2015---2016八年级数学返校试卷
2015-2016学年八年级上学期调研考试数学试卷及答案

八 年 级 数 学 试 题(全卷满分120分,考试时间100分钟)一、精心选一选:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,有且只...有.一项是正确的,把所选答案填入下表.1.下列是我国四大银行的商标,其中不是轴对称图形的是2.2、-3.14、25、12、0.020020002…,其中无理数的个数是 A .2个 B .3个 C .4个 D .5个 3. 等腰三角形的周长是16,一边长为4,则这个等腰三角形腰长为 A .4 B . 6 C .4或6 D .8 4.如果a 、b 、c 是一个直角三角形的三边,则a :b :c 可以等于 A .2:2:4B .3:4:5C .3:5:7D .1:3:95.已知a +2与2a -5都是m 的平方根,则m 的值是 A .1 B . 9 C .-3 D .36.如图所示,△ABC 中,AC=AD=BD ,∠DAC =80°,则∠B 的度数是 A .40° B .35° C .25° D .20°7.利用直尺和圆规作一个角等于已知角,作图如图,请你根据所学的三角形全等的有关知识,说明画出∠A′O′B′=∠AOB 的依据是 A .SASB .ASAC .AASD .SSS8.如图,在△ABC 中,DE 垂直平分AC ,若BC =20cm ,AB =12cm ,则△ABD 的周长为 A .20 cm B . 22 cm C . 26 cm D . 32cm第6题图第7题图9.如图,Rt △ABC 中,∠B=90°,AB=9,BC=6,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段AN 的长等于A . 3B .4C . 5D . 610.勾股定理被誉为“几何明珠” ,在数学的发展历程中占有举足轻重的地位.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC =90°,AB =3,AC =4,点D 、E 、F 、G 、H 、I 都在长方形KLMJ 的边上,则长方形KLMJ 的面积为 A .90 B .100 C .110D .121二、细心填一填:本大题共8小题,每小题3分,共24分.把答案填在横线上. 11.25的算术平方根是 .12.请写出一组你喜欢的勾股数 .,则斜边长为 cm 15.已知等腰三角形的一个内角等于40°,则它的顶角是 °.16.如图,已知AC=AE ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是(只需填一个_____.17.在等边△ABC 中,AB =2 cm ,点D 是BC 边上的任意一点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,BN ⊥AC 于点N ,则DE +DF =__________ cm .18.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动 点,则EC +ED 的最小值是 .三、用心做一做:本大题共2小题,每小题8分,共16分.解答应写出文字说明、推理过程或演算步骤.19.求下列各式中x 的值(1)2(1)40x --= (2)32420x +=第16题图第17题图第18题图20.如图:A 村和B 村在公路l 同侧,且AB =3千米,两村距离公路都是2千米.现决定在公路l 上建立一个供水站P ,要求使P A+PB 最短.(1)用尺规作图,作出点P; (作图要求:不写作法,保留作图痕迹) (2)求出P A+PB 的最小值.四、耐心做一做:本大题共2小题,每小题7分,共14分.解答应写出文字说明、推理过程或演算步骤.21.如图,已知:在△ABC 中,AB =AC . 求证:∠B = ∠C .22.如图,在△ABC 中,BD 、CE 是高,G 、F 分别是BC 、DE 的中点, 连接GF ,求证:GF ⊥DE .五、耐心做一做:本大题共2小题,每小题8分,共16分.解答应写出文字说明、推理过程或演算步骤.23.将长方形纸片ABCD 按如下顺序进行折叠:对折、展平,得折痕EF (如图①);沿GC 折叠,使点B 落在EF 上的点B ′ 处(如图②);展平,得折痕GC (如图③);请你求出图②中∠BCB ′的度数;24.如图,在Rt △ABC 中,∠A=90°,AB=AC=4cm ,若O 是BClACB的中点,动点M在AB移动,动点N在AC上移动,且AN=BM .(1)证明:OM = ON;(2)四边形AMON面积是否发生变化,若发生变化说明理由;若不变,请你求出四边形AMON的面积.六、耐心做一做:本大题共2小题,每小题10分,共20分.解答应写出文字说明、推理过程或演算步骤.25.(1)如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上且CE=CA,试求∠DAE的度数;(2))如果把第(1)题中“∠BAC=90°”的条件改为“∠BAC>90°”,其余条件不变,那么∠DAE与∠BAC有怎样的数量关系?26.材料阅读:在小学,我们了解到正方形的每个角都是90°,每条边都相等;本学期,我们通过折纸得到定理:直角三角形的斜边上的中线等于斜边的一半;同时探讨得知,在直角三角形中,30°的角所对的直角边是斜边的一半.(1)如图1,在等边三角形△ABC内有一点P,且P A=2,PB=3,PC=1.求∠BPC的度数和等边△ABC的边长.聪聪同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2).连接PP′.根据聪聪同学的思路,可以证明△BPP′为等边三角形,又可以证明△ABP′≌△CBP,所以AP’=PC=1,根据勾股定理逆定理可证出△APP′为直角三角形,故此∠BPC= °;同时,可以说明∠BPA=90°,在Rt△APB中,利用勾股定理,可以求出等边△ABC的边AB= .(2)请你参考聪聪同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,祝贺你做完了全部试题!请你再仔细检查一遍,可不要留下不该有的遗憾哦!八年级数学试题参考答案及评分意见 201511说明:1.本意见对每题给出了一种或几种解法供参考,如果考生的解法与本意见不同,可根据试题的主要考查内容比照本意见制定相应的评分细则.2.对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定后续部分的给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的分段分数.4.只给整数分数.二、填空题(每题3分,共24分)11. 5 12. 如 3;4;5 13 2×103_ml 14. 1315. 40°或100°16. 如AB=AD 等 17. 错误!未找到引用源。
新北师大版2015-2016八年级数学下期中试卷及答案

