§3.2反证法和放缩法
《反证法和放缩法》 知识清单

《反证法和放缩法》知识清单一、反证法反证法是一种间接证明的方法。
当我们要证明一个命题成立时,如果直接证明比较困难,那就可以考虑使用反证法。
反证法的基本思路是先假设命题的结论不成立,即提出与命题结论相反的假设。
然后,从这个假设出发,通过一系列正确的逻辑推理,得出矛盾的结果。
这个矛盾可以是与已知条件矛盾、与定理或公理矛盾、或者是自相矛盾。
由于推理过程是正确的,所以产生矛盾的原因只能是假设不成立,从而证明原命题的结论是正确的。
例如,证明“在一个三角形中,至少有一个内角小于或等于60 度”。
我们先假设三角形的三个内角都大于 60 度,那么三个内角之和就会大于 180 度,这与三角形内角和定理(三角形内角和为 180 度)矛盾,所以假设不成立,原命题成立。
反证法的一般步骤可以总结为:1、提出反设:假设命题的结论不成立。
2、推出矛盾:从反设出发,通过推理得出矛盾。
3、肯定结论:由于矛盾的出现,说明反设错误,从而证明原命题的结论正确。
反证法在数学证明中有着广泛的应用,尤其是在证明一些存在性、唯一性、否定性的命题时,往往能起到意想不到的效果。
二、放缩法放缩法是不等式证明中一种常用的方法。
其基本思想是将不等式中的某些项进行放大或缩小,从而使不等式变得更加简单,易于证明。
放缩的依据通常是不等式的基本性质、已知的不等式、函数的单调性等。
比如,要证明不等式\(A < B\),我们可以先将\(A\)适当放大得到\(A' \),使得\(A' < B\)易于证明;或者将\(B\)适当缩小得到\(B' \),使得\(A < B' \)易于证明。
常见的放缩技巧有:1、舍去或加上一些项,如:\(\frac{1}{n(n + 1)}<\frac{1}{n^2}\)。
2、将分子或分母放大(或缩小),如:\(\frac{1}{n} <\frac{1}{n 1}\)(\(n > 1\))。
3、利用基本不等式进行放缩,例如:若\(a, b\)均为正数,则\(a + b \geq 2\sqrt{ab}\)。
反证法与放缩法课件

1.反证法 先假设要证的___命__题__不__成__立___,以此为出发点,结合已知 条件,应用公理、定义、定理、性质等,进行正确的推理,得 到和命题的条件(或已证明的定理、性质、明显成立的事实 等)__矛__盾__的__结__论____,以说明假设不正确,从而证明原命题成立, 这种方法称为反证法.
答案:P≥Q
命题的结论.
A.①②
B.①②③
C.①②③④
D.②③
解析:在用反证法证明命题时,要把假设,原命题中的条
件,还有公理、定理、定义等作为条件使用,因此应选 B.
答案:B
2.若实数 a,b,c 满足 a+b+c=1,给出以下说法:①a,
b,c 中至少有一个大于13;②a,b,c 中至少有一个小于13;③a,
综上所述,正确的命题有 2 个,故选 B. 答案:B
3.已知三个正数 a,b,c 成等比数列,但不成等差数列.
求证: a, b, c不成等差数列.
证明:假设 a, b, c成等差数列,则有 a+ c=2 b,即 a+c+2 ac=4b.
又∵三个正数 a,b,c 成等比数列. ∴b2=ac,即 b= ac. ∴a+c+2 ac=4 ac,即( a- c)2=0, ∴ a= c,即 a=c.从而得 a=b=c. ∴a,b,c 也成等差数列,这与已知矛盾. 故假设错误,∴ a, b, c不成等差数列.
知识点二 放缩法证明不等式
4.已知 S=1+1×1 2+1×12×3+…+1×2×31×…×n(n 是
大于 2 的自然数),则有( )
A.S<1
B.2<S<3
C.1<S<2
D.3<S<4
解析:S=11+1×1 2+1×12×3+…+1×2×31×…×n<1+12 +212+213+…+2n1-1=11--2112n=2-2n1-1<2.
