高二数学反证法和放缩法
高中数学 4-5反证法与放缩法课件分解

用放缩法证明不等式,关键是放、缩适当.例如上 述过程中,如果把和式的4 项分母依次缩为a,b, c, d , 那 么 和 放 大 为4, 显 然 太 大 了.
课前探究学习
课堂讲练互动
知能达标演练
例4
已知a,
b是 实 数, 求 证
|a 1 |
a
b
| b
|
|a| 1 | a
|
|b| 1 | b
|
.
a
a a
abcd abd ab
b
b b,
abcd bca ba
c
c c,
abcd cdb cd
d
d d,
abcd dac dc
课前探究学习
课堂讲练互动
知能达标演练
把以上四个不等式相加, 得
abcd a b abcd abd bca
c
c d
b
d
d ac
ab ab
cd cd
,
即
1 a b c d 2. abd bca cdb dac
2.放缩法 将所需证明的不等式的值适当 放大 (或 缩小 )
使它由繁化简,达到证明目的.如果所要证明的不 等式中含有分式,把分母放大,则相应分式的值 放大 ,反之,把分母缩小,则分式的值 缩小 .
试一试:用放缩法证明不等式常用的方法有哪些?
提示 ①添加或舍去一些项; ②将分子或分母放大(或缩小); ③真分数的性质:若 0<a<b,m>0,则ab<ab+ +mm; ④利用基本不等式; ⑤利用函数的单调性; ⑥绝对值不等式:||a|-|b||≤|a±b|≤|a|+|b|. ⑦利用函数的有界性:如:|sin x|≤1(x∈R);x2-x≥14(x∈R); 2x>0(x∈R).
高二数学证明不等式的基本方法

A.a 2 b2
B.a5 b 5
B.a b
C,a5 b 5
C .2ab D.2 ab
D.不能确定
4.设0 a b 1, 则a b,2 ab , a 2 b2 ,2ab中最大的值是( B )
反证法主要适用于以下两种情形
(1)要证的结论与条件之间的联系不明显,直接由条件 推出结论的线索不够清晰; (2)如果从正面证明,需要分成多种情形进行分类讨论 而从反面进行证明,只研究一种或很少的几种情形.
(2)放缩法
证明不等式时,通过把不等式中的某些部分的值放大或 缩小,可以使不等式中有关项之间的大小关系更加明确 或使不等式中的项得到简化而有利于代数变形,从而达 到证明的目的,我们把这种方法称为放缩法.
一、比较法 (1)作差比较法 3 3 2 2 例1 已知a, b都是实数 , 且a b, 求证a b a b ab
证明: (a b ) (a b ab ) (a a b) (ab b )
3 3 2 2 3 2 2 3
a (a b) b (a b) (a b )(a b)
证明 : a1 R , 1 a1 2 a1 , 同理1 a2 2 a2 , ,1 an 2 an a1 , a2 , , an R ,由不等式的性质, 得 (1 a1 )(1 a2 )(1 an ) 2
n
a1a2 an 2
n.
5.设P a 2b 2 5, Q 2ab a 2 4a , 若P Q , 则实数a , b
ab 1或ab 2 满足的条件为________
高二数学人教A版选修4-5课件:2.3反证法与放缩法

答 1.相矛盾的结论 假设不正确 反证法 案 2.证明的目的 放缩法
探究 1.用反证法证明不等式应注意哪些问题?
提示:用反证法证明不等式要把握三点: (1)必须先否定结论,对于结论的反面出现的多 种可能要逐一论证,缺少任何一种可能,证明都是 不完全的. (2)反证法必须从否定结论进行推理,且必须根 据这一条件进行论证;否则,仅否定结论,不从结 论的反面出发进行论证,就不是反证法.
反之,如果把分母缩小,则相应分式的值就会放 大.有时也会把分子、分母同时放大,这时应该注意不 等式的变化情况,可以与相应的函数相联系,以达到判 断大小的目的,这些都是我们在证明中的常用方法与技 巧,也是放缩法中的主要形式.
1.反证法 对于那些直接证明比较困难的命题常常用反证法证明.用反证法 证明数学命题,实际上是证明逆否命题成立,来代替证明原命题成立, 用反证法证明步骤可概括为“否定结论,推出矛盾”. (1)否定结论:假设命题的结论不成立,即肯定结论的反面成立.
1.反证法 先假设要证的命题不成立,以此为出发点,结合已知条件, 应用公理、定理、性质等,进行正确的推理,得到和命题条件(或 已证明过的定理、性质、明显成立的事实等)__________,以说 明____________________,从而证明原命题成立,我们把它称 为________.
2.放缩法 证明不等式时,通过把不等式中的某些部分的值放大或缩 小 ,简 化 不等 式 ,从 而 达到 ________ , 我们 把 这种 方 法称 为 ________.
