组成原理实验1 8位算术逻辑运算
计算机组成原理--实验报告

实验一寄存器实验实验目的:了解模型机中各种寄存器结构、工作原理及其控制方法。
实验要求:利用CPTH 实验仪上的K16..K23 开关做为DBUS 的数据,其它开关做为控制信号,将数据写入寄存器,这些寄存器包括累加器A,工作寄存器W,数据寄存器组R0..R3,地址寄存器MAR,堆栈寄存器ST,输出寄存器OUT。
实验电路:寄存器的作用是用于保存数据的CPTH 用74HC574 来构成寄存器。
74HC574 的功能如下:- 1 -实验1:A,W 寄存器实验原理图寄存器A原理图寄存器W 原理图连接线表:- 2 -系统清零和手动状态设定:K23-K16开关置零,按[RST]钮,按[TV/ME]键三次,进入"Hand......"手动状态。
在后面实验中实验模式为手动的操作方法不再详述.将55H写入A寄存器二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据55H置控制信号为:按住STEP脉冲键,CK由高变低,这时寄存器A的黄色选择指示灯亮,表明选择A寄存器。
放开STEP键,CK由低变高,产生一个上升沿,数据55H被写入A寄存器。
将66H写入W寄存器二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据66H- 3 -置控制信号为:按住STEP脉冲键,CK由高变低,这时寄存器W 的黄色选择指示灯亮,表明选择W寄存器。
放开STEP 键,CK 由低变高,产生一个上升沿,数据66H 被写入W 寄存器。
注意观察:1.数据是在放开STEP键后改变的,也就是CK的上升沿数据被打入。
2.WEN,AEN为高时,即使CK有上升沿,寄存器的数据也不会改变。
实验2:R0,R1,R2,R3 寄存器实验连接线表- 4 -将11H、22H、33H、44H写入R0、R1、R2、R3寄存器将二进制开关K23-K16,置数据分别为11H、22H、33H、44H置控制信号为:K11、K10为10,K1、k0分别为00、01、10、11并分别按住STEP 脉冲键,CK 由高变低,这时寄存器R0、R1\R2\R3 的黄色选择指示灯分别亮,放开STEP键,CK由低变高,产生一个上升沿,数据被写入寄存器。
计算机组成原理实验(存储器)

引言
• 教学实验系统简介: 本教学实验系统采用部件单元式结构,主要部件单元 见实验箱。 • 教学实验系统特性: 1.若控制信号的跳线器跳左边,表示手动给信号,跳右边 表示控制信号自动产生。 2.实验箱正逻辑设计,指示灯亮表示1,指示灯灭表示0。 3.总清可清地址,需拨0—1—0。 4.做所有实验,总清不能拨在0位置,否则地址总线总为 0000000出厂默认跳线: J1~J12 跳左边 J13~J16 跳右边 J17 、J28空 J18 、J19、J23、J24、J25 跳左边 J20、J21、J22、J26、J27接上跳线 编程开关,拔在“运行”状态 ; 运行程序开关,拔在“运行”状态; 运行方式开关,拔在“单步”状态; SWC,SWA,总清,拔在上面。
实验一 存储器实验
• 本次实验所需用线 两根8芯接线,无需动跳线器。
实验一 存储器实验
• 教学实验系统出厂默认跳线: • J1~J12 跳左边 • J13~J16 跳右边 • J17 、J28空 • J18 、J19、J23、J24、J25 跳左边 • J20、J21、J22、J26、J27接上跳线 • 编程开关,拔在“运行”状态 ; • 运行程序开关,拔在“运行”状态; • 运行方式开关,拔在“单步”状态; • SWC,SWA 总清,拔在上面。
实验一 存储器实验
• 实验要求 1.往存储器的任意两个存储单元(你可自由设定, 应为16进制数)中写入相应的数据(你也可自由设 定,应为16进制数) 。 2.读出你刚才设定的那两个存储单元中的数据, 检验是否是你在实验1中所写入的数据。 • 实验拓展内容 试着将乘法口诀表中的3*1=3、3*2=6、3*3=9、 3*4=12、3*5=15、3*6=18、3*7=21、3*8=24 、 3*9=27写入到存储器中,然后检验之。
计算机组成原理实验报告