《证明不等式的基本方法反证法与放缩法》

《证明不等式的基本方法反证法与放缩法》证明不等式的基本方法包括反证法和放缩法。
反证法是一种常用的证明不等式的方法,它的思路是假设不等式不成立,然后通过推理推出一个矛盾的结论,从而证明原不等式的成立。
放缩法是通过对不等式进行变形、放缩,将原不等式转化为一个更易证明的形式。
首先介绍反证法。
对于一个要证明的不等式,我们可以假设不等式不成立,即假设存在一些满足条件的变量使得不等式不成立。
然后通过对这个假设的推理,得出一个与已知条件相矛盾的结论,从而证明假设是错误的,进而证明原不等式的成立。
具体步骤如下:1.假设不等式不成立,即假设存在一些满足条件的变量使得不等式不成立。
2.根据已知条件和假设,对变量进行推理,得出结论。
3.利用这个结论推出与已知条件矛盾的结论。
4.由此可以得出假设是错误的,从而证明原不等式的成立。
举个例子来说明反证法的应用:对于不等式x+y>0,假设不等式不成立,即存在一些满足条件的x和y使得x+y≤0。
然后我们通过推理可以得到y≤-x,即y的取值范围在x的左侧。
然而,根据已知条件,对于任意的x和y,x+y的和都大于0,与假设矛盾。
因此,假设错误,原不等式成立。
接下来介绍放缩法。
放缩法是通过对不等式进行变形和放缩,将原不等式转化为一个更易证明的形式。
放缩法的关键在于找到合适的放缩因子和放缩方法。
具体步骤如下:1.根据不等式的特点,选择合适的放缩因子和放缩方法。
2.对不等式进行变形和放缩,将原不等式转化为一个更易证明的形式。
3.对新形式的不等式进行证明。
4.如果新形式的不等式成立,根据不等式的等价性,原不等式也成立。
举个例子来说明放缩法的应用:对于不等式(x + y)(y + z)(z + x) ≥ 8xyz,我们可以使用放缩法进行证明。
我们选择放缩因子2和放缩方法(x + y) ≥ 2√xy,可以得到(2√xy)(2√yz)(2√xz) ≥ 8xyz。
化简后得到(√xy)(√yz)(√xz) ≥ xyz,即x·y·z ≥ xyz,显然成立。
《反证法和放缩法》 说课稿

《反证法和放缩法》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《反证法和放缩法》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析本节课选自_____版高中数学选修_____的内容。
反证法和放缩法是数学证明中的两种重要方法,它们在解决数学问题和培养学生逻辑思维能力方面具有重要的作用。
反证法是一种间接证明的方法,通过先提出与命题结论相反的假设,然后推导出矛盾,从而证明原命题的正确性。
放缩法是通过对不等式的适当放大或缩小,来达到证明不等式或求解最值等问题的目的。
这两种方法不仅在数学中有着广泛的应用,而且对于培养学生的逆向思维和创新能力具有重要意义。
二、学情分析学生在之前的学习中已经掌握了直接证明的方法,如综合法和分析法,具备了一定的逻辑推理能力。
但是对于反证法和放缩法这两种较为独特的证明方法,学生可能会感到陌生和难以理解。
在学习过程中,学生可能会在如何提出反设、如何寻找矛盾以及如何进行放缩等方面遇到困难。
因此,在教学中需要通过具体的例子引导学生逐步掌握这两种方法的思路和技巧。
三、教学目标1、知识与技能目标(1)学生能够理解反证法和放缩法的概念和原理。
(2)掌握反证法和放缩法的基本步骤和应用技巧。
(3)能够运用反证法和放缩法解决简单的数学问题。
2、过程与方法目标(1)通过实例分析,培养学生的观察、分析和逻辑推理能力。
(2)让学生经历反证法和放缩法的探索过程,体会逆向思维和转化思想。
3、情感态度与价值观目标(1)激发学生对数学证明的兴趣,培养学生勇于探索和创新的精神。
(2)通过合作学习,培养学生的团队合作意识和交流能力。
四、教学重难点1、教学重点(1)反证法的原理和步骤。
(2)放缩法的常见技巧和应用。
2、教学难点(1)如何正确提出反设,以及如何寻找矛盾来证明反设不成立。
(2)在运用放缩法时,如何把握放缩的度,做到合理放缩。
三反证法与放缩法