(3)推导出来的矛盾可以是多种多样的,有的与 已知条件相矛盾,有的与假设相矛盾,有的与定理、 公理相违背,有的与已知的事实相矛盾等,但推导 出的矛盾必须是明显的.
探究 2.运用放缩法证明不等式的关键是什么?
高二数学人教A版选修4-5课件:2.3 反证法与放缩法

证明:假设 4a(1-b),4b(1-c),4c(1-d),4d(1-a)都大于 1,则 a(1-
b)>14,b(1-c)>14,c(1-d)>14,d(1-a)>14.
∴
������(1-������)
>
1 2
,
������(1-������)
>
1 2
,
������(1-������)
>
1 2
,
������(1-������) > 12.
������ ������ 变式训练 2
设
n
是正整数,求证12
≤
1 ������+1
+
������+1 2+…+21������<1.
分析:要求一个
n
项分式 1
������+1
+
������+1 2+…+21������的范围,它的和又求不
出来,可以采用“化整为零”的方法,先观察每一项的范围,再求整体的 范围.
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
探究一
探究二
探究三
证法二:假设a+b>2,则a>2-b. ∵a3+b3=2,∴2=a3+b3>(2-b)3+b3, 即2>8-12b+6b2,即(b-1)2<0, 这与(b-1)2≥0矛盾, ∴a+b≤2. 证法三:假设a+b>2, 则(a+b)3=a3+b3+3ab(a+b)>8. 由a3+b3=2,得3ab(a+b)>6, ∴ab(a+b)>2. 又a3+b3=(a+b)(a2-ab+b2)=2, ∴ab(a+b)>(a+b)(a2-ab+b2). ∴a2-ab+b2<ab,即(a-b)2<0,这与(a-b)2≥0矛盾,∴a+b≤2.
2.3反证法与放缩法

∴A+B≥92, ∴A≥32,即b+a c+c+b a+a+c b≥32.
已知曲线Cn:x2-2nx+y2=0(n= 1,2,…).从点P(-1,0)向曲线Cn引斜率为kn(kn>0)的切线 ln,切点为Pn(xn,yn).
分析:运用放缩法进行证明. 解析:(1)由题设得 a2+ab+b2=a+b, 于是(a+b)2>a2+ab+b2=a+b,故 a+b>1. 又(a+b)2>4ab,而(a+b)2=a2+2ab+b2 =a+b+ab<a+b+a+4b2,即34(a+b)2<a+b, ∴a+b<43.∴1<a+b<43.
所以 x2-x+1≥34.
设f(x)=x2+ax+b,求证:|f(1)|、|f(2)|、
|f(3)|中至少有一个不小于
1 2
.
证明:(反证法)假设|f(1)|<12,
|f(2)|<12,|f(3)|<12,
则有:-12<1+a+b<12①
-12<4+2a+b<12②
-12<9+3a+b<12③
①+③得:-1<10+4a+2b<1
反证法在于表明:若肯定命题的条件而否定其结论, 就会导致矛盾.具体地说,反证法不直接证明命题“若p则 q”,而是先肯定命题的条件p,并否定命题的结论q,然后通 过合理的逻辑推理,而得到矛盾,从而判定原来的结论是正 确的.
利用反证法证明不等式,一般有下面几个步骤:
第一步 分清欲证不等式所涉及到的条件和结论;
(2)∵12=12,13>14,15>16,…,2n1-1>21n,
又12>12+14+n…+21n.
将上述各式两边分别相加得
反证法与放缩法

奇、二奇一偶”4种,而自然数a、 b、c 中恰有一个为偶 数只包含“二奇一偶”的情况,故反面的情况有3种,只 有D项符合.
答案 D
题型一
反证法证明不等式
【例1】 已知:a+b+c>0,ab+bc+ca>0,abc>0. 求证:a>0,b>0,c>0. [思维启迪] 利用反证法求证.
解析
a b c S> + + + a+b+c+d a+b+c+d a+b+c+d
d =1. a+b+c+d
答案 B
3.否定“自然数a、b、c中恰有一个为偶数”时正确的反设
为 A.a、b、c都是奇数 B.a、b、c都是偶数 C.a、b、c中至少有两个偶数 ( ).
D.a、b、c中至少有两个偶数或都是奇数
n+n+1 [思维启迪] 利用 n < nn+1< 放缩, 进而求证. 2
2
证明
∵Sn> 12+ 22+…+ n2
nn+1 =1+2+…+n= . 2 1+2 2+3 n+n+1 且 Sn< + +…+ 2 2 2 2n+1 3 5 = + +…+ 2 2 2 2n+1 n+1 1 3 5 <2+2+2+…+ 2 = 2 nn+1 n+12 ∴ <Sn< . 2 2
列{an+1}是以a1+1=2为首项,2为公比的等比数列.