新北师大版2015-2016八年级数学下期中试卷及答案2015—2016学年下新北师版八年级数学期中数学模拟试卷(一)(北师版)学校_________班级_________姓名_________一、选择题(每小题3分,共24分)1.下列四个图形中,既是轴对称图形又是中心对称图形的个数为()A.1个B.2个C.3个D.4个2.若a<b,则下列不等式不一定成立的是()A.a+c-2 C.a<b D.a(m2+2)<b(m2+2)3.如图,数轴上表示的是某个不等式组的解集,则该不等式组可能是()A.{x>1.x≥-2} B.{x≤1.x≥-2} C.{x≤1.x<-2}D.{x<1.x<-2}4.下列各式从左到右的变形属于因式分解的是()A.(a+b)(a-b)=a2-b2 B.(a+b)2=a2+2ab+b2 C.(a-b)2=a2-2ab+b2 D.x-1=x(1-1/x)5.如图,在4×4的正方形网格中,△XXX绕某点旋转一定的角度得到△M'N'P',则其旋转中心是()A.点A B.点B C.点C D.点D6.用反证法证明“一个三角形中至多有一个钝角”时,应假设()A.一个三角形中至少有两个钝角 B.一个三角形中至多有一个钝角 C.一个三角形中至少有一个钝角 D.一个三角形中没有钝角7.XXX家有不到40只鸡要放入家里的鸡笼中,若每个鸡笼里放4只,则有一只鸡无笼可放;若每个鸡笼里放5只,则有一笼无鸡可放,且有一笼中的鸡不足3只.XXX家有多少只鸡?多少个鸡笼?答案:37,98.如图,已知直线y=kx+b经过A(-2,-1),B(1,2)两点,则不等式组y1<x<kx+b<2的解集为()答案:-2<x<1二、填空题(每小题3分,共21分)9.分解因式:-2a+4a-2a=0.答案:-2a+4a-2a=0.10.若不等式组{1+x>a。
(有答案)2015—2016学年第二学期期中初二数学

2015—2016学年第二学期期中考试初二数学试题第I卷(选择题 共30分)一、选择题(下列各题的四个选项中,只有一顶符合题意,每小题3分, 共30分)1. 下列方程:(1)093=-+y x ,(2)012232=+-y x ,(3)743=-b a , (4)113=-yx ,(5)()523=-y x x ,(6)5+-x ,其中二元一次方程有( )个 A .1B .2C .3D .42. 小明在做一道数学选择题时,经过审题,他知道在A,B,C,D 四个备选答案中,只有一个是正确的,但他只能确定选项D 是错误的,于是他在其他三个选项中随机选择了B,那么,小明答对这道选择题的概率是( )A.41B.31C.21 D. 13. 下列语句中,命题的个数为( )①过直线AB 外一点P,作AB 的平行线.②过直线AB 外一点P,可以作一条直线与AB 平行吗? ③经过直线AB 外一点P,有且只有一条直线与这条直线平行. ④若|a|=-a,则a ≤0. A.1个 B.2个C.3个D.4个4.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A. ⎩⎨⎧=-=-121y x y xB. ⎩⎨⎧-=--=-121y x y xC.⎩⎨⎧=--=-121y x y xD. 121x y x y -=⎧⎨-=-⎩5.下列事件中:①刻舟求剑②竹篮子打水③水中捞月④瓮中捉鳖⑤滴水成冰⑥拔苗助长⑦守株待兔,其中不可能事件有( )个 A .1B .2C .3D .46. 如图,含30°角的直角三角尺DEF 放置在△ABC 上,30°角的 顶点D 在边AB 上,DE ⊥AB,若∠B 为锐角,BC ∥DF,则∠B 的大小 为( ). A.30°B.45°C.60°D.75°7.星期天小明给在建筑工地的爸爸送工具,见一人字架,经 测得∠1=110°,则∠3比∠2大( ) A.50°B.65°C.70°D.130°8.若方程组323,221x y m x y m +=+⎧⎨-=-⎩的解互为相反数,则m 的值等于( )A .-7B .10C .-10D .-129. 中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡, 则与2个球体相等质量的正方体的个数为 ( )A .5B .4C .3D .210. 4人进行游泳比赛,赛前4名选手甲、乙、丙、丁分别对自己进行预测,甲说“我肯定得第一名。
2015-2016学年八年级(上)入学数学试卷附答案

八年级(上)入学数学试卷一、选择题(18分)1.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.40°B.35°C.30°D.20°2.(﹣)2的平方根是()A.±2 B.±1.414 C.±D.﹣3.在平面直角坐标系中,已知点P(2,﹣3),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限4.若和都是某二元一次方程的解,则这个方程是()A.x+2y=﹣3 B.2x﹣y=0 C.x﹣y=3 D.y=3x﹣55.如图,数轴上所表示的不等式组的解集是()A.x≤2 B.﹣1≤x≤2 C.﹣1<x≤2 D.x>﹣16.要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七,八,九年级各100名学生二、填空(18分)7.如图,三角形A′B′C′是由三角形ABC沿射线AC方向平移2cm得到的,若AC=3cm,则A′C= cm.8.已知a、b为两个连续的整数,且,则a+b=.9.把点(3,﹣1)向平移个单位长度,再向平移个单位长度,可以得到对应点(﹣1,4).10.|x+y﹣1|+(2x+y+1)2=0,则x=y=.11.附加题:(B题)不等式组的解是0<x<2,那么a+b的值等于.12.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自已家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26,25,31,如果该班有45名学生,那么根据提供的数据估计该周全班同学各家总共丢弃塑料袋的数量约为个.三、计算(2×4=8分)13.解方程组.14.解不等式组:.四、解答(2×6分)15.一个两位数,个位上的数字比十位上的数字大3,交换位置后所得的新两位数比原两位数的3倍少1,求原两位数.16.一个宽为70m的长方形足球场,它的周长大于350m,面积小于7500m2,它的长的范围是多少?判断这个足球场是否可用于国际足球比赛(按规定:用于国际比赛的足球场,长应在100~110m之间,宽应在60~75m之间)参考答案与试题解析一、选择题(18分)1.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.40°B.35°C.30°D.20°考点:对顶角、邻补角;角平分线的定义.分析:根据角平分线的定义求出∠AOC,再根据对顶角相等解答即可.解答:解:∵OA平分∠EOC,∠EOC=70°,∴∠AOC=∠EOC=×70°=35°,∴∠BOD=∠AOC=35°.故选B.点评:本题主要考查了角平分线的定义,对顶角相等的性质,比较简单,准确识图是解题的关键.2.(﹣)2的平方根是()A.±2 B.±1.414 C.±D.﹣考点:平方根.分析:先求出(﹣)2,再根据平方根的定义解答.解答:解:∵(﹣)2=2,∴(﹣)2的平方根是±.故选C.点评:本题考查了平方根的定义,是基础题,熟记概念是解题的关键,要注意先求出(﹣)2的值.3.在平面直角坐标系中,已知点P(2,﹣3),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)可以得到答案.解答:解:∵横坐标为正,纵坐标为负,∴点P(2,﹣3)在第四象限,故选:D.点评:此题主要考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键.4.若和都是某二元一次方程的解,则这个方程是()A.x+2y=﹣3 B.2x﹣y=0 C.x﹣y=3 D.y=3x﹣5考点:二元一次方程组的解.