庖丁巧解牛知识·巧学 一、反证法1.反证法的意义:先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法.反证法在于表明:若肯定命题的条件而否定其结论,就会导致矛盾.具体地说,反证法不直接证明命题“若p 则q”,而是先肯定命题的条件p ,并否定命题的结论q ,然后通过合理的逻辑推理,而得到矛盾,从而断定原来的结论是正确的. 记忆要诀用反证法证明命题“若p 则q”的过程可以用下图表示.2.利用反证法证明不等式,一般有下面几个步骤: 第一步,分清欲证不等式所涉及到的条件和结论; 第二步,作出与所证不等式结论相反的假定;第三步,从条件和假定出发,应用正确的推理方法,推出矛盾结果;第四步,断定产生矛盾结果的原因,在于开始所作的假定不正确,于是原先要证的不等式成立.辨析比较3通常在什么情况下用反证法?有些不等式,从正面证如果说不清楚,可以考虑反证法.即先否定结论,然后依据已知条件以及有关的定义、定理、公理,逐步导出与定义、定理、公理或已知条件等相矛盾或自相矛盾的结论,从而肯定原有结论是正确的. 学法一得凡是含“至少”“唯一”或含有否定词的命题,大多适宜用反证法.不等式的证明,方法灵活多样,它可以和很多内容相结合.高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本难点着重培养大家数学式的变形能力、逻辑思维能力以及分析问题和解决问题的能力. 二、放缩法1.放缩法的意义:所谓放缩法,即是把要证的不等式一边适当地放大(或缩小),使之得出明显的不等量关系后,再应用不等量大、小的传递性,从而使不等式得到证明的方法.也就是说:欲证A≥B ,可通过适当地放大或缩小,借助一个或多个中间量使得B≤B 1,B 1≤B 2,…,B 1≤A ,或A≥A 1,A 1≥A 2,…,A i ≥B ,再利用传递性,达到欲证的目的.这种方法是证明不等式中的常用方法,尤其在今后学习高等数学时用处更为广泛. 2.放缩法的理论依据主要有:①不等式的传递性;②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.3.放缩法经常采用的技巧有: ①舍去一些正项(或负项),②在和或积中换大(或换小)某些项,③扩大(或缩小)分式的分子(或分母)等.如:nn n n n n n n n 111)1(11)1(11112--=-<<+=+- 11121111+-=+-<<++=-+k k kk k k k k k .误区警示用放缩法证明不等式,关键是放、缩适当,放得过大或过小都不能达到证题目的. 典题·热题知识点一:反证法证明不等式 例1 设a 3+b 3=2,求证a+b≤2.思路分析:要证的不等式与所给的条件之间的联系不明显,而且待证式比已知式次数低,直接由条件推出结论的线索不够清晰,于是考虑用反证法. 证明:假设a+b>2,则有a>2-b ,从而 a 3>8-12b+6b 2-b 3,a 3+b 3>6b 2-12b+8=6(b-1)2+2.所以a 3+b 3>2,这与题设条件a 3+b 3=2矛盾,所以,原不等式a+b≤2成立. 误区警示不能根据已知等式找出几组数值,代入待证不等式中进行验证,验证成立也不能算是证明成功了.例2 设二次函数f(x)=x 2+px+q,求证:|f(1)|,|f(2)|,|f(3)|中至少有一个不小于21. 思路分析:要证明几个代数式中,至少有一个满足某个不等式时,需要考虑的情形较多,一一列举直接证明不容易,通常采用反证法进行. 证明:假设|f(1)|,|f(2)|,|f(3)|都小于21,则 |f(1)|+2|f(2)|+|f(3)|<2. ①另一方面,由绝对值不等式的性质,有 |f(1)|+2|f(2)|+|f(3)|≥|f(1)-2f(2)+f(3)|=|(1+p+q)-2(4+2p+q)+(9+3p+q)|=2. ②①②两式的结果矛盾,所以假设不成立,原来的结论正确. 方法归纳一般来说,利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及临时假定矛盾等各种情况. 例3 设0<a,b,c<1,求证:(1-a)b,(1-b)c,(1-c)a 不可能同时大于41. 思路分析:题目中出现了“不可能同时大于……”字样,而且三个式子的地位相同,结合0<(1-a)a≤[2)1(a a +-]2=41,可得到方向相矛盾的两个不等式,适于用反证法. 