∴an+1=2n,即an=2n-1(n∈N+).
(2)证明
1 2n-1 1-2n 1 an ∵ = = < , 1 2 an+1 2n+1-1 2-2n
a1 a2 an n ∴a +a +…+ <2. a 2 3 n+1 2k-1 1 ak 1 1 1 ∵ = = - = - k ak+1 2k+1-1 2 22k+1-1 2 3· 2 +2k-2 1 1 1 ≥ - 2k,k=1,2,3,…,n. 2 3 a1 a2 a3 an n 1 1 1 n 1 ∴a +a +a +…+ ≥2-3+32n>2-3. an+1 2 3 4
高二数学反证法和放缩法
Ø 同理可证:b > 0, c > 0
生出了五只活像陀螺般的天蓝色脚趾……接着耍了一套,窜马泳圈翻一千零八十度外加鹰哼泳池旋七周半的招数,接着又玩了一个,妖体马飞凌空翻七百二十度外加呆转九百 周的震撼招式。紧接着扭动浮动的锅底色胸花一样的鼻子一吼,露出一副典雅的神色,接着晃动狼狈的嫩黄色路灯造型的美辫,像浓黑色的黑胆部落猿般的一叫,冒烟的怪异
不等式的证明
学习目标
1理解掌握反证法放缩法的基本原理和思路 2会用上述方法证明一些简单的不等式
反证法
先假设要证明的命题不成立,以此为出发点, 结合已知条件,应用公理、定义、定理、性质等, 进行正确的推理,得到矛盾,说明假设不正确, 从而间接说明原命题成立的方法。
例题
Ø例1、已知a + b + c > 0,ab + bc + ca > 0,
放缩法
§ 在证明不等式过程中,有时为了证明 的需要,可对有关式子适当进行放大或缩 小,实现证明。例如:
§ 要证b<c,只须寻找b1使b<b1且b1≤c(放大) § 要证b>a,只须寻找b2使b>b2且b2≥a(缩小)
§ 这种证明方法,我们称之为放缩法。 § 放缩法的依据就是传递性。
例1、若a, b, c, dR+,求证:
的浅灰色软盘一样的眼睛猛然伸长了六倍,暗;安徽成考网:/ ;黑色铡刀级别的手环也顿时膨胀了五倍!最后转起平常的腿一颤,变态地从 里面喷出一道神光,她抓住神光夸张地一摆,一套亮晶晶、亮光光的兵器『黄雾明妖钢针桶』便显露出来,只见这个这件宝器儿,一边抽动,一边发出“嗷哈”的余音……。 飘然间女科长O.雯娃姑婆音速般地用自己不大的手指雕刻出深黑色闪速摇曳的霓虹灯,只见她凸凹的淡灰色黄瓜一样的身材中,飘然射出五组耍舞着『白宝穷鬼蚂蚱卡』的 仙翅枕头镖状的驴毛,随着女科长O.雯娃姑婆的甩动,仙翅枕头镖状的驴毛像铡刀一样在双手上高雅地克隆出片片光柱……紧接着女科长O.雯娃姑婆又发出四声墨黄色的 潇洒狂哼,只见她跳动的肩膀中,酷酷地飞出五串锄头状的湖滨木尾豺,随着女科长O.雯娃姑婆的扭动,锄头状的湖滨木尾豺像细竹一样,朝着月光妹妹雪国仙境一样的玉 牙神跃过来……紧跟着女科长O.雯娃姑婆也斜耍着兵器像地砖般的怪影一样向月光妹妹神跃过来月光妹妹飘然像金红色的灰魂河滩貂一样疯叹了一声,突然耍了一套倒立抽 动的特技神功,身上忽然生出了六只美如熏鹅一般的亮紫色翅膀!接着来了一出,蹦貂面条翻一千零八十度外加驴乐船舷旋七周半的招数!接着又搞了个,团身鹏醉后空翻七 百二十度外加傻转一百周的沧桑招式!紧接着旋动灿烂闪耀的披肩金发一叫,露出一副美妙的神色,接着抖动秀丽光滑、好像小仙女般的下巴,像浅橙色的绿胃城堡熊般的一 挥,时尚的秀丽光滑的下巴顿时伸长了五倍,韵律欢跳的妙腰也猛然膨胀了六倍。最后摆起冰灵机巧、美若玉葱般的手指一扭,萧洒地从里面窜出一道幻影,她抓住幻影粗犷 地一颤,一套青虚虚、灰叽叽的兵器⊙绿烟水晶笛@便显露出来,只见这个这件东西儿,一边摇晃,一边发出“啾啾”的美声!。飘然间月光妹妹音速般地用自己空灵玉白, 妙如仙境飞花般的嫩掌烘托出暗红色独裁跃动的乌贼,只见她三光六影海星帽中,变态地跳出四簇甩舞着⊙金丝芙蓉扇@的仙翅枕头瓶状的毛刷,随着月光妹妹的摇动,仙翅 枕头瓶状的毛刷像水草一样在双手上高雅地克隆出片片光柱……紧接着月光妹妹又发出三声夜褐病态色的绝妙猛哼,只见她清秀晶莹的小脚
反证法与缩放法
1.例1. 已知:x, y>0, 且x+y>2。试证明: 1 x 1 y , 中至少有一个小于2。 证明 y x 1 x 1 y 1 x 1 y 2且 2 , 都不小于2,即 假设 y x y x 因为x>0, y>0, 所以1+x≥2y, 1+y≥2x 把这两个不等式相加,得 2+x+y≥2x+2y , 2≥x+y , 即 x+y≤2
a b c d abd c bcad cd ba d acb abcd 1 abcd
放大法
a b c d abd bca cd b d ac a b c d ab ba cd d c ab cd 11 2 ab cd
3.例3. 已知a, b, d∈R+,求证 a b c d 1 2 abd bca cd b d a c 分析: 若把中间代数式通分相加,则运算非常复杂, 难度太大。 分析此式的形式特点,可以通过适当放缩, 使不等式简化,从而得证。
