激光陀螺仪的原理与应用

合集下载

激光陀螺仪的原理与应用

激光陀螺仪的原理与应用

激光陀螺仪的原理与应用1. 什么是激光陀螺仪?激光陀螺仪是一种采用激光技术进行测量的陀螺仪。

它通过利用光的干涉与散射现象,测量出物体旋转的角速度和角位移,可以用于惯性导航系统、惯性测量单元等应用。

2. 激光陀螺仪的工作原理激光陀螺仪的工作原理基于光的干涉与散射现象。

它包括一个光路系统和一个探测系统。

光路系统:光路系统由激光器、分光器、光纤、光栅、光电二极管等组成。

激光器发出的激光经过分光器分成两束,分别进入顺时针方向旋转和逆时针方向旋转的光纤。

然后,光纤输出的两束光经过光栅的干涉产生相位差,最后被光电二极管接收。

探测系统:探测系统由光电二极管和信号处理电路组成。

光电二极管将接收到的干涉光转化为电信号,经过信号处理电路放大和滤波后,提取出角速度信号。

3. 激光陀螺仪的优点激光陀螺仪相比其他类型的陀螺仪具有一些优点,包括:•高精度:激光陀螺仪的测量精度高,可以提供精准的角速度和角位移信息。

•高稳定性:激光陀螺仪在不同温度、压力等环境下都能保持较好的测量稳定性。

•长寿命:激光陀螺仪的寿命长,可以用于长期运行的系统和设备。

•低噪声:激光陀螺仪的测量信号噪声低,能够准确地感知微小的角速度变化。

4. 激光陀螺仪的应用激光陀螺仪在许多领域都有广泛的应用,主要包括:4.1 惯性导航系统激光陀螺仪可以用于惯性导航系统中,提供准确的航位信息。

它可以测量飞行器、船舶、车辆等运动的角速度和角位移,提供导航和定位的数据。

4.2 惯性测量单元激光陀螺仪可以用于惯性测量单元中,测量对象的姿态和运动状态。

它可以应用在无人机、机器人、汽车等设备中,提供姿态稳定和运动控制所需的测量数据。

4.3 光电稳定平台激光陀螺仪可以用于光电稳定平台中,平衡和稳定光学器件的姿态。

它可以消除振动和扰动对光学系统造成的影响,提高光学系统的稳定性和精度。

4.4 惯性测绘仪激光陀螺仪可以用于惯性测绘仪中,绘制地球表面的地貌和地理特征。

它可以测量飞机、船舶等载具的角速度和角位移,提供制图所需的测量数据。

二频机抖激光陀螺原理

二频机抖激光陀螺原理

二频机抖激光陀螺原理
二频机抖激光陀螺的原理是Sagnac效应。

与传统的机械陀螺相比,激光陀螺具有精度高、耐环境性能好、动态性能好、启动时间短、寿命长及数字式输出等特点,是捷联式惯性导航系统的理想元件。

Sagnac效应是当两个相对传播的光束在闭合回路中传播时,它们所携带的
信号在稳定条件下出现相位差的现象。

这种效应在光学领域有广泛的应用,包括但不限于光纤陀螺、激光陀螺等。

二频机抖激光陀螺通过信号读出装置输出两路相位差为π/2的正弦拍频信号,可以得出闭锁阈值、抖动调制和放点噪声等信息。

以上内容仅供参考,建议查阅关于二频机抖激光陀螺的书籍或咨询专业人士获取更准确的信息。

陀螺仪技术进展及其在导航和航空领域中的应用

陀螺仪技术进展及其在导航和航空领域中的应用

陀螺仪技术进展及其在导航和航空领域中的应用引言:导航和航空领域中,陀螺仪技术扮演着重要角色。

陀螺仪以其高精度和高鲁棒性,成为现代航空器和导航系统中不可或缺的组成部分。

随着技术的进步,陀螺仪技术不断发展,其应用领域也在不断扩大。

本文将探讨陀螺仪技术的进展,并详细介绍它在导航和航空领域中的应用。