分析:把两组解分别代入四个选项中的方程,进行验证即可.解答:解:A、当x=﹣1,y=﹣4时,x+2y=﹣1﹣8=﹣9≠﹣3,故不是方程x+2y=﹣3的解;B、当x=1,y=﹣2时,2x﹣y=2+2=4≠0,故不是方程2x﹣y=0的解;C、当和时,方程x﹣y=3都成立,故和是方程x﹣y=3的解;D、当x=﹣1,y=﹣4时,y=3x﹣5=﹣8≠﹣4,故不是方程y=3x﹣5的解;故选C.点评:本题主要考查方程解的概念,掌握方程的解使方程左右两边相等是解题的关键.5.如图,数轴上所表示的不等式组的解集是()A.x≤2 B.﹣1≤x≤2 C.﹣1<x≤2 D.x>﹣1考点:在数轴上表示不等式的解集.分析:数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.解答:解:不等式的解集是﹣1与2之间的部分,并且包含2,但不包含﹣1.因而解集为:﹣1<x≤2.点评:本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七,八,九年级各100名学生考点:抽样调查的可靠性.专题:应用题.分析:利用抽样调查的中样本的代表性即可作出判断.解答:解:要了解全校学生的课外作业负担情况,抽取的样本一定要具有代表性,故选D.点评:抽样调查抽取的样本要具有代表性,即全体被调查对象都有相等的机会被抽到.二、填空(18分)7.如图,三角形A′B′C′是由三角形ABC沿射线AC方向平移2cm得到的,若AC=3cm,则A′C= 1cm.考点:平移的性质.分析:先根据平移的性质得出AA′=2cm,再利用AC=3cm,即可求出A′C的长.解答:解:∵将△ABC沿射线AC方向平移2cm得到△A′B′C′,∴AA′=2cm,又∵AC=3cm,∴A′C=AC﹣AA′=1cm.故答案为:1.点评:本题主要考查对平移的性质的理解和掌握,能熟练地运用平移的性质进行推理是解此题的关键.8.已知a、b为两个连续的整数,且,则a+b=11.考点:估算无理数的大小.分析:根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.解答:解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,故答案为:11.点评:此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.9.把点(3,﹣1)向左平移4个单位长度,再向上平移5个单位长度,可以得到对应点(﹣1,4).考点:坐标与图形变化-平移.分析:分别找到横纵坐标的变化情况,分析即可.解答:解:横坐标的变化为:﹣1﹣3=﹣4,说明向左平移了4个单位长度;纵坐标的变化为:4﹣(﹣1)=5,说明向上平移了5个单位长度.故四空分别填:左、4、上、5.点评:本题用到的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.10.|x+y﹣1|+(2x+y+1)2=0,则x=﹣2y=3.考点:解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.分析:根据|x+y﹣1|+(2x+y+1)2=0,得出x+y﹣1=0,2x+y+1=0,组成方程组,再利用加减消元法将两式加减运算约掉一个未知数,得到一元一次方程,即可求出.解答:解:∵|x+y﹣1|+(2x+y+1)2=0,∴x+y﹣1=0,2x+y+1=0,整理成方程组得:∴①﹣②得:x﹣2x=2,∴x=﹣2,代入①式得:﹣2+y=1,∴y=3,∴方程组的解为:.故答案为:﹣2,3.点评:此题考查的是二元一次方程的解法以及非负数的性质,运用已知得出二元一次方程组进而加减法解二元一次方程是解决问题的关键.11.附加题:(B题)不等式组的解是0<x<2,那么a+b的值等于1.考点:解一元一次不等式组.专题:压轴题.分析:首先解出不等式组的解集,然后与0<x<2比较,可先求出a、b,再求出a+b的值.解答:解:由①得x>4﹣2a;由②得2x<b+5,即x<0.5b+2.5;由以上可得4﹣2a<x<0.5b+2.5,∵不等式组的解是0<x<2,∴4﹣2a=0,即a=2;0.5b+2.5=2,即b=﹣1.则a+b=2﹣1=1.点评:本题是已知不等式组的解集,求不等式中另外的未知数的问题.可以先将另外的未知数当作已知数处理,将求出的解集与已知解集比较,进而求得另外的未知数.求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.12.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自已家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26,25,31,如果该班有45名学生,那么根据提供的数据估计该周全班同学各家总共丢弃塑料袋的数量约为1260个.考点:算术平均数;用样本估计总体.专题:计算题.分析:先求出6个家庭一周内丢弃的塑料袋的平均数量,即可认为是该周全班同学各家丢弃塑料袋的平均数,乘以总数45即为所求.解答:解:(33+25+28+26+25+31)÷6×45=1260(个).故答案为1260.点评:统计的思想就是用样本的信息来估计总体的信息,本题体现了统计思想,考查了用样本估计总体.三、计算(2×4=8分)13.解方程组.考点:解二元一次方程组.专题:计算题.分析:方程组中两方程相加求出x+y=3,与第一个方程联立,利用加减消元法求出解即可.解答:解:,①+②得:62(x+y)=186,即x+y=3③,①﹣③×25得:12y=12,即y=1,把y=1代入③得:x=2,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.解不等式组:.考点:解一元一次不等式组.分析:先求出各不等式的解集,再求出其公共解集即可.解答:解:,解不等式(1),得x<5,(3分)解不等式(2),得x≥﹣2,(6分)因此,原不等式组的解集为﹣2≤x<分)点评:求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.四、解答(2×6分)15.一个两位数,个位上的数字比十位上的数字大3,交换位置后所得的新两位数比原两位数的3倍少1,求原两位数.考点:二元一次方程组的应用.专题:数字问题.分析:设这个两位数的十位数字为x,个位数字为y,根据“个位上的数字比十位上的数字大3,交换位置后所得的新两位数比原两位数的3倍少1,”列出方程组解答即可.解答:解:设这个原两位数的十位数字为x,个位数字为y,由题意得,解得.答:这个原两位数为14.点评:此题考查二元一次方程组的实际运用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.16.一个宽为70m的长方形足球场,它的周长大于350m,面积小于7500m2,它的长的范围是多少?判断这个足球场是否可用于国际足球比赛(按规定:用于国际比赛的足球场,长应在100~110m之间,宽应在60~75m之间)考点:一元一次不等式组的应用.分析:设长方形足球场的长为xm,由题意列出不等式组,解这个不等式组可得长x的取值范围,再与国际比赛的足球场进行比较,看是否适合.解答:解:设长方形足球场的长为xm,由题意得,解得105<x<107.答:它的长的范围是105米和107米之间,这个足球场可用于国际足球比赛.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意列出不等式关系式即可求解.。