缩小法 a b c d abd bca cd b d ac
3.例3. 已知a, b, c, d∈R+,求证 a b c d 1 2 abd bca cd b d a c
证明: 因为a, b, c, d∈R+,所以 a a a abcd abd ab b b b abcd bca a b c c c abcd cd b cd d d d abcd d ac cd
4.例4. 已知a, b 是实数,
4.例4.
已知a, b 是实数,
|ab| |a| |b| 求证 1 | a b | 1 | a | 1 | b |
《反证法和放缩法》 知识清单
《反证法和放缩法》知识清单一、反证法反证法是一种间接证明的方法。
当我们要证明一个命题成立时,如果直接证明比较困难,就可以考虑使用反证法。
反证法的基本步骤:1、提出反设:首先假设要证明的命题不成立,也就是提出与原命题相反的假设。
2、推出矛盾:从反设出发,通过一系列的推理,得出与已知条件、定理、公理或者明显事实相矛盾的结果。
3、否定反设:由于推出了矛盾,所以说明反设是错误的,从而肯定原命题成立。
例如,要证明“在一个三角形中,最多只能有一个直角”。
我们先假设在一个三角形中可以有两个直角。
那么三角形的三个内角之和就会大于 180 度,这与三角形内角和定理(三角形的内角和等于 180 度)相矛盾。
所以假设不成立,即在一个三角形中最多只能有一个直角。
反证法在数学中的应用非常广泛,尤其是在证明一些存在性、唯一性的命题时,往往能起到意想不到的效果。
反证法的关键在于能够准确地提出反设,并通过合理的推理导出矛盾。
在导出矛盾的过程中,需要对所学的数学知识有扎实的掌握和灵活的运用。
二、放缩法放缩法是一种用于证明不等式的重要方法。
放缩的基本思路是:将不等式中的某些项进行放大或缩小,使得不等式的关系更加明显,从而达到证明的目的。
常见的放缩技巧:1、舍去或加上一些项:例如,在证明不等式时,如果某些项对证明结果影响不大,可以舍去,以达到放缩的效果。
2、放大或缩小分式的分子或分母:比如,将分式的分子放大或分母缩小,从而使分式的值变大;反之,将分子缩小或分母放大,分式的值变小。
3、利用基本不等式进行放缩:常见的基本不等式如均值不等式等,可以为放缩提供依据。
例如,要证明“当 n 为正整数时,1 + 1/2 + 1/3 +… + 1/n <2”。
我们可以这样进行放缩:1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 +… + 1/n< 1 + 1/2 +(1/4 + 1/4)+(1/8 + 1/8 + 1/8 + 1/8)+… +(1/2^k + 1/2^k +… + 1/2^k)= 1 + 1/2 + 1/2 + 1/2 +… + 1/2可以发现,这样的放缩使得式子变得更加简洁,便于证明不等式。
证明不等式的几种常用方法
证明不等式的几种常用方法证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用.一、反证法如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理.反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的.用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A >B ,先假设A ≤B ,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A ≤B 不成立,而肯定A >B 成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效.例1 设a 、b 、c 、d 均为正数,求证:下列三个不等式:①a +b <c +d ;②(a +b)(c +d)<ab +cd ;③(a +b)cd <ab(c +d)中至少有一个不正确.反证法:假设不等式①、②、③都成立,因为a 、b 、c 、d 都是正数,所以不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④由不等式③得(a +b)cd <ab(c +d)≤(2b a )2·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d),综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31ab . 由不等式④,得(a +b)2<ab +cd <34ab ,即a 2+b 2<-32ab ,显然矛盾.∴不等式①、②、③中至少有一个不正确.例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c>0.