一、陀螺仪技术的进展陀螺仪技术是基于陀螺效应的原理而实现的一种测量仪器。

它可以检测和测量物体的旋转和角度变化,并将这些信息转化为电信号输出。

随着科技的不断进步,陀螺仪技术也在不断发展。

1. 光纤陀螺仪光纤陀螺仪是一种基于光纤干涉原理的陀螺仪。

它通过测量光束在光纤中传输时的干涉效应,来确定物体的旋转角度。

光纤陀螺仪具有高精度、快速响应和较长寿命等优势,被广泛应用于航空、导航以及地震监测等领域。

2. MEMS陀螺仪MEMS陀螺仪是一种微型化的陀螺仪,采用微电子机械系统(MEMS)技术制造。

它具有体积小、重量轻、功耗低的特点,适用于嵌入式设备和消费电子产品。

然而,由于其精度相对较低,主要用于一些对精度要求不高的应用场景。

3. 激光陀螺仪激光陀螺仪利用激光和干涉原理,测量物体旋转产生的角位移。

相比于传统的机械陀螺仪,激光陀螺仪具有更高的精度和更长的工作寿命。

它被广泛应用于航空导航、船舶定位和无人车辆等领域。

二、陀螺仪在导航中的应用导航系统中的陀螺仪主要用于测量车辆、船舶、飞机等运动物体的姿态和方位。

通过与其他传感器(如加速度计)组合使用,陀螺仪可以提供更准确的导航信息。

1. 惯导系统惯性导航系统是一种不依赖外部参考物的导航系统。

它通过陀螺仪和加速度计等传感器,测量和计算物体的位置、速度和姿态。

惯导系统广泛应用于航空、航海和导弹等领域,能够在无法接收卫星信号的环境下提供可靠的导航解决方案。

2. 电子稳定平台电子稳定平台是一种利用陀螺仪技术来稳定摄像机或传感器的装置。

它可以通过实时测量物体的角度变化,并根据这些数据来控制摄像机或传感器的姿态,使其始终保持水平或指定的角度。

激光陀螺原理

激光陀螺原理

90年代,根据先进巡航导弹和战术飞机导航的要求,美国进行了激光陀螺捷联性能的研究( SPS)。麦
克唐纳·道格拉斯公司被选为 SPS的主承包商,其次还有霍尼威尔、利顿、洛克威尔、辛格·基尔福特等公
司参加。
国外激光陀螺仪的研制单位很多,其中,美国和法国研制的水平较高,此外还有俄罗斯、德国等国家。
统理想的主要部件,用于对所设想的物体精确定位。石英挠性摆式加速度计是由熔融石英制
成的敏感元件,挠性摆式结构装有一个反馈放大器和一个温度传感器,用于测量沿载体一个
轴的线加速度。
光纤陀螺三轴惯测组合由三个光纤陀螺仪和三个石英挠性摆式加速度计组成,可以实时
地输出载体的角速度、线加速度、线速度等数据,具有对准、导航和航向姿态参考基准等多
化。
3. 激光陀螺仪的闭锁阈值
闭锁阈值将影响到激光陀螺仪标度因数的线性度和稳定度。闭锁阈值取决于谐振光路中的损耗,主要是
反射镜的损耗。
[国外概况]
美国斯佩里公司于 1963年首先次做出了激光陀螺仪的实验装置。1966年美国霍尼威尔公司开始使用
石英作腔体,并研究出交变机械抖动偏频法,使这项技术有了使用的可能。 1972年,霍尼威尔公司研制出
激光陀螺仪花费了很长时间和大量投资解决了闭锁问题,直到 80年代初才研制出飞机导航级仪表,此后就
迅速应用于飞机和直升机,取代了动力调谐陀螺和积分机械陀螺仪。目前已广泛用于导航、雷达和制导等
领域。
方位测向器,称之为激光陀螺仪。
激光陀螺仪的原理是利用光程差来测量旋转角速度( Sagnac效应)。在闭合光路中,由同一光源发出的
沿顺时针方向和反时针方向传输的两束光和光干涉,利用检测相位差或干涉条纹的变化,就可以测出闭合