2015-2016学年初二数学第二学期期末试卷带答案

八年级数学期末考试卷2016.6注意事项:1.本卷考试时间为100分钟,满分100分.2. 请把试题的答案写在答卷上,不要写在试题上。
2.卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.一、选择题(本大题共10小题,每小题2分,共20分.)1.下列根式中,与是同类二次根式的是(▲) A . B . C . D .2.下列图标中,既是中心对称图形又是轴对称图形的是(▲)A .B .C .D .3.在代数式、、、、、a+中,分式的个数有(▲)A .2个B .3个C .4个D .5个4.为了解一批电视机的使用寿命,从中抽取100台进行试验,这个问题的样本是(▲) A .这批电视机 B .这批电视机的使用寿命 C .抽取的100台电视机的使用寿命 D .100台5.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,AC=12,F 是DE 上一点,连接AF ,CF ,DF=1.若∠AFC=90°,则BC 的长度为(▲) A .12 B .13 C .14 D .156.函数(a 为常数)的图象上有三点(﹣4,y 1),(﹣1,y 2),(2,y 3),则函数值y 1,y 2,y 3的大小关系是(▲)A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 3<y 1 7.下列一元二次方程没有实数根的是(▲)A .x 2+2x+1=0B .x 2+x+2=0C .x 2﹣1=0D .x 2﹣2x ﹣1=0第5题图第10题图8.若分式方程+1=有增根,则a 的值是(▲)A .4B .0或4C .0D .0或﹣49.在△ABC 中,∠C =90°,AC 、BC 的长分别是方程x 2﹣7x +12=0的两根,△ABC 内一点P 到三边的距离都相等,则PC 长为 (▲)A .1B .2C .223 D .22 10.如图,在坐标系中放置一菱形OABC ,已知∠ABC=60°,点B 在y 轴上,OA=1.将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2015次,点B 的落点依次为B 1,B 2,B 3,…,则B 2014的坐标为(▲)A .(1343,0)B .(1342,0)C .(1343.5,)D .(1342.5,)二、填空题(本大题共8小题,每空2分,共20分.)11.若二次根式5-x 在实数范围内有意义,则x 的取值范围是 ▲ ;若分式392+-x x 的值为0,则x 的取值是__▲_.12.关于x 的一元二次方程(a -1)x 2+x +||a -1=0的一个根是0,则实数a 的值是▲ . 13.某种油菜籽在相同条件下的发芽试验结果如下:由此可以估计油菜籽发芽的概率约为_▲_(精确到0.01),其依据是__▲_. 14.若实数a 、b 、c 在数轴的位置,如图所示,则化简= ▲ .15.已知点P (a ,b )是反比例函数y=图象上异于点(﹣1,﹣1)的一个动点,则ba +++1212= ▲ . 16.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为3,1,反比例函数xy 3=的图像经过A ,B 两点,则菱形ABCD 的面积为 ▲ .第17题图17.如图,直线y 1=﹣x+b 与双曲线y 2=交于A 、B 两点,点A 的横坐标为1,则不等式 ﹣x+b <的解集是 ▲ .18.在平面直角坐标系中,O 为坐标原点,B 在x 轴上,四边形OACB 为平行四边形,且 ∠AOB =60°,反比例函数ky x=(k >0)在第一象限内过点A ,且与BC 交于点F 。
2015-2016学年度第二学期八年级数学期末测试题(含答案)

2015--2016学年度第二学期八年级数学期末测试题一.选择题(共12小题,每题3分,共计36分。
)1.(2015•乐山)下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b2.(2015•甘孜州)下列图形中,是中心对称图形的是()A.B.C.D.3.(2015•永州)若不等式组恰有两个整数解,则m的取值范围是()A.﹣1≤m<0 B.﹣1<m≤0C.﹣1≤m≤0D.﹣1<m<0 4.(2015•枣庄)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.﹣15.(2015•济南)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<16.(2015•贵港)下列因式分解错误的是()A.2a﹣2b=2(a﹣b)B.x2﹣9=(x+3)(x﹣3)C.a2+4a﹣4=(a+2)2 D.﹣x2﹣x+2=﹣(x﹣1)(x+2)7.(2015•义乌市)化简的结果是()A.x+1 B.C.x﹣1 D.8.(2015•枣庄)关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣19.(2015•营口)若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=3 10.(2015•铁岭)如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DF B.EF=AB C.S△ABD=S△ACD D.AD平分∠BAC11.(2015•绥化)如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A.1个B.2个C.3个D.4个12.(2015•乌鲁木齐)九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A.=﹣B.=﹣20 C.=+D.=+20二.填空题(共6小题,每题4分,共计24分。
2015-2016学年八年级下学期期末考试数学试题带答案(精品)

CBA2015—2016学年第二学期初二期末试卷数 学学校 姓名 准考证号考 生 须 知1.本试卷共6页,共三道大题,26道小题.满分100分,考试时间100分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和考号.3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.在平面直角坐标系xOy 中,点P (-3,5)关于y 轴对称的点的坐标是( ) A .(-3,-5)B .(3,-5)C .(3,5)D .(5,-3)2.下列图形中,既是中心对称图形又是轴对称图形的是( )3.一个多边形的内角和为540°,则这个多边形的边数是( ) A .4B .5C .6D .74.菱形ABCD 的边长为4,有一个内角为120°,则较长的对角线的长为( ) A .43B .4C .23D .25.如图,利用平面直角坐标系画出的正方形网格中, 若A (0,2),B (1,1),则点C 的坐标为( ) A .(1,-2) C .(2,1)B .(1,-1) D .(2,-1)6.如图,D ,E 为△ABC 的边AB ,AC 上的点,DE ∥BC , 若:1:3AD DB =,AE =2,则AC 的长是( ) A .10 B.8 C .6 D .47.关于x 的一元二次方程2210mx x -+=有两个实数根,则m 的取值范围是( )A .1m ≤ C .1m <且0m ≠B .1m <D .1m ≤且0m ≠8.