铸态下为1.3~1.8%,热处理后则提高到2.7~3.4%。此外,文档还规定了锰(Mn)、磷(P)、硫(S)、镁(Mg)、稀土元素(Re)和铜(Cu)等杂质的最大允许含量,以确保球墨铸铁的力学性能和耐腐蚀性。除了化学成分,文档还提供了铸件机械加工余量的指导数据,这些数据根据铸件的基本尺寸和浇铸位置来确定,以确保铸件在加工过程中能够达到所需的精度和表面质量。总的来说,本文档为球墨铸铁材料的生产和加工提供了全面的化学成分和加工余量指导,有助于确保球墨铸铁件的性能和质量符合最新法规和标准的要求。

球墨铸铁的微观结构与力学性能研究

球墨铸铁的微观结构与力学性能研究

球墨铸铁的微观结构与力学性能研究第一章:引言球墨铸铁(Ductile Iron),是一种优良的铸铁材料,具有较高的强度和韧性,在工业制造、建筑工程和机械制造等领域广泛应用。

球墨铸铁的力学性能与其微观结构密切相关,因此对其微观结构和力学性能的研究具有重要意义。

本文将从球墨铸铁的微观结构和力学性能两个方面进行研究,以期为球墨铸铁的开发和应用提供科学依据。

第二章:球墨铸铁的微观结构2.1 球墨铸铁的相组成球墨铸铁的基体主要由铁素体和珠光体组成,其中铁素体是由铁和碳组成的晶格,珠光体则是由铁、碳和球墨石组成的准晶体。

球墨石是球墨铸铁得名的重要成分,其形成主要受到球化剂的影响。

2.2 球化过程球化是球墨铸铁制备过程中的关键环节。

球化剂的添加和一定的热处理过程能够使铁素体中形成球状的颗粒。

球化的成功与否直接影响着球墨铸铁的力学性能。

2.3 球墨铸铁的缺陷在球墨铸铁制造过程中,可能会出现一些缺陷,如气孔、夹杂物和晶界组织不良等。

这些缺陷对球墨铸铁的力学性能产生负面影响,因此需要在制备过程中加以控制和修复。

第三章:球墨铸铁的力学性能3.1 强度球墨铸铁的强度是其最主要的机械性能之一。

强度受到微观结构中相的类型、尺寸和分布等因素的影响。

一般来说,球墨铸铁的强度随着珠光体的含量增加而提高。

3.2 韧性韧性是指材料在受到外力作用下能够发生塑性变形而不断分裂或破损的能力。

球墨铸铁具有较高的韧性,这得益于其珠光体和球墨石的存在。

珠光体的存在可以阻碍裂纹的扩展,而球墨石能够吸收和分散应力,从而提高材料的韧性。

3.3 疲劳性能球墨铸铁的疲劳性能是其在长时间反复加载下不断发生微裂纹和断裂的能力。

球墨铸铁的疲劳性能与其微观结构紧密相关,尤其是珠光体的分布和形态。

一般来说,球墨铸铁的疲劳寿命较高,能够满足长时间的使用要求。

第四章:球墨铸铁的研究现状目前,关于球墨铸铁的微观结构和力学性能的研究已经取得了一系列重要的成果。

现代材料科学的发展为球墨铸铁的研究提供了新的思路和方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
球墨铸铁牌号与化学成分
一、球墨铸铁力学性能:
中国球墨铸铁牌号与力学性能[GB/T 1348--1988]
牌号 抗拉强度 σb≥/MPa 屈服强度 σ0.2≥/Mpa 伸长率 δ5≥(%) 硬度 HBS
基体组织 (体积分数) 贝氏体或回火马氏体(下贝氏体或回火马氏体、回火托氏体) 珠光体 珠光体 珠光体 珠光体 +铁素体 珠光体 +铁素体 铁素体 铁素体 铁素体 (珠光体或回火索氏体) (珠光体或回火索氏体) (珠光体或回火索氏体) (P:80%-30%) (F:80%-50%) (≥80%铁素体) (100%铁素体) (100%铁素体)
牌号及种类 QT900-2 QT800-2 QT700-2 QT600-3 QT500-7 QT450-10 QT400-15 18 孕育前 孕育后 孕育前 孕育后 孕育前 孕育后 孕育前 孕育后 孕育前 孕育后 孕育前 孕育后 孕育前 孕育后 孕育前 孕育后
C 3.5-3.7 3.7-4.0 3.7-4.0 3.6-3.8 3.6-3.8 3.4-3.9 3.5-3.9 3.6-3.9 3.6-3.9
Cu 0.5-0.7 0.82 0.40-0.80 0.50-0.75
Mo 0.15-0.25 0.39 0.15-0.40
QT900-2 QT800-2 QT700-2 QT700-2 QT600-3 QT500-7 QT450-10 QT400-15 QT400-18
900 800 700 700 600 500 450 400 400
600 480 420 420 370 320 310 250 250
2 2 2 2 3 7 10 15 18
280-360 245-335 225-305 225-305 190-270 170-230 160-210 130-180 130-180
二、球墨铸铁化学成分:
球墨铸铁的化学成分(供参考) 化 学 成 分(质 量 分 数 %) Si Mn P S Mg RE ≤0.50 ≤0.08 ≤0.025 2.7-3.0 0.03-0.05 0.025-0.045 ≤0.50 ≤0.07 ≤0.03 2.5 0.5-0.8 ≤0.08 ≤0.02 2.3-2.6 0.035-0.065 0.035-0.065 0.5-0.7 ≤0.08 ≤0.025 2.0-2.4 0.035-0.05 0.025-0.045 ≤0.60 ≤0.08 ≤0.025 2.5-2.9 0.03-0.05 0.03-0.05 ≤0.50 ≤0.07 ≤0.03 2.2-2.8 0.03-0.06 0.02-0.04 ≤0.50 ≤0.07 ≤0.02 2.5-2.9 0.04-0.06 0.03-0.05 ≤0.50 ≤0.08 ≤0.025 2.2-2.8 0.04-0.06 0.03-0.05
相关文档
最新文档