激光陀螺仪综述

激光陀螺仪综述

激光陀螺仪综述姓名:学号:20101、激光陀螺仪概述现代陀螺仪是一种能够精确的定位运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。

传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了许多方面的制约。

2、激光陀螺仪的原理及分类2.1激光陀螺仪的原理激光陀螺仪的原理是利用光程差来测量旋转角速度( Sagnac 效应)。

在闭合光路中,由同一光源发出的沿顺时针方向和反时针方向传输的两束光和光干涉,利用检测相位差或干涉条纹的变化,就可以测出闭合光路旋转角速度。

激光陀螺仪的基本元件是环形激光器,环形激光器由三角形或正方形的石英制成的闭合光路组成,内有一个或几个装有混合气体(氦氖气体)的管子,两个不透明的反射和一个半透明镜。

用高频电源或直流电源激发混合气体,产生单色激光。

为维持路谐振,回路的周长应为光波波长的整数倍。

用半透明镜将激光导出回路,经反射镜使两束相反传输的激光干涉,通过光电探测器和电路输入与输出角度成比例的数字信号。

2.2激光陀螺仪的分类激光陀螺原理上根本不同于普通的机电式陀螺。

常规机电转子陀螺依据普通的刚体力学原理按照机械储能方式工作,而激光陀螺是以双向行波的环形激光器为核心的量子光学仪表,其依据基于广义相对论的Sagnac效应。

所谓的Sagnac 效应是指在任意几何形状的闭合光路中,从某一观察点出发的一对光波沿相反方向运行一周后又回到该观察点时,这对光波的相位将由于该闭合环形光路相对于惯性空间的旋转而不同。

其相位差(或光程差)的大小与闭合光路的转动速率成正比。

激光谐振腔内的相位差又可以成为放大数百万倍的频率差,这样就可以通过测量光电信号的频率来测量物体的角速度、角度等。

图1:激光陀螺仪的结构示意图与传统的机电式陀螺仪相比,激光陀螺仪构成简单,其主体为微晶玻璃腔体以及反射镜构成一个光学环形谐振腔,另外还有偏频系统、稳频控制系统、信号读出系统、信号处理系统、高压电源、磁屏蔽单元等部分。