如图,将边长为3cm 的等边△ABC 沿着边BC 向右平移2cm ,得到△DEF ,则四边形ABFD 的周长为( ) A .15cmB .14cmC .13cmD .12cmA .B .C .D .EDA B CDAB CP第13题图第14题图第8题图第9题图9.园林队在某公园进行绿化,中间休息了一段时间.绿化面积S(单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米10.如右图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则下列图象能大致反映y与x的函数关系的是()二、填空题(本题共18分,每小题3分)11.如图,点D,E分别为△ABC的边AB,BC的中点,若DE=3cm,则AC=cm.12.已知一次函数2()y m x m=++,若y随x的增大而增大,则m的取值范围是.13.如图,在△ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件,使△ACD ∽△ABC(只填一个即可).14.如图,在□ABCD中,BC=5,AB=3,BE平分∠ABC交AD于点E,交对角线AC于点F,则AEFCBFSS△△= .DAB CFE DB CAEDAB CSt/平方米/小时16060421ODAFE CB第15题图15.如图,矩形ABCD 中,AB =8,AD =10,点E 为DC 边上的一点,将△ADE 沿直线AE 折叠,点D 刚好落在 BC 边上的点F 处,则CE 的长是 .16.如图,在平面直角坐标系xOy 中,一次函数y =x +1与x 、y 轴分别交于点A 、B ,在直线 AB 上截取BB 1=AB ,过点B 1分别 作x 、y 轴的垂线,垂足分别为点A 1、C 1, 得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别 作x 、y 轴的垂线,垂足分别为点A 2 、C 2, 得到矩形OA 2B 2C 2;在直线AB 上截取B 2B 3= B 1B 2,过点B 3分别 作x 、y 轴的垂线,垂足分别为点A 3、C 3, 得到矩形OA 3B 3C 3;……;则点B 1的坐标是 ;第3个矩形OA 3B 3C 3的面积是 ; 第n 个矩形OA n B n C n 的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分)解答应写出文字说明,演算步骤或证明过程. 17.用适当的方法解方程:2610x x --=.18.如图,在□ABCD 中,E ,F 是对角线BD上的两点且BE =DF ,联结AE ,CF . 求证:AE =CF .19.一次函数1y kx b =+的图象与正比例函数2y mx =交于点A (-1,2),与y 轴交于点B (0,3). (1)求这两个函数的表达式;(2)求这两个函数图象与x 轴所围成的三角形的面积.yxy =x+1C 3C 2A 3A 2C 1B 3B 2B 1A B A 1OFE CADBEFCD A B20.如图,在矩形ABCD 中,E 为AD 边上的一点,过C 点作CF ⊥CE 交AB 的延长线于点F .(1)求证:△CDE ∽△CBF ;(2)若B 为AF 的中点,CB =3,DE =1,求CD 的长.21.已知关于x 的一元二次方程2(32)60mx m x -++=(0)m ≠. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.22.如图,Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB上的中线,分别过点A ,C 作AE ∥DC ,CE ∥AB , 两线交于点E .(1)求证:四边形AECD 是菱形;(2)若602B BC ∠=︒=,,求四边形AECD 的面积.23.列方程解应用题:某地区2013年的快递业务量为2亿件,受益于经济的快速增长及电子商务发展等多重因素,快递业务迅猛发展,2015年的快递业务量达到3.92亿件.求该地区这两年快递业务量的年平均增长率.24.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照 “提高电价”收费.设每个家庭月用电量为x 度时,应交电费为y 元.具体收费情况如折线图所示,请根据图象回答下列问题: (1)“基础电价”是_________元/度;(2)求出当x >240时,y 与x 的函数表达式; (3)小石家六月份缴纳电费132元,求小石家这个月用电量为多少度?y x (元)(度)400120240216B AOEDAFB CEDBAC图1 图225.已知正方形ABCD 中,点M 是边CB (或CB 的延长线)上任意一点,AN 平分∠MAD ,交射线DC 于点N .(1)如图1,若点M 在线段CB 上 ①依题意补全图1;②用等式表示线段AM ,BM ,DN 之间的数量关系,并证明;(2)如图2,若点M 在线段CB 的延长线上,请直接写出线段AM ,BM ,DN 之间的数量关系.ADBCM26.在平面直角坐标系xOy 中,过象限内一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等, 则这个点叫做“和谐点”.如右图,过点H (-3,6)分 别作x 轴,y 轴的垂线,与坐标轴围成的矩形OAHB 的周长与面积相等,则点H (3,6)是“和谐点”.(1)H 1(1,2), H 2(4,-4), H 3(-2,5)这三个点中的“和谐点”为 ; (2)点C (-1,4)与点P (m ,n )都在直线y x b =-+上,且点P 是“和谐点”.若m >0,求点P 的坐标.——————————————草 稿 纸——————————————ADB C MADBCM y x1A BHO2015—2016学年第二学期期末试卷 初二数学 试卷答案及评分参考阅卷须知:为便于阅卷,解答题中的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.若考生的解法与给出的解法不同,正确者可参照评分参考给分.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、 选择题(本题共30分,每小题3分) 题号 123456 7 8 9 10 答案C A B AD BDCBB二、填空题(本题共18分,每小题3分)11.6 12.2m >- 13.ACD B ∠=∠(或ADC ACB ∠=∠或AD ACAC AB=) 14.925 15.3 16.(1,2);12(1)n n +;或2n n +(每空1分) 三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分) 17.18.证明一:联结AF ,CE ,联结AC 交BD 于点O.∵四边形ABCD 是平行四边形 ∴OA =OC ,OB =OD ⋯⋯⋯⋯⋯2分 又∵BE =DF∴OE =OF ⋯⋯⋯⋯⋯3分 ∴四边形AECF 是平行四边形 ⋯⋯4分 ∴AE =CF ⋯⋯⋯⋯⋯5分证明二:∵四边形ABCD 是平行四边形∴AB =CD ,AB ∥CD ⋯⋯⋯⋯⋯1分 ∴∠1=∠2 ⋯⋯⋯⋯⋯2分OFE CADB解法一: 26919x x -+=+ ⋯⋯⋯⋯⋯1分2310x -=() ⋯⋯⋯⋯⋯3分310x -=± ⋯⋯⋯⋯⋯4分12310,310x x ∴==+-⋯⋯5分解法二:2140⨯⨯=---=Q △(6)41() ⋯⋯1分6402x ±∴=⋯⋯⋯⋯⋯3分 62102x ±∴= ⋯⋯⋯⋯⋯4分12310,310x x ∴==+- ⋯⋯5分在△ABE 和△CDF 中12 AB CD BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS ) ⋯⋯⋯⋯⋯4分∴AE CF = ⋯⋯⋯⋯⋯5分 19.