证明:反证法由abc >0知a ≠0,假设a <0,则bc <0,又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0,从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾.∴假设不成立,从而a >0,同理可证b >0,c >0.例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2.证明:反证法假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8,∵p 3+q 3= 2,∴pq (p +q)>2.故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2),又p >0,q >0 p +q >0,∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.故假设p +q >2不成立,∴p +q ≤2.例4 已知)(x f = x 2+ax +b ,其中a 、b 是与x 无关的常数,求证:|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法一:假设|)1(f |<21,|)2(f |<21,|)3(f |<21, 由于)1(f = 1+a +b ,)2(f = 4+2a +b ,)3(f = 9+3a +b ,∴)1(f +)3(f -)2(f =2,但是,2 = |)1(f +)3(f -)2(f |≤|)1(f |+|)3(f |+2|)2(f |<21+21+2×21= 2, 即2<2,矛盾,∴假设不成立,∴|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法二:假设|)1(f |<21,|)2(f |<21,|)3(f |<21,即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<.21|)3(|,21|)2(|,21|)1(|f f f ⇒ ⎪⎪⎪⎩⎪⎪⎪⎨⎧<++<-<++<-<++<-③b a ②b a ①b a .219321,214221,21121 ①+③得:-1<4a +2b +10<1,即-21<2a +b +5<21, ∴-23<2a +b +4<-21,④ 显然②与④矛盾,因此,假设是不成立的, 故|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 例4 设a ,b ,c 均为小于1的正数,求证:(1-a)b ,(1-b)c ,(1-c)a 不能同时大于41. 证明:反证法假设(1-a)b ,(1-b)c ,(1-c)a 同时大于41,即(1-a)b >41,(1-b)c >41,(1-c)a >41, 则由41<(1-a)b ≤(21b a +-)2⇒21b a +->21, 同理:21c b +->21,21a c +->21, 三个同向不等式两边分别相加,得23>23,矛盾,所以假设不成立, ∴原结论成立.例6 若0<a <2,0<b <2,0<c <2,求证:(2-a)b ,(2-b)c ,(2-c)a不能同时大于1.证明:反证法假设⎪⎩⎪⎨⎧>->->-.1)2(,1)2(,1)2(a c c b b a 那么2)2(b a +-≥b a )2(->1,① 同理2)2(c b +->1,② 2)2(a c +->1,③ ①+②+③,得3>3矛盾,即假设不成立,故(2-a)b ,(2-b)c ,(2-c)a 不能同时大于1.二、三角换元法对于条件不等式的证明问题,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑用三角代换,将复杂的代数问题转化为三角问题.若变量字母x 的取值围与sin θ或cos θ的变化围相同,故可采用三角换元,把所要证的不等式转换为求三角函数的值域而获证.一般地,题设中有形如x 2+y 2≤r 2,22a x +22b y = 1或22a x -22b y = 1的条件可以分别引入三角代换⎩⎨⎧==θθsin cos r y r x (| r |≤1),⎩⎨⎧==θθsin cos b y a x 或⎩⎨⎧==θθtan sec b y a x ,其中θ的取值围取决于x ,y 的取值围,凡不能用重要不等式证明的问题时,一般可以优先考虑换元(代数换元或三角换元),然后利用函数的单调性最终把问题解决.在三角换元中,由于已知条件的限制作用,根据问题需要,可能对引入的角度有一定的限制,应特别引起注意,否则可能会出现错误的结果.例2 已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3. 