激光陀螺仪的原理与应用

激光陀螺仪的原理与应用

激光陀螺仪的原理与应用激光陀螺仪是一种基于光学原理的高精度、高稳定性的惯性导航传感器。

它利用旋转后的Sagnac效应,通过光纤和光学器件来测量角速度,从而确定导航物体的姿态和旋转信息。

本文将详细介绍激光陀螺仪的原理与应用。

首先,我们来了解Sagnac效应。

Sagnac效应是一个相对论效应,它描述了在一个旋转的参考系中传播的光的传播时间差。

如果平面光波经过旋转的介质后回到原点,那么在旋转情况下,由于一侧边与旋转平面一起旋转,而另一侧边则不动,所以光波在传播时间上产生差异,这就是Sagnac效应。

而光纤干涉则是利用两束光线合成的干涉现象来测量光路差。

激光陀螺仪将激光分成两束,一束沿顺时针方向传输,另一束沿逆时针方向传输。

在光纤环形路径上,两束光线会经过一系列的反射和传输,在最终合并的地方形成干涉纹。

根据干涉纹的变化,可以精确测量光线的传播时间差,从而计算出陀螺仪的角速度。

1.惯性导航系统:激光陀螺仪可以通过测量姿态和旋转信息来辅助导航和定位系统,特别是在没有GPS信号或GPS信号不可靠的情况下。

它在无人飞行器、导弹系统和航天器中的应用非常广泛。

2.航空航天工业:激光陀螺仪可以在飞行中测量飞机或导弹的姿态和旋转信息,从而提供导航、导弹制导和飞行控制等方面的支持。

它能够提供高精度的姿态测量,可以在飞行中实时修正姿态。

3.地震勘探:激光陀螺仪可以通过测量地表的旋转信息,来检测和测量地震的发生和水平。

它在地震预警系统中起到重要作用,提供准确的地震数据,以便及时采取适当的措施。

4.船舶导航:激光陀螺仪可以用于大型船舶的导航和航海系统中,通过测量船舶的姿态和角速度来提供精确的导航信息。

船舶在恶劣的水域或海况下,激光陀螺仪可以提供高精度的姿态稳定性,提高船只的驾驶稳定性和安全性。

5.建筑工程:激光陀螺仪可以用于高楼建筑的倾斜角测量,通过精确的测量角度来保证建筑物的垂直度和稳定性。

在大型桥梁和高速公路工程中,激光陀螺仪还可以用于测量和监测桥梁的倾斜度和变形。

激光陀螺仪原理

激光陀螺仪原理

激光陀螺仪原理
激光陀螺仪原理是利用激光的干涉原理来测量物体的旋转角速度的一种仪器。

该原理基于受到科里奥利力的影响,当物体发生旋转时,激光束经过旋转后的路径差会引起干涉条纹的移动,通过测量移动的干涉条纹数来计算物体的旋转角速度。

激光陀螺仪通常由一个光源和两个相邻的光探测器构成。

光源通过分束器分成两束相干的平行激光束,分别由光路1和光路
2进入陀螺仪中。

光路1和光路2在陀螺仪的内部分别沿着两
个正交的轴进行封闭环形路径传播。

当陀螺仪处于静止状态时,两束激光束的光程差为零,干涉条纹处于静止状态。

但当陀螺仪受到旋转时,光程差会发生变化,引起干涉条纹的移动。

应用干涉仪的原理,可以通过光探测器对干涉条纹的移动进行测量,并将移动的干涉条纹数转化为角速度。

激光陀螺仪的精度取决于干涉条纹的移动量的精确测量。

通常使用光电探测器来检测干涉条纹的移动,并将其转化为电信号。

这些电信号经过放大和处理后,传送到计算机或显示器上进行处理和显示。

激光陀螺仪具有很高的精度和稳定性,可以应用于惯性导航、航天器姿态控制、地震测量等领域。

它相比于其他类型的陀螺仪具有较小的尺寸和重量,同时也不会因为其结构的机械磨损而导致性能的下降,因此在一些高精度和长寿命要求的应用中得到了广泛的应用。

激光陀螺的分析

激光陀螺的分析

激光陀螺1960年,激光第一次出现在了美国加利福尼亚州的休斯实验室中,它的发明者梅曼也成为世界上第一个将激光引入实用领域的科学家。

不久之后,就因其独特的光学性质而被用于医疗、电子产品、距离勘测等领域,一直被人们称之为“最快的刀”、“最准的尺”、“最亮的光”。

激光陀螺是利用环形激光器在惯性空间转动时正反两束光随转动而产生频率差效应进而测量敏感物体相对于惯性空间的角速度或转角的仪器。

激光陀螺由氦氖激光器、全反射镜、各种颜色的激光半透半反镜组成,没有旋转的转子部分,是一种无质量的光学仪器,对载体的震动及冲击加速度都不敏感,无需不平衡补偿系统,输出信号没有交叉耦合项,精度高。

用它给武器系统导航,能更精准的打击目标。

激光陀螺是利用Sagnac(萨格纳)效应来测量角速度的,Sagnac效应是指在闭合光路中,从一点发出的一对光波沿闭合光路的相反方向运行一周后再回到原点,这对光波各自经历的光程将根据闭合光路相对惯性空间的旋转而改变,光程差与闭合光路的转动角速率成正比。