解:(1)∵2y mx =过点A (-1,2)∴-m =2 ∴m =-2 ⋯⋯⋯⋯⋯1分 ∵点A (-1,2)和点B (0,3)在直线1y kx b =+上2133k b k b b -+==⎧⎧∴∴⎨⎨==⎩⎩⋯⋯⋯⋯⋯3分 ∴这两个函数的表达式为:13y x =+和2-2y x=⋯⋯⋯⋯⋯3分(2)过点A 作AD ⊥x 轴于点D ,则AD =2∵13y x =+交x 轴于点C (-3,0) ⋯⋯4分∴1=2AOC S OC AD⨯⨯△ 1=322⨯⨯ =3 ⋯⋯5分即这两个函数图象与x 轴所围成的三角形的面积是3.20.(1)证明:∵四边形ABCD 是矩形∴∠D=∠1=∠2+∠3=90° ⋯⋯⋯⋯⋯1分 ∵CF ⊥CE ∴∠4+∠3=90°∴∠2=∠4∴△CDE ∽△CBF ⋯⋯⋯⋯⋯2分(2) 解:∵四边形ABCD 是矩形∴CD =AB ∵B 为AF 的中点∴BF =AB ∴设CD=BF= x ⋯⋯⋯3分 ∵△CDE ∽△CBF21.(1)证明:∵0m ≠ ∴2(32)60mx m x -++=是关于x 的一元二次方程∵2[(32)]46m m =-+-⨯△ ⋯⋯⋯⋯⋯1分2912424m m m =++- 29-124m m =+23-20m =()≥ ⋯⋯⋯⋯⋯2分21FECADByx–11–1–2–3–41234D CBA O4321EDAFBC∴CD DE CB BF = ⋯⋯4分 ∴13x x =∵x >0 ∴3x =⋯⋯⋯5分即:3CD =∴此方程总有两个实数根. ⋯⋯⋯⋯⋯3分(2) 解:∵(3)(2)0x mx --=∴1223,x x m ==⋯⋯⋯⋯⋯4分∵方程的两个实数根都是整数,且m 是正整数∴m =1或 m =2 ⋯⋯⋯⋯⋯5分22.(1)证明:∵AE ∥DC ,CE ∥AB∴四边形AECD 是平行四边形 ⋯⋯⋯⋯⋯1分 ∵Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB 上的中线 ∴CD =AD∴四边形AECD 是菱形 ⋯⋯⋯⋯⋯2分(2) 解:联结DE .∵90ACB ∠=︒,60B ∠=︒∴30BAC ∠=︒ ∴423A ABC ==, ⋯⋯⋯⋯⋯3分∵四边形AECD 是菱形 ∴EC =AD =DB 又∵EC ∥DB ∴四边形ECBD 是平行四边形∴ED = CB =2 ⋯⋯⋯⋯⋯4分∴2322322AECD AC ED S ⨯⨯===菱形 ⋯⋯⋯⋯⋯5分23. 解:设该地区这两年快递业务量的年平均增长率为x . 根据题意,得 ⋯⋯1分 22(1) 3.92x += ⋯⋯⋯⋯⋯3分解得120.4, 2.4x x ==-(不合题意,舍去) ⋯⋯⋯⋯⋯4分 ∴0.440x ==%答:该地区这两年快递业务量的年平均增长率为40%. ⋯⋯⋯⋯⋯5分24.(1)0.5 ⋯⋯⋯⋯⋯ 1分 (2)解:当x >240时,设y =kx+b ,由图象可得:2401200.640021624k b k k b b +==⎧⎧∴⎨⎨+==-⎩⎩ ⋯⋯⋯⋯⋯2分 ∴0.624(240)y x x =-> ⋯⋯⋯⋯⋯3分(3)解:∵132120y =>∴令0.624=132x -, ⋯⋯⋯⋯⋯4分 得:=260x ⋯⋯⋯⋯⋯5分∴小石家这个月用电量为260度.EDBAC25.(1)①补全图形,如右图所示. ⋯⋯⋯⋯⋯1分 ②数量关系:AM BM DN =+ ⋯⋯⋯⋯⋯2分 证明:在CD 的延长线上截取DE =BM ,联结AE .∵四边形ABCD 是正方形∴190B ∠=∠=︒,AD AB =,AB CD ∥ ∴6BAN ∠=∠ 在△ADE 和△ABM 中1 AD AB B DE BM =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ABM (SAS ) ∴AE AM =,32∠=∠ ⋯⋯⋯⋯⋯⋯3分又∵54∠=∠ ∴EAN BAN ∠=∠ 又∵6BAN ∠=∠ ∴6EAN ∠=∠∴AE NE = ⋯⋯⋯⋯⋯4分 又∵AE AM =,NE DE DN BM DN +=+=∴AM BM DN =+ ⋯⋯⋯⋯⋯5分 (证法二:在CB 的延长线上截取BF =DN ,联结AF ) (2)数量关系:AM DN BM =- ⋯⋯⋯⋯⋯6分26.(1)H 2 ⋯⋯⋯⋯⋯1分 (2)解:∵点C (-1,4)在直线y x b =-+上∴14b += ∴3b =∴3y x =-+ ⋯⋯⋯⋯⋯2分 ∴3y x =-+与x 轴,y 轴的交点为N (3, 0),M (0,3) ∵点P (m ,n )在直线3y x =-+上 ∴点P (m ,-m +3)过点P 分别作x 轴,y 轴的垂线,垂足为D ,E ∵m >0∴点P 可能在第一象限或第四象限(解法一) ① 若点P 在第一象限,如图1,则,3OD m PD n m +=== -∴3)6PEOD C m m ++==2(-矩形654321EN AD B CMNADB CMyy = -x+33)PEOD S m m +=(-矩形∵点P 是“和谐点”∴3)6m m +(-= ⋯⋯⋯3分 260m m +-3=2(-3)460=-⨯△<∴此方程无实根∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分② 若点P 在第四象限,如图2,则,3)3OD m PD n m m -=+=-== --( ∴3)46PEOD C m m m +=-=2(-矩形3)PEOD S m m =(-矩形 ∵点P 是“和谐点”∴3)46m m m -(-= ⋯⋯5分 260m m +-7=1261m m ==,∵点P (m ,-m +3)在第四象限 ∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分综上所述,满足条件的点P 的坐标为P (6,-3).(解法二)① 若点P 在第一象限,如图1,则,3OD m PD n m +=== - ∴3)6PEOD C m m ++==2(-矩形∵133 4.52MON S ⨯⨯==△ ⋯⋯⋯3分而MONPEOD S S <△矩形 ∴PEOD PEOD C S 矩形矩形≠∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分 ② 若点P 在第四象限,如图2,则,OD m PD n == -∴)PEOD C m n =2(-矩形PEOD S mn =-矩形∵点P 是“和谐点”∴2)m n mn (-=- ⋯⋯⋯⋯⋯5分 ∴22mn m =-∵点P (m ,n )在直线3y x =-+上 ∴3n m =-+yxy = -x+3EDP (m ,-m +3)O y x 33y = -x+3E D MN OP (m ,-m +3)图1∴232m m m =-+-260m m +-7= 1261m m ==, 经检验,1261m m ==,是方程232m m m=-+-的解 ∵点P (m ,-m +3)在第四象限∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分 综上所述,满足条件的点P 的坐标为P (6,-3).yx y = -x+3E D P (m ,-m +3)O。