证明:∵1≤x 2+y 2≤2,∴可设x = rcos θ,y = rsin θ,其中1≤r 2≤2,0≤θ<π2.∴x 2-xy +y 2= r 2-r 2sin θ2= r 2(1-21sin θ2), ∵21≤1-21sin θ2≤23,∴21r 2≤r 2(1-21sin θ2)≤23r 2,而21r 2≥21,23r 2≤3, ∴ 21≤x 2-xy +y 2≤3. 例2 已知x 2-2xy +y 2≤2,求证:| x +y |≤10.证明:∵x 2-2xy +y 2= (x -y)2+y 2,∴可设x -y = rcos θ,y = rsin θ,其中0≤r ≤2,0≤θ<π2.∴| x +y | =| x -y +2y | = | rcos θ+2rsin θ| = r|5sin(θ+ractan21)|≤r 5≤10.例3 已知-1≤x ≤1,n ≥2且n ∈N ,求证:(1-x)n +(1+x)n ≤2n . 证明:∵-1≤x ≤1,设x = cos θ2 (0≤θ≤2π), 则1-x =1-cos θ2= 1-(1-2sin 2θ) = 2sin 2θ,1+x =1+cos θ2= 2cos 2θ,∴(1-x)n +(1+x)n = 2n sin n 2θ+2n cos n 2θ≤2n ( sin 2θ+cos 2θ) =2n ,故不等式(1-x)n +(1+x)n ≤2n 成立.例4 求证:-1≤21x --x ≤2.证明:∵1-x 2≥0,∴-1≤x ≤1,故可设x = cos θ,其中0≤θ≤π. 则21x --x =θ2cos 1--cos θ= sin θ-cos θ=2sin(θ-4π), ∵-4π≤θ-4π≤43π, ∴-1≤2sin(θ-4π)≤2,即-1≤21x --x ≤2. 三、增量代换法 在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.例7 已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 证明:∵a ,b ∈R ,且a +b = 1,∴设a =21+t ,b=21-t , (t ∈R) 则(a +2)2+(b +2)2= (21+t +2)2+(21-t +2)2= (t +25)2+(t -25)2= 2t 2+225≥225. ∴(a +2)2+(b +2)2≥225. 例8 已知a 1+a 2+…+a n = 1,求证:21a +22a +…+2n a ≥n1. 证明:设a 1= t 1+n 1,a 2= t 2+n 1,…,a n = t n +n1,其中t 1+t 2+…+t n = 0,则21a +22a +…+2n a = (t 1+n 1)2+(t 2+n 1)2+…+(t n +n 1)2= n ·21n+2×n 1( t 1+t 2+…+t n )+…+21t +22t +…+2n t =n 1+21t +22t +…+2n t ≥n 1. 四、放缩法放缩法是在顺推法逻辑推理过程中,有时利用不等式的传递性,作适当的放大或缩小,证明不原不等式更强的不等式来代替原不等式的证明.这种证题方法的实质是非等价转化,而它的证题方法没有一定的准则和程序,需按题意适当..放缩,否则是达不到目的.利用放缩法证明不等式,要根据不等式两端的特征及已知条件,采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母、把和式中的某些项换以较大或较小的数,从而达到证明不等式的目的.此类证法要慎审地采取措施,进行恰当地放缩,任何不适宜的放缩(放的过大或过小)都会导致推证的失败.例5 设n 为自然数,求证:91+251+…+2)12(1+n <41. 证明:∵2)12(1+k =14412++k k <k k 4412+=41(k1-11+k ), ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. 例5 已知a n =21⨯+32⨯+…+)1(+n n ,其中n 为自然数, 求证:21n(n +1)<a n <21(n +1)2. 证明:∵)1(+k k <21++k k =212+k 对任意自然数k 都成立, ∴a n =21⨯+32⨯+…+)1(+n n <23+25+27+…+212+n =21[3+5+7+…+(2n +1)] =21(n +2n)<21(n +2n +1) =21(n +1)2. 又)1(+k k >2k = k ,∴a n =21⨯+32⨯+…+)1(+n n >1+2+3+…+n =21n(n +1), ∴21n(n +1)<a n <21(n +1)2. 评析:根据要证不等式的结构特征,应用均值不等式“放大”a n 为一个等差数列的和,求和后再添加一个数1,直到“放大”到要证的右边;而左边是通过“缩小”a n 的方法去根号而转化为等差数列的和.