在激光陀螺的环形激光器中,沿环形谐振腔顺时针和逆时针运行的激光能够以不同的频率独立振荡。

激光的谐振条件要求腔长为激光波长的整数倍,因此Sagnac效应所导致的光程差转换成反向运行激光的频率差,该频差与环形激光器相对惯性空间转动的角速率成正比。

通过测量激光陀螺瞬时的频差,即可实现角速率或角度的高精度测量。

1962年,美、英、法、前苏联开始研制用激光来作为方向测向器,将其称为激光陀螺仪。

1963年,美国的斯佩里公司率先研制出激光陀螺仪,1974年美国军方参与制定研究计划,不久之后分别在飞机和导弹上试验成功。

此后,激光陀螺仪在航空航天、航海、战车定位方面广泛应用。

我国的激光陀螺技术研究起步均晚于其他发达国家,但是在几代人辛勤的努力下,终于达到了国际先进水平。

尤其是在我校高伯龙院士的带领下,研究团队克服重重困难,在2014年构建了具有独立知识产权的高水平激光陀螺全闭环研发体系,水平达到了国际先进、国内领先的水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Inertial components
Inertia measurement Inertial navigation Inertial stabilization Inertial guidance
Inertial device is the core of the inertial technology
The Principle and Application of Ring Laser Gyro
1
Background
Gyroscope: A sensor which has the ability to perceive
the running speed and maintain the direction of the type.
THANKS
知识回顾 Knowledge Review
祝您成功!
In 1975, Honeywell company developed the mechanical dithering frequency laser gyro, adopting the technology of laser gyro strapdown inertial navigation system truly entered the practical stage.
90 years later, the relevant institute successively carried out research work of gyro temperature characteristics and modeling error compensation.
At present, with mirror induced some key technology of manufacturing, technology is mature research unit of national university of defense technology and catic 618.
1
Background
Basic principle 2
3 Main application
Research status 4
The research status of abroad
For the first time in 1963, the Sperry, the company successfully developed the ring laser gyro.
The actual model ----laser gyro relative interferometer
1
Background
Basic principle 2
3 Main application
① Most of the aircraft and civil aviation abroad F - 22, F - 35, SU - 30 aircraft, B747 and A320 civilian planes
Rotation free condition, two beams of light transmission time, which is,
tCCW
tCW
L c
2R
c
Under the condition of rotating,
M CCW
CCCW
M
l
M ’
(a)
(b)
• The time of tபைடு நூலகம்o directions
② Conventional weapons such as tanks, artillery "Latin" howitzer Swedish BKAN1A and FH - 77 - b howitzers Precision measurement reconnaissance vehicles
③ All kinds of tactical and strategic missiles Small intercontinental ballistic missiles "dwarf" The Block III tomahawk cruise missile.
④ Observe the tiny seismic effect and the solid ground tidal effect
• Traditional inertial gyro has a high requirement on the process structures, complex structure, and the precision is restricted.
• R i n g l a s e r g y r o rotor rotating parts, not angular momentum, ring frame, also do not need direction angle sensor moving parts, such as simple structure, long working life, convenient maintenance, high reliability.
tCCW
2R
c R
tCW
2R
c R
• Transmission time
4R2
t tCCW tCW c2
M CCW
CCCW
(a)
M
l
M ’
(b)
Constitute of the RLS
Partial frequency components Cheng long control component Signal readout system Ring laser Logic circuit The power component The installation structure Electromagnetic shielding cover, etc
Traditional gyro
Ring laser gyro
① RLG's zero bias and scale factor of the system parameters are stability compared with FOG, so the calibration difficulty relatively easy.
the condition of low speed it is easy to closure.
Fiber optic gyro
Ring laser gyro
④ The precision of RLG is high , but the price also high.
1
Background
Basic principle 2
Early 21st century, Litton company developed the mechanical dithering of four frequency differential laser gyro, the precision can reach 0.001 ° / h.
Now Honeywell's latest GG1389 precision of laser gyro has amounted to 0.00015 ° / h.
② The optical path of RLG must be kept in a solid component, so the degree of FOG on the surrounding environment sensitiver than RLG.
③ RLG has some inherent drawbacks, such as mirrors, gas, and under
Main indicators
The domestic research status
1960s, The research started .
In the late 70 s, tsinghua university, national university of defense technology, the first optical instrument factory in suzhou, China academy of sciences, 303.
相关文档
最新文档