2015—2016学年度第一学期初二期末质量检测数学试卷附答案

2015—2016学年度第一学期初二期末质量检测数学试卷2016.1考生须知1.本试卷共6页,共三道大题,30道小题,满分120分.考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,请将本试卷、答题卡一并交回。
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.9的算术平方根是 A .3B .-3C .±3D .±312. 若2x -表示二次根式,则x 的取值范围是 A .x ≤2 B. x ≥ 2 C. x <2 D.x >2 3.若分式21+-x x 的值为0,则x 的值是 A .-2 B .-1 C . 0 D .14.剪纸是我国最古老的民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是轴对称图形的为5.在下列二次根式中是最简二次根式的是 A.12B.4C. 3D. 86.下列各式计算正确的是A .235+=B .43331-=C .233363⨯=D .2733÷=7.在一个不透明的箱子里,装有3个黄球、5个白球、2个黑球,它们除了颜色之外没有其他区别. 从箱子里随意摸出1个球,则摸出白球的可能性大小为A.0.2B.0.5C. 0.6D. 0.88.如图,一块三角形玻璃损坏后,只剩下如图所示的残片,对图中的哪些A B C D尺规作图:作一个角等于已知角. 已知:∠AO B.求作:一个角,使它等于∠AO B.数据测量后就可到建材部门割取符合规格的三角形玻璃 A .∠A ,∠B ,∠C B .∠A ,线段AB ,∠BC .∠A ,∠C ,线段ABD .∠B ,∠C ,线段AD9.右图是由线段AB ,CD ,DF ,BF ,CA 组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F 的度数为 A .62°B .152°C .208°D .236°10.如图,直线L 上有三个正方形a b c ,,,若a c ,的面积分别为1和9,则b 的面积为A .8B .9 C.10 D.11二、填空题(本题共21分,每小题3分) 11.如果分式23x +有意义,那么x 的取值范围是____________. 12.若实数x y ,满足2-2(3)0x y +-=,则代数式+x y 的值是 .13.如果三角形的两条边长分别为23cm 和10cm ,第三边与其中一边的长相等,那么第三边的长为___________. 14.若a <1,化简2(1)1a --等于____________.15.已知112x y -=,则分式3232x xy yx xy y+---的值等于____________. 16.如图,在△ABC 中,AB =4,AC =3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是 .17.阅读下面材料:在数学课上,老师提出如下问题:G FEDCB Acb aLDCBA ODCBA(1)作射线O ′A ′;(2)以O 为圆心,任意长为半径作弧,交OA 于C ,交OB 于D ; (3)以O ′为圆心,OC 为半径作弧C ′E ′,交O ′A ′于C ′; (4)以C ′为圆心,CD 为半径作弧,交弧C ′E ′于D ′; (5)过点D ′作射线O ′B ′.所以∠A ′O ′B ′就是所求作的角.小强的作法如下:老师说:“小强的作法正确.”请回答:小强用直尺和圆规作图'''A O B AOB ∠=∠,根据三角形全等的判定方法中的_______,得出△'''D O C ≌△DOC ,才能证明'''A O B AOB ∠=∠.三、解答题(本题共69分,第18-27题,每小题5分,第28题6分,第29题7分,第30题6分)18.计算:03982-3-2-+-().19.计算:18312-2⨯÷.20.计算:(21)(63)+⨯-.21.计算: 11(1)1a a a a+-+⋅+.22.如图,在Rt △ABC 中,∠BAC =90°,点D 在BC 边上,且△ABD 是等边三角形.若AB =2,求BC 的长.E'O'D'C'B'A'23.解方程:12211x x x +=-+.24.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F ∠=∠.求证:BC DE =.25. 先化简:22211a a a a a a --⎛⎫-÷ ⎪+⎝⎭,然后从-1,0,1,2中选一个你认为合适的a 值,代入求值.26.小红家最近新盖了房子,室内装修时,木工师傅让小红爸爸去建材市场买一块长3m ,宽2.2m 的薄木板用来做家居面,到了市场爸爸看到满足这个尺寸的木板有点大,买还是不买爸爸犹豫了,因为他知道他家门框高只有2m,宽只有1m ,他不知道这块木板买回家后能不能完整的通过自家门框.请你替小红爸爸解决一下难题,帮他算一算要买的木板能否通过自家门框进入室内.(备用图可供做题参考,薄木板厚度可以忽略不计)27.列方程解应用题李明和王军相约周末去怀柔图书馆看书,请根据他们的微信聊天内容求李明乘公交、王军骑自行车每小时各行多少公里?FED CBA 备用图HGF EDCBA门框薄木板28.已知:如图,ABC△中,45ABC∠=°,CD AB⊥于D,BE平分ABC∠,且BE AC⊥于E,与CD相交于点F H,是BC边的中点,连结DH与BE相交于点G.(1)判断AC与图中的那条线段相等,并证明你的结论;(2)若CE 的长为3,求BG的长.29.已知:在△ABC中,D为BC边上一点,B,C两点到直线AD的距离相等.(1)如图1,若△ABC是等腰三角形,AB=AC,则点D的位置在;(2)如图2,若△ABC是任意一个锐角三角形,猜想点D的位置是否发生变化,请补全图形并加以证明;(3)如图3,当△ABC是直角三角形,∠A=90°,并且点D满足(2)的位置条件,用等式表示线段AB,AC,AD之间的数量关系并加以证明.CBA图1AB C图2AB C图3HG F EDCBA图3lC ABP A 'D30.请阅读下列材料:问题:如图1,点,A B 在直线l 的同侧,在直线l 上找一点P ,使得AP BP +的值最小.小明的思路是:如图2所示,先做点A 关于直线l 的对称点A ',使点',A B 分别位于直线l 的两侧,再连接A B ',根据“两点之间线段最短”可知A B '与直线l 的交点P 即为所求.A 'P BAll图2图1AB请你参考小明同学的思路,探究并解决下列问题: (1)如图3,在图2的基础上,设AA '与直线l 的交点为C ,过点B 作BD ⊥l ,垂足为D . 若1CP =,1AC =,2PD =,直接写出AP BP +的值; (2)将(1)中的条件“1AC =”去掉,换成“4BD AC =-”,其它条件不变,直接写出此时AP BP +的值;(3)请结合图形,求()()223194m m -++-+的最小值.数学试卷答案及评分参考2016.1一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 题 号 1 2 3 4 5 6 7 8 9 10 答 案 ABDBCDBBCC二、填空题(本题共21分,每小题3分) 题 号11121314151617答 案3x ≠-2+323cm -a 143SSS三、解答题(本题共69分,第18-27题,每小题5分,第28题6分,第29题7分,第30题6分) 18.解:原式=3-22-1+………………4分 =2………………………………5分19.