证明:设(1-a)b>41,(1-b)c>41,(1-c)a>41,则三式相乘:(1-a)b·(1-b)c·(1-c)a>641.①又∵0<a,b,c<1,∴0<(1-a)a≤[2)1(a a +-]2=41.同理:(1-b)b≤41,(1-c)c≤41,以上三式相乘:(1-a)a·(1-b)b·(1-c)c≤641,与①矛盾.∴原式成立.巧解提示凡涉及到证明不等式为否定性命题、唯一性命题或是含“至多”“至少”等字句时,可考虑使用反证法.知识点二:放缩法证明不等式例4 当n>2时,求证:log n (n-1)log n (n+1)<1.思路分析:不等式左边含有不确定字母n ,两个对数式底数相同,真数中没有常数项,而右边为常数1,应考虑应用基本不等式逐步放缩证明,采用放缩法证明较好. 证明:∵n>2,∴log n (n-1)>0,log n (n+1)>0.∴log n (n-1)log n (n+1)<[2)1(log )1(log ++-n n n n ]2=[2)1(log 2-n n ]2<[2log 2n n ]2=1.∴n>2时,log n (n-1)log n (n+1)<1. 方法归纳在用放缩法证明不等式A≤B 时,我们找一个(或多个)中间量C 作比较,即若能断定A≤C 与C≤B 同时成立,那么A≤B 显然正确.所谓的“放”即把A 放大到C ,再把C 放大到B;反之,所谓的“缩”即由B 缩到C ,再把C 缩到A.同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及. 例5 若n 是正整数,求证22221312111n ++++ <2. 思路分析:左边不能直接通分,而且项数不定,分析此式的形式特点,借助kk k k k 111)1(112--=-<进行变形,可以通过适当地放缩,使不等式简化,从而得出证明. 证明:∵kk k k k 111)1(112--=-<,k=2,3,4…,n. ∴n n n∙-++∙+∙+<++++)1(13212111113121112222 ..212)111()3121()2111(11<-=--++-+-+=nn n 巧解提示实际上,我们在证明22221312111n++++ <2的过程中,已经得到一个更强的结论n n1213121112222-<++++ ,这恰恰在一定程度上体现了放缩法的基本思想. 例6 设a 、b 、c 是三角形的边长,求证cb a cb ac b a c b a -++-++-+≥3. 思路分析:根据不等式的对称性,三个字母地位相同,不妨设出大小顺序,结合三角形三边之间的关系,进而应用放缩法选择适当的式子放缩变形,以达到证明目的. 证明:由不等式的对称性,不妨设a≥b≥c ,则b+c-a≤c+a -b≤a+b -c, 且2c-a-b≤0,2a-b-c≥0.∴c b a c b a c b a c b a -++-++-+-3=a c b a -+-1+b a c b -+-1+c b a c-+-1 =ba cb ac b a c a c b b a c c b a c b a b a c b a c c a b a c b c b a -+--+-+--+-+--≥-+--=-+--=-+--222222=0, ∴cb ac b a c b a c b a -++-++-+≥3. 方法归纳本题中为什么要将b+c-a 与a+b-c 都放缩为c+a-b 呢?这是因为2c-a-b≤0,2a-b-c≥0,而2b-a-c 无法判断符号,因此ba c ca b -+--2无法放缩.所以在运用放缩法时要注意放缩能否实现及放缩的跨度. 问题·探究 交流讨论探究问题 有人说反证法很难,根本想不通;有人说反证法不难,看课本中的例题用起来很简单,那如何体会反证法的难与易呢? 探究过程:学生甲:反证法太难了,都是逆向思维,根本想不到.学生乙:其实反证法不难,在生活中不也经常使用吗?先假设怎样怎样,然后就会出现什么样的事情,最后发现那不可能,出现了笑话,说明假设的不对.学生丙:反证法不难,只要见到含有否定形式的命题,如含有“至多”“至少”“不可能”等时就用反证法.学生甲:那要找不到矛盾呢?