计算机组成原理实验报告实验报告运算器实验⼀、实验⽬的掌握⼋位运算器的数据传输格式,验证运算功能发⽣器及进位控制的组合功能。
⼆、实验要求完成算术、逻辑、移位运算实验,熟悉ALU运算控制位的运⽤。
三、实验原理实验中所⽤的运算器数据通路如图2-3-1所⽰。
ALU运算器由CPLD描述。
运算器的输出FUN经过74LS245三态门与数据总线相连,运算源寄存器A和暂存器B的数据输⼊端分别由2个74LS574锁存器锁存,锁存器的输⼊端与数据总线相连,准双向I/O 输⼊输出端⼝⽤来给出参与运算的数据,经2⽚74LS245三态门与数据总线相连。
图2-3-1运算器数据通路图中A WR、BWR在“搭接态”由实验连接对应的⼆进制开关控制,“0”有效,通过【单拍】按钮产⽣的脉冲把总线上的数据打⼊,实现运算源寄存器A、暂存器B的写⼊操作。
四、运算器功能编码算术运算逻辑运算K23~K0置“1”,灭M23~M0控位显⽰灯。
然后按下表要求“搭接”部件控制路。
表2.3.2 运算实验电路搭接表算术运算1.运算源寄存器写流程通过I/O单元“S7~S0”开关向累加器A和暂存器B置数,具体操作步骤如下:2.运算源寄存器读流程关闭A、B写使能,令K18=K17=“1”,按下流程分别读A、B。
3.加法与减法运算令M S2 S1 S0(K15 K13~K11=0100),为算术加,FUN及总线单元显⽰A+B的结果令M S2 S1 S0(K15 K13~K11=0101),为算术减,FUN及总线单元显⽰A-B的结果。
逻辑运算1.运算源寄存器写流程通过“I/O输⼊输出单元”开关向寄存器A和B置数,具体操作步骤如下:2.运算源寄存器读流程关闭A、B写使能,令K17= K18=1,按下流程分别读A、B。
①若运算控制位设为(M S2 S1 S0=1111)则F=A,即A内容送到数据总线。
②若运算控制位设为(M S2 S1 S0=1000)则F=B,即B内容送到数据总线。
《计算机组成原理》学生实验报告

《计算机组成原理》学生实验报告(2011~2012学年第二学期)专业:信息管理与信息系统班级: A0922学号:10914030230姓名:李斌目录实验准备------------------------------------------------------------------------3 实验一运算器实验-----------------------------------------------------------7 实验二数据通路实验-------------------------------------------------------13 实验三微控制器实验--------------------------------------------------------18 实验四基本模型机的设计与实现------------------------------------------22实验准备一、DVCC实验机系统硬件设备1、运算器模块运算器由两片74LS181构成8位字长的ALU。
它是运算器的核心。
可以实现两个8位的二进制数进行多种算术或逻辑运算,具体由74181的功能控制条件M、CN、S3、S2、S1、S0来决定,见下表。
两个参与运算的数分别来自于暂存器U29和U30(采用8位锁存器),运算结果直接输出到输出缓冲器U33(采用74LS245,由ALUB信号控制,ALUB=0,表示U33开通,ALUB=1,表示U33不通,其输出呈高阻),由输出缓冲器发送到系统的数据总线上,以便进行移位操作或参加下一次运算。
进位输入信号来自于两个方面:其一对运算器74LS181的进位输出/CN+4进位倒相所得CN4;其二由移位寄存器74LS299的选择参数S0、S1、AQ0、AQ7决定所得。
触发器的输出QCY就是ALU结果的进位标志位。
QCY为“0”,表示ALU结果没有进位,相应的指示灯CY灭;QCY为“1”,表示ALU结果有进位,相应的指示灯CY点亮。
运算器组成实验原理

运算器组成实验原理
运算器是计算机的关键部件之一,它负责执行各种数学和逻辑运算。
一个基本的运算器通常由算术逻辑单元(ALU)、控
制器和寄存器组成。
算术逻辑单元(ALU)是运算器的核心部件,它负责执行各
种算术和逻辑运算,如加法、减法、与、或等。
ALU通常由
一组逻辑门、加法器和寄存器组成。
逻辑门用于执行逻辑运算,如与门和或门可以实现与和或运算。
加法器用于执行加法运算,可以将两个二进制数相加并得到结果。
寄存器用于存储运算的中间结果或最终结果。
控制器是运算器的另一个重要组成部分,它负责调度和控制ALU的操作。
控制器根据指令和输入信号来确定ALU要执行
的操作,并将结果存储到相应的寄存器中。
控制器通常由逻辑电路和状态机组成,它可以根据不同的输入信号和状态来产生相应的控制信号。
寄存器是运算器中的存储设备,用于存储数据和中间结果。
寄存器可以存储一个或多个位的数据,并且可以通过地址进行读写操作。
在运算器中,寄存器主要用于存储操作数和结果。
运算器通常具有多个寄存器,以便同时执行多个运算。
总的来说,运算器的组成实验原理主要是基于逻辑门、加法器、寄存器和控制器的组合和控制。
通过合理的设计和控制,可以实现各种数学和逻辑运算,从而完成计算机的核心功能。
计算机组成原理实验一运算器组成实验