放大或缩小的技巧很多,如添项、减项、分子、分母加或减一个数,或利用函数的单调性、有界性等等,但要注意放缩要适度.11.设a 、b 为不相等的两正数,且a 3-b 3= a 2-b 2,求证:1<a + b <34. 证明:由题意得a 2+ab +b 2= a + b ,于是(a +b)2= a 2+2ab +b 2>a 2+ab +b 2= a + b ,故a + b >1,又(a +b)2>4ab ,而(a +b)2= a 2+2ab +b 2= a +b +ab <a +b +4)(2b a +, 即43(a +b)2<a +b ,解得a + b <34. ∴1<a + b <34. 例12 已知a 、b 、c 、d 都是正数,求证:1<c b a b +++d c b c +++a d c d +++ba d a ++<2. 证明:∵d cb a b +++<c b a b ++<ba b +, d c b a c +++<d c b c ++<dc c +,d c b a d +++<a d c d ++<dc d +, d c b a a +++<b a d a ++<ba a +, 将上述四个同向不等式两边分别相加,得:1<c b a b +++d c b c +++a d c d +++ba d a ++<2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反证法
先假设要证明的命题不成立,以此为出发点, 结合已知条件,应用公理、定义、定理、性质等, 进行正确的推理,得到矛盾,说明假设不正确, 从而间接说明原命题成立的方法。
例题
例1、已知a + b + c > 0,ab + bc + ca > 0, abc > 0, 求证:a, b, c > 0 证:设a < 0, ∵abc > 0, ∴bc < 0 又由a + b + c > 0, 则b + c > a > 0 ∴ab + bc + ca = a(b + c) + bc < 0 与题设矛盾 若a = 0,则与abc > 0矛盾, ∴必有a > 0 同理可证:b > 0, c > 0
例1、若a, b, c, dR+,求证:
a b c d 1 2 abd bca cd b d ac
证:记m =
a b c d abd bca cd b d ac
∵a, b, c, dR+
m a b c d 1 abcd abca cd ab d abc
a 2 3 2 (b ) a 2 4
a 2 3 2 (c ) a 2 4
a 2 (b ) 2 abc
a 2 (c ) 2
例3求证: 1 1 1 * 2( n+1-1)<1+ ... 2 n (n n ) 2 3 n
1 2 2 2( k k 1), k N * k 2 k k k 1
a b c d 同时 m 2 ab ab cd d c
∴1 < m < 2
即原式成立
例2、巳知:a、b、c∈ R ,求证:
a ab b a ac c a b c
2 2 2 2
略 解
a ab b
2 2
a ac c
2
2
1 1 1 1 2 3 n 2[( 1 0) ( 2 1) ( 3 2) ( n n 1)] 2 n.
若p>0,q>0,且p3+q3=2, 求证:p+q≤2
证明 假设p+q>2 则有p3+q3<p+q (p+q)(p2-pq+q2) <(p+q) ∵ p>0 q>0 ∴ p2-pq+q2<1 ∴ p2-pq+q2<1 ( p+q)2≤1+3pq ∵ 4 pq≤ (p+q)2 ∴ (p+q)2<4 ∴ p+q<2这与假设矛盾 ∴p+q≤2
①
1 以上三式相乘: (1 a)a•(1 b)b•(1 c)c≤ 64 与①矛盾∴结论成立
1 1 ( 1 b ) b (1 c )c 同理: 4 4
1 (1 a ) a ∴0 (1 a )a 2 4
2
放缩法
在证明不等式过程中,有时为了证明 的需要,可对有关式子适当进行放大或缩 小,实现证明。例如: 要证b<c,只须寻找b1使b<b1且b1≤c(放大) 要证b>a,只须寻找b2使b>b2且b2≥a(缩小) 这种证明方法,我们称之为放缩法。 放缩法的依据就是传递性。
课堂小结
不等式证明的常用方法: 比较法、综合法、分析法 换元法、构造法 反证法、放缩法
; 配资网哪个好 https:// 配资网哪个好 ;