学生乙:只要按照正确的推理总会找到矛盾的,可以和已知矛盾,也可以和常识矛盾,也可以和假设本身矛盾等等,反正只要找到矛盾就可以. 学生甲:那反证法有什么好处呀?学生丙:反证法比直接证明多了一个条件,那就是假设,当然容易证明了.老师:反证法也不是万能的,一般证明还是先用直接证法,当要证的结论和条件之间的联系不明显,直接由条件推出结论的线索不够清晰时,还有就是从正面证明需要分成多种情形进行分类讨论,而且从反面进行证明,只要研究一种或很少的几种情形时用反证法较好.还有,平时应该拥有较为扎实的基本功,在推理中才能较快地找到矛盾,也就是要多积累素材. 探究结论:反证法作为一种证明方法,其实也不是很新,很早就接触了,说来并不算难,只要多积累一下这方面的知识技巧就可以较为熟练的应用了.思想方法探究问题反证法证题,可以说是一个难点,就是感觉难懂难用.因为以前我们的证明,所采用的方法均为直接证法,由已知到结论,顺理成章.而对于属于间接证法的反证法,许多同学正是难以走出直接证法的局限,从而不能深刻或正确理解反证法思想.怎样才能更好地理解反证法呢?探究过程:其实,反证法作为证明方法的一种,有时起着直接证法不可替代的作用.在生活中的应用也非常广泛,只是我们没有注意罢了.下面看两则故事,体会一下,对我们正确理解反证法很有帮助.故事一:南方某风水先生到北方看风水,恰逢天降大雪.乃作一歪诗:“天公下雪不下雨,雪到地上变成雨;早知雪要变成雨,何不当初就下雨.”他的歪诗又恰被一牧童听到,亦作一打油诗讽刺风水先生:“先生吃饭不吃屎,饭到肚里变成屎;早知饭要变成屎,何不当初就吃屎.”实际上,小牧童正是巧妙地运用了反证法,驳斥了风水先生否定事物普遍运动的规律,只强调结果,不要变化过程的形而上学的错误观点:假设风水先生说的是真理,只强调变化最后的结果,不要变化过程也可,那么,根据他的逻辑,即可得出先生当初就应吃屎的荒唐结论.风水先生当然不会承认这个事实了.那么,显然,他说的就是谬论了.这就是反证法的威力,一个原本非常复杂难证的哲学问题被牧童运用了“以其人之道,还治其人之身”的反证法迎刃而解了.如果说这则故事还尚不能让我们明白反证法的思路的话,不妨再看看故事二.故事二:王戎小时候,爱和小朋友在路上玩耍.一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动.等到小朋友们摘了李子一尝,原来是苦的!他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的.”这是很著名的“道旁苦李”的故事.实质上王戎的论述,也正是运用了反证法,我们不妨把这则故事改编成像几何题目中的“已知、求证、证明”,再和反证法的步骤进行对比,大家就明白了.探究结论:反证法的应用广泛,只要善于观察和总结,从生活中体会反证法的思想,就不会感觉反证法难懂难用了.。
放缩法与反证法 (上课用)

分析: 要证的结论与条件之间的联系不明显,直接 由条件推出结论的线索不够清晰.于是可以考虑用反 证法.假设a,b,c不全是正数,这个时候要逐个讨
• 证不明妨:先假设设a a,b0,c不全是正数,论 ( 我即a任 们,其意 只b改 要,中变 讨c不论a至,是其b正少中,数一c有的的个位情数一置形(不.例个会但如改要不a)变注是,命意其题到正它的条两条件数个件的数)特。,点
• ������(������+������)>n,
• (2)将分子或分母放大(或缩小),
•
如:������(������+������ ������)
<
������ ������������
<
������(������-������ ������);
• (3)真分数的性质:“若0<a<b,m>0,
• 解:
• ∵0 ≤ |a+b|≤|a|+|b|,
•
∴1+|������|+������+������|������|
=1
−
1+|���1���+������|≤1-1+|������1|+|������|
=
|������|+|������| |������|+|������|+1
• =1+|���|������|���+| |������| + 1+|���|������|���|+|������|≤1+|������||������| + 1+|������||������|.