实验一 运算器组成实验一、实验目的1.熟悉双端口通用寄存器堆的读写操作。
2.熟悉简单运算器的数据传送通路。
3.验证运算器74LS181的算术逻辑功能。
4.按给定数据,完成指定的算术、逻辑运算。
二、实验电路ALU-BUS#DBUS7DBUS0Cn#C三态门(244)三态门(244)ALU(181)ALU(181)S3S2S1S0MA7A6A5A4F7F6F5F4F3F2F1F0B3B2B1B0Cn+4CnCnCn+4LDDR2T2T2LDDR1LDRi T3SW-BUS#DR1(273)DR2(273)双端口通用寄存器堆RF(ispLSI1016)RD1RD0RS1RS0WR1WR0数据开关(SW7-SW0)数据显示灯A3A2A1A0B7B6B5B4图3.1 运算器实验电路LDRi T3AB三态门R S -B U S #图3.1示出了本实验所用的运算器数据通路图。
参与运算的数据首先通过实验台操作板上的八个二进制数据开关SW7-SW0来设置,然后输入到双端口通用寄存器堆RF 中。
RF(U54)由一个ispLSI1016实现,功能上相当于四个8位通用寄存器,用于保存参与运算的数据,运算后的结果也要送到RF 中保存。
双端口寄存器堆模块的控制信号中,RS1、RS0用于选择从B 端口(右端口)读出的通用寄存器,RD1、RD0用于选择从A 端口(左端口)读出的通用寄存器。
而WR1、WR0用于选择写入的通用寄存器。
LDRi 是写入控制信号,当LDRi=1时,数据总线DBUS上的数据在T3写入由WR1、WR0指定的通用寄存器。
RF的A、B端口分别与操作数暂存器DR1、DR2相连;另外,RF的B端口通过一个三态门连接到数据总线DBUS上,因而RF中的数据可以直接通过B端口送到DBUS上。
DR1(U47)和DR2(U48)各由1片74LS273构成,用于暂存参与运算的数据。
DR1接ALU 的A输入端口,DR2接ALU的B输入端口。
计算机组成原理及接口技术实验报告

二实验步骤
(1)连接实验线路,仔细检查无误后接通电源。
(2)形成时钟脉冲信号T3。在时序电路模块中有两个二进制开关“运行控制”和“运行方式”。将运行控制开关设置为运行状态,运行方式设置为连续状态,按动运行启动开关,则T3有连续的放信号输出,此时调节电位器W1,用示波器观察,使T3输出实验要求的脉冲信号。
DR1
加数2
DR2
S3 S2 S1 S0
M=0(算术运算)
M=1
(逻辑运算)
Cn=1无进位
Cn=0有进位
35
35
48
48
0 0 0 0
F=00010011
F=00100100
F=11011100
0 0 0 1
F=00110011
F=00110100
F=11001100
0 0 1 0
F=11101111
(3)移位,改变S0,S1,M,299B的状态,按动手动脉冲开关以产生时钟脉冲T4,观察移位结果。
三实验结果
35H(00110101)
299B S1 S0 M
0 1 0 0
0 1 0 1
0 0 1 1
0 0 1 0
功能
循环右移
带进位循环右移
CY
带进位循环左移
CY
循环左移
第一次
10011010
00011010
(3)送数据63到寄存器,数据20送地址寄存器,然后将R0寄存器内的数送人存储器,最后将存储器的内容输出到LED上显示。数据开关置数(KD0~KD7=01100011),开输入三态门(SWB=0),存入寄存器R0,按下LDR0。数据开关置数(KD0~KD7=00100000),开输入三态门(SWB=0),存入寄存器R0,按下LDAR。关输入三态门,开R0三态门(SWB=1,ROB=0),R0寄存器的数存入存储器AR(CE=0,WE=1),关R0三态门,关存储器(CE=1,ROB=1),存储器输出到LED显示(WE=0,CE=0,LEDB=0,OUTWR=0)。
计算机组成原理实验报告