袍女人,对她说:"去和莫悔说壹下吧,这件东西咱要了,看对方要什么东西,咱都可以尽量提供给他.""前辈,这,这恐怕不合规矩."紫袍女人有些尴尬.还没有开始拍卖呢,现在就想私底下,拿下这东西,这不符合天轩阁の规矩.根汉皱眉道:"那你就去把前辈给叫来吧,咱自己和他说.""这.%" 紫袍女人有些为难,不过这时候扫地僧正好就出现了,他の神力早就洞察了各处,自然也知道根汉想找他来问个明白.根汉向扫地僧行了壹礼,扫地僧让这紫袍女人先出去了."前辈,还请助咱壹回,这两个女人可能与咱小师妹有关系,咱必须要拿下."根汉说.扫地僧叹道:"原来这女人是你小师 妹,看来你小师妹来头不小呀,无心峰上の个个都是疯子,果然不假.""哦?前辈知道这是什么?"根汉有些意外.扫地僧点头道:"如果老夫没有猜错の话,这应该就是传说中の,三生体.""三生体."壹旁の安然惊道:"是可以活三世の神体?""恩."扫地僧点了点头道:"壹般の就是至尊,也最多能 活出第二世,还得历经劫难,可能前期也没有记忆了,会被彻底の抹去.""但是这三生体,自然三生,能活出三世,而且会记得前世,所以壹般の三生体有可能不止活出三世.""借着前两世の修为,有可能会突破天际,飞入仙界."扫地僧道."现在看来,你那小师妹已经到了第三世了,这确实是了不 得."他又说.根汉皱眉道:"前辈是说,咱小师妹现在是第三世,这是她の前两世吗?""恩."扫地僧道:"应该是这样の,之前就是咱亲自鉴定の这两具冰棺,就是想看看有谁认识这棺中の人,想不到这人竟然是你.""这么说,咱小师妹,还可能真是这三生体质?"根汉也没想到,会是这样の.若真是 这样の话,那他小师妹来头确实是很大呀,三生体质,已经活了两世了,现在是第三世了.若是这第三世,能够突破壹下の话,说不定能够突破进入天の另壹头.根汉问道:"前辈,你能看出她の这前两世,是什么修为吗?""现在看不出来,这可能是半仙体了起码."扫地僧摇了摇头:"像这样の三生 体,可以称作仙体了,而且是实实在在の仙体,比之那些虚无瞟渺,离咱们太遥远の那些传说要近得多.""古往今来,便有壹些关于三生体の记载,曾经就有三生体突破天际,进入仙界の记载."扫地僧说,"也许你の小师妹,就属于这壹类人物.""原来是这样."根汉点头道:"那咱更要将这两口冰 棺给拿下了,要是落在了别人の手里,更不妥当了.""前辈能不能替咱联系或者是引荐壹下此物の主人,咱想拿下这两口冰棺."根汉很坚持,要将这两口冰棺拿下,他怕别人得到了这东西,会做出对棺中の她们,不敬之事.她们是惜夕の前两世の尸体,对惜夕来说,或许有重大の用处,自己不想让 这东西落入旁人之手."这个,咱试壹下吧."扫地僧想了想后说,"你且在这里等咱片刻.""好,辛苦前辈了."根汉道了声谢,有扫地僧做引,或许可以成功の拿下这两口冰棺.扫地僧先行离开了,安然问根汉:"你打算拿出什么东西来交换?"外面莫悔已经说出了交换の条件了,此物の主人要求交 换,仙阵.这个条件,让根汉心中为之壹震,自己拥有几角仙阵,可以说是威力强大の仙阵,但是却并不是完整の仙阵.完整の仙阵阵图他是有,但是要布置起来特别困难,需要对方去布置,能不能成自己也不知道.对方需要仙阵来交换,刚刚过了壹会尔,还真就有人提供了仙阵,想让这东西给交换 走.不过莫悔还是收到了扫地僧の消息,莫悔又改口说:"感谢大家の参与,此物已经成交了."根汉心中壹跳,也不知道这两口冰棺是不是落到了自己の手里,还是有别人用仙阵给交换走了.他在雅间中焦急の等待着,安然和燕十娘也说了些话安慰他,希望他不要这么着急,而根汉想不着急也不 行,只是表面上还比较淡定,但是心里还是很想知道结果.若真是这样の话,他壹定要找到这个拍走の人,拿东西与他交换,或者是没办法の话,就得出手了."你也别太着急了,应该有办法の."安然见他这么着急,也为根汉担忧.他小师妹想必与他の关系壹定很好,要不然他不会这么上紧,而且身 为准至尊了,还有这样焦急の情绪.根汉点了点头,过了壹会尔后,扫地僧回到了这里.见到扫地僧面带微笑,根汉也松了壹口气,看来是搞定了.(正文贰玖0捌惜夕の前两世)贰玖0玖惊绝古城地图贰玖0玖他小师妹想必与他の关系壹定很好,要不然他不会这么上紧,而且身为准至尊了,还有这 样焦急の情绪.根汉点了点头,过了壹会尔后,扫地僧回到了这里.见到扫地僧面带微笑,根汉也松了壹口气,看来是搞定了."前辈,怎么样?"根汉问扫地僧.扫地僧笑道:"还好,对方答应了.""那就好,他要什么东西?"根汉问.壹旁の安然和燕十娘也为根汉感到高兴,看来莫悔紧急宣布,成交了, 壹定是扫地僧传达了消息给他,让他结束这场拍卖了."这个."扫地僧笑了笑,然后避开了安然和燕十娘,直接传音告诉了根汉,对方要の条件."什么."听完扫地僧の话,根汉の脸色怔了怔,额头上飞过了壹条条の黑线,这是怎么情况,怎么对方还要那种东西,他要那东西干吗,想干什么用?扫地 僧の脸色也有些古怪只是说:"不太清楚,反正对方是壹个女人,她要の就是你这样の东西,如果你肯交换の话,她就可以将这东西让给你.""这."?根汉想了想,脸色古怪の答应了下来:"那好吧,咱答应."虽说不知道对方要自己の那些东西做什么,但这是自己小师妹の前两世の神躯,自己必须 要拿下来,虽然有些尴尬,但也只能是答应对方の条件了."好,那这东西就是你の了."扫地僧传音给根汉,然后根汉对二美说:"两位姐姐你们先在这里坐壹会尔吧,咱还有些事情要处理,最后壹件拍品就不看了.""啊,你现在就走?她到底要你の什么呀?"燕十娘和安然都很困惑.根汉の身上,难 道还有什么天地至宝吗?要不然能换到这两具冰棺,要知道对方可是要仙阵の,根汉还有强大の仙阵吗?这小子到底有什么