• 利用反证法证明不等式的步骤:
• 第一步:分清欲证不等式所涉及的条件和结论; • 第二步:假设命题的结论不成立,即假设结论的反面成立; • 第三步:从条件和假定出发,应用正确的推理方法,推出矛盾结果; • 第四步:由矛盾结果判断做出的假设不正确,于是原命题的结论成立.
反证法与放缩法

奇、二奇一偶”4种,而自然数a、 b、c 中恰有一个为偶 数只包含“二奇一偶”的情况,故反面的情况有3种,只 有D项符合.
答案 D
题型一
反证法证明不等式
【例1】 已知:a+b+c>0,ab+bc+ca>0,abc>0. 求证:a>0,b>0,c>0. [思维启迪] 利用反证法求证.
解析
a b c S> + + + a+b+c+d a+b+c+d a+b+c+d
d =1. a+b+c+d
答案 B
3.否定“自然数a、b、c中恰有一个为偶数”时正确的反设
为 A.a、b、c都是奇数 B.a、b、c都是偶数 C.a、b、c中至少有两个偶数 ( ).
D.a、b、c中至少有两个偶数或都是奇数
n+n+1 [思维启迪] 利用 n < nn+1< 放缩, 进而求证. 2
2
证明
∵Sn> 12+ 22+…+ n2
nn+1 =1+2+…+n= . 2 1+2 2+3 n+n+1 且 Sn< + +…+ 2 2 2 2n+1 3 5 = + +…+ 2 2 2 2n+1 n+1 1 3 5 <2+2+2+…+ 2 = 2 nn+1 n+12 ∴ <Sn< . 2 2
列{an+1}是以a1+1=2为首项,2为公比的等比数列.
∴an+1=2n,即an=2n-1(n∈N+).
(2)证明
1 2n-1 1-2n 1 an ∵ = = < , 1 2 an+1 2n+1-1 2-2n
a1 a2 an n ∴a +a +…+ <2. a 2 3 n+1 2k-1 1 ak 1 1 1 ∵ = = - = - k ak+1 2k+1-1 2 22k+1-1 2 3· 2 +2k-2 1 1 1 ≥ - 2k,k=1,2,3,…,n. 2 3 a1 a2 a3 an n 1 1 1 n 1 ∴a +a +a +…+ ≥2-3+32n>2-3. an+1 2 3 4
反证法与放缩法

例3.若a, b, c, dR+ , 求证: a b c d 1 2 abd bca cd b d ac
【方法小结】放缩法 —— 证明不等式
时,通过把不等式中的某些部分的值适当 放大或缩小,简化不等式,从而达到证明 的目地. 例如: 要证b<c,只须寻找b1使b<b1且b1≤c(放大) 要证b>a,只须寻找b2使b>b2且b2≥a(缩小) 此法的依据就是不等式性质:传递性.
例5.求证:
1 1 1 * ( 2 n 1 1) 1 2 n (n N ) 2 3 n
【思路分析】
1 问题的关键是对通项 的适当放缩. n 注意到:
n 1 n n 1(n 1) 2 1 2 n 1 n n n n 1
探求知识 例1.已知x,y>0,且x+y>2,求证:
1 x 1 y , 中至少有一个小于2. y x
【方法小结】反证法 —— 先假设要证明 的结论不成立,以此为出发点,结合已知 条件,应用不等式性质、定理等,进行正 确的推理,得到与已知或定理或明显事实 矛盾的结论,以说明假设不正确,从而间 接说明原命题成立的方法。
课堂小结 证明不等式的特殊方法: (1)放缩法:对不等式中的有关式子 进行适当的放缩实现证明的方法。 (2)反证法:先假设结论不成立, 再 寻求矛盾,推翻假设,从而证明结论成 立的方法。
课后作业
P29 习题2.3
1,2,3,4.