实验1 通用寄存器实验一、实验目的1.熟悉通用寄存器的数据通路。
2.了解通用寄存器的构成和运用.二、实验要求掌握通用寄存器R3~R0的读写操作.三、实验原理实验中所用的通用寄存器数据通路如下图所示。
由四片8位字长的74LS574组成R1 R0(CX)、R3 R2(DX)通用寄存器组。
图中X2 X1 X0定义输出选通使能,SI、XP控制位为源选通控制。
RWR为寄存器数据写入使能,DI、OP为目的寄存器写选通。
DRCK信号为寄存器组打入脉冲,上升沿有效.准双向I/O输入输出端口用于置数操作,经2片74LS245三态门与数据总线相连。
图2—3-3 通用寄存器数据通路四、实验内容1.实验连线连线信号孔接入孔作用有效电平2.寄存器的读写操作①目的通路当RWR=0时,由DI、OP编码产生目的寄存器地址,详见下表.通用寄存器“手动/搭接”目的编码②通用寄存器的写入通过“I/O输入输出单元”向R0、R1寄存器分别置数11h、22h,操作步骤如下:通过“I/O输入输出单元”向R2、R3寄存器分别置数33h、44h,操作步骤如下:③源通路当X2~X0=001时,由SI、XP编码产生源寄存器,详见下表.通用寄存器“手动/搭接”源编码④ 通用寄存器的读出关闭写使能,令K18(RWR )=1,按下流程分别读R0、R1、R2、R3。
五、实验心得通过这个实验让我清晰的了解了通用寄存器的构成以及通用寄存器是如何运用的,并且熟悉了通用寄存器的数据通路,而且还深刻的掌握了通用寄存器R3~R0的读写操作。
实验2 运算器实验一、实验目的掌握八位运算器的数据传输格式,验证运算功能发生器及进位控制的组合功能.二、实验要求完成算术、逻辑、移位运算实验,熟悉ALU 运算控制位的运用.三、实验原理实验中所用的运算器数据通路如图2-3—1所示。
ALU 运算器由CPLD 描述。
运算器的输出FUN 经过74LS245三态门与数据总线相连,运算源寄存器A 和暂存器B 的数据输入端分别由2个74LS574锁存器锁存,锁存器的输入端与数据总线相连,准双向I/O 输入输出端口用来给出参与运算的数据,经2片74LS245三态门与数据总线相连。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
淮海工学院计算机工程学院实验报告书
课程名:《计算机组成原理》
题目:实验一8位算术逻辑运算
实验
班级:
学号:
姓名:
1、目的与要求
1)掌握算术逻辑运算器单元ALU(74LS181)的工作原理。
2)掌握简单运算器的数据传送通路组成原理。
3)验证算术逻辑运算功能发生器74LSl8l的组合功能。
4)按给定数据,完成实验指导书中的算术/逻辑运算。
2、实验设备
ZYE1601B计算机组成原理教学实验箱一台,排线若干。
3、实验步骤与源程序
l) 按下列步骤连接实验线路,仔细检查无误后,接通电源。
⑴ ALUBUS连EXJ3;
⑵ ALUO1连BUS1;
⑶ SJ2连UJ2;
⑷跳线器J23上T4连SD;
⑸ LDDR1、LDDR2、ALUB、SWB四个跳线器拨在左边(手动方式);
⑹ AR跳线器拨在左边,同时开关AR拨在“1”电平。
2) 用二进制数码开关KD0~KD7向DR1和DR2寄存器置数。
方法:关闭ALU输出三态门(ALUB`=1),开启输入三态门(SWB`=0),输入脉冲T4按手动脉冲发生按钮产生。
设置数据开关具体操作步骤图示如下:
LDDR1=1
LDDR1=0
说明:LDDR1、LDDR2、ALUB`、SWB`四个信号电平由对应的开关LDDR1、LDDR2、ALUB、SWB 给出,拨在上面为“1”,拨在下面为“0”,电平值由对应的显示灯显示,T4由手动脉冲开关给出。
⑶检验DR1和DR2中存入的数据是否正确,利用算术逻辑运算功能发生器 74LS181的逻辑功能,即M=1。
具体操作为:关闭数据输入三态门SWB`=1,打开ALU输出三态门ALUB`=0,当置S3、S2、S1、S0、M为1 1 1 1 1时,总线指示灯显示DR1中的数,而置成1 0 1 0 1时总线指示灯显示DR2中的数。
⑷验证74LS181的算术运算和逻辑运算功能(采用正逻辑)
在给定DR1=35、DR2=48的情况下,改变算术逻辑运算功能发生器的功能设置,观察运算器的输出,填入表2.1.1中,并和理论分析进行比较、验证。
4、测试数据与实验结果
实验数据记录
5、结果分析与实验体会
第一次做组成原理的实验,也是第一次接触单片机,新奇疑惑的同时又有点跃跃欲试,但是毕竟刚接触,对于实验操作很多地方都不怎么理解,后来在老师及同学的指导下,终于成功完成。
虽然在过程中由于粗心导致结果出现了差错,但胜在吃一堑长一智,让我在接下来的实验的中更加认真、仔细。