பைடு நூலகம்
证明不等式的基本方法 (反证法与放缩法)
知识回顾 ★比较法、综合法、分析法证明不 等式的基本思路是什么?
(1) 比较法 :通过比较差与 0 的大小,或商 与1的大小来证明不等式成立.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.2反证法和放缩法
☆学习目标:1. 理解并掌握反证法、换元法与放缩法;
2. 会利用反证法、换元法与放缩法证明不等式☻知识情景:
1. 不等式证明的基本方法:10. 比差法与比商法(两正数时).
20. 综合法和分析法.
30. 反证法、换元法、放缩法
2. 综合法:从①已知条件、②不等式的性质、③基本不等式等出发,
通过逻辑推理, 推导出所要证明的结论. 这种证明方法叫做综合法. 又叫由 导 法.
用综合法证明不等式的逻辑关系:12n A B B B B ⇒⇒⇒
⇒⇒ 3. 分析法:从要证的结论出发, 逐步寻求使它成立的充分条件,
直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证的定理、性质等), 从而得出要证的命题成立,这种证明方法叫做分析法.
这是一种执 索 的思考和证明方法.
用分析法证明不等式的逻辑关系:
☻新知建构:
1.反证法:利用反证法证明不等式,一般有下面几个步骤:
第一步 分清欲证不等式所涉及到的条件和结论;
第二步 作出与所证不等式相反的假定;
第三步 从条件和假定出发,应用证确的推理方法,推出矛盾结果;
第四步 断定产生矛盾结果的原因,在于开始所作的假定不正确,于是原证不等式成立. 例1 已知a +b +c > 0,a b +bc +c a >0,a bc >0,求证:a ,b ,c >0 .
例2 设233=+b a ,求证:2≤+b a 。
2.换元法:一般由代数式的整体换元、三角换元,换元时要注意等价性.
常用的换元有三角换元有:
10.已知2
22a y x =+,可设 , ; 20.已知12
2≤+y x ,可设 , (10≤≤r ); 30.已知12222=+b y a x ,可设 , . 例3 设实数,x y 满足22(1)1x y +-=,当0x y c ++≥时,c 的取值范围是( )
.A 1,)+∞ .B (1]-∞ .C 1,)+∞ .D (1]-∞
例4 已知22
1x y +=,求证:y ax ≤-≤3. 放缩法:“放”和“缩”的方向与“放”和“缩”的量的大小
由题目分析、多次尝试得出,要注意放缩的适度.
常用的方法是:①添加或舍去一些项,如:a a >+12,n n n >+)1(,
②将分子或分母放大(或缩小)如:2111(1)(1)n n n n n <<+-
③应用“糖水不等式”:“若0a b <<,0m >,则a a m b b m +<+”
④利用基本不等式,如:2lg 3lg 5(
)lg 4⋅<=<=;
⑤利用函数的单调性 ⑥利用函数的有界性:如:sin x ≤1()x R ∈; ⑦绝对值不等式:a b -≤a b ±≤a b +; ⑧利用常用结论:如:
2
=()*,1k N k ∈>,
2
=<=()*,1k N k ∈> ⑨应用贝努利不等式:2(1)(1)11.12n n n n x nx x x nx -+=++++>+⨯ 例5 当 n > 2 时,求证:(1)log (1)log n n n n +-< 例6求证:.332113*********<⨯⨯⨯⨯++⨯⨯+⨯++n
例7 若a , b , c , d ∈R +,求证:21<+++++++++++<
c a
d d b d c c a c b b d b a a 课后作业
1、若R y x ∈,+,且2>+y x ,则21<+x
y 和21<+y x 至少有一个成立。
2、已知 1≤22
x y +≤2,求证:12
≤22x xy y -+≤3 3、求证:223111112212n n n -<++⋅⋅⋅+<-+(n ≥2)
4、求证:21
<⋅⋅⋅+<()*n N ∈ 教学反思:把握教材,注重通性通法的教学、做好学习方法的指导工作。