解:原式=22412-2÷………………3分 =12-22………………………………4分 =122………………………………5分 20.解:原式=12663-+-………………3分=123-……………………………4分 =233-=3………………………………5分21.解:原式=211a a a-+…………………………3分=2a a…………………………4分a =…………………………5分22.解:∵△ABD 是等边三角形,∴∠B =∠BAD =∠AD B =60°, ∵AB =2,∴BD=AD=2.………………………2分∵∠BAC =90°,∴∠DA C =90°﹣60°=30°.………………………3分∵∠AD B =60°,∴∠C =30°.………………………4分 ∴AD =DC=2,∴B C=BD+DC=2+2=4. ∴BC 的长为4.………………………5分23.解:(1)2(1)2(1)(1)x x x x x ++-=+-. ················································· 2分 2212222x x x x ++-=-. ·························································· 3分 3x =. ································································ 4分 经检验3x =是原方程的解. 所以原方程的解是3x =. ····························································· 5分24.证明:∵AB ∥DE ∴∠B = ∠EDF ;在△ABC 和△F DE 中A F AB DFB EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩…………………………3分 ∴△ABC ≌△FDE (ASA),…………………4分∴BC=DE. …………………………………5分25.解:原式=a 2-2a +1a ÷ 1-a 2a 2+a………………………………1分=(a -1)2a ·a (a +1)(1-a ) (a +1) …………………………3分=1-a …………………………………………………4分 当a=2时,原式=1-a=1-2=-1………………………5分26.解:连结HF ,…………..…………………1分 依题意∵FG=1,GH=2,∴在Rt △FGH 中,根据勾股定理:FH=2222=1+2=5FG HG +…………..…………………2分又∵BC=2.2= 4.84,…………..…………………3分 ∴FH >BC ,…………..…………………4分∴小红爸爸要买的木板能通过自家门框进入室内 …………..…………………5分 27.列方程解应用题解:设王军骑自行车的速度为每小时x 千米,则李明乘车的速度为每小时3x 千米. ………..…………………1分 根据题意,得3012032x x+=………..…………………3分解方程,得20x =………..…………………4分经检验,20x =是所列方程的解,并且符合实际问题的意义. 当20x =时,332060.x =⨯=答:王军骑自行车的速度为每小时20千米,李明乘车的速度为每小时60千米. ………..…5分28.(1)证明:CD AB ⊥∵,∴90BDC ∠=°, ∵45ABC ∠=°,BCD ∴△是等腰直角三角形.BD CD =∴.………..…………………2分 ∵BE AC ⊥于E ,∴90BEC ∠=°,FED CBA 薄木板门框ABCDEF GH备用图ABCDEFGH∵BFD EFC ∠=∠,DBF DCA ∠=∠∴. Rt Rt DFB DAC ∴△≌△.BF AC =∴.………..…………………3分(2)解:BE ∵平分ABC ∠,22.5ABE CBE ∠=∠=︒∴. ∵BE AC ⊥于E ,∴90BEA BEC ∠=∠=°, 又∵BE=BE,Rt Rt BEA BEC ∴△≌△. CE AE =∴.………..…………………4分连结CG .BCD ∵△是等腰直角三角形,BD CD =∴. 又H 是BC 边的中点,C ⊥∴DH B DH ∴垂直平分BC ,BG CG =∴. 22.5EBC ∠=︒ ,22.5GCB ∴∠=︒∴45EGC ∠=°,∴Rt CEG △是等腰直角三角形, ∵CE 的长为3,∴EG=3,利用勾股定理得:222CE GE GC +=,∴222(3)(3)GC +=, ∴6GC =,∴BG 的长为6.………..…………………6分 29.解:(1)BC 边的中点. ………..…………………1分 (2)点D 的位置没有发生变化. ………..…………………2分 证明:如图,∵BE AD ⊥于点E ,CF AD ⊥于点F , ∴∠3=∠4=90°.又∵∠1=∠2,BE=CF,BED CFD ∴△≌△.∴BD=DC.即点D 是BC 边的中点 ………..…………………4分.(3)AB ,AC ,AD 之间的数量关系为2224AC AB AD +=..………..…………………5分 证明:延长AD 到点H 使DH=AD ,连接HC. ∵点D 是BC 边的中点,∴BD=DC. 又∵DH=AD ,∠4=∠5,ABD HCD ∴△≌△.∴∠1=∠3,AB=CH.∵∠A=90°,∴∠1+∠2=90°.∴∠2+∠3=90°.∴∠ACH=90°.∴222AC CH AH +=. 又∵DH=AD ,∴222(2)AC AB AD +=.∴2224AC AB AD +=.………..…………………7分4321FED CBA54321HA BCD30.(1)32;(2)5;(3)解:设1AC =,CP=m-3, ∵A A ′⊥L 于点C ,∴AP=()231m -+,设2BD =,DP=9-m, ∵BD ⊥L 于点D ,∴BP=2(9)4m -+,∴()()223194m m -++-+的最小值即为A ′B 的长.即:A ′B=()()223194m m -++-+的最小值.如图,过A ′作A ′E ⊥BD 的延长线于点E. ∵A ′E=CD=CP+PD= m-3+9-m=6, BE=BD+DE=2+1=3, ∴A ′B=()()223194m m -++-+的最小值=22BE A E '+ =936+ =35 ∴()()223194m m -++-+的最小值为35.EA'LPD C BA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015——2016下学期返校考试试卷
班级:姓名:
一.选择题:(每题3分,共24分)
1. 在()02
-,38, 0, 9, π,-0.333…,5, 3.1415,
0.010010001……(相邻两个1之间逐渐增加1个0)中,无理数有()
A.1个
B.2个 C .3个 D.4个
2.下列各式中,正确的是
A
±4 B.C= -3 D
3.某一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的表达式可能是()A.4
=x
y
3-
2+
=x
y B.1 C.1
-
2+
y
=x
3+
y D.4
-
=x
4.某班50名同学的数学成绩为:5人100分,30人90分,10人75
分,5人60分,则这组数据的众数和平均数分别是()
A.90,85
B.30,85
C.30,90
D.40,82
5.等腰三角形的一个角是80°,则它顶角的度数是()
A.80° B.80°或20° C .80°或50° D.20°
6.如图所示,在△ABC中,AB=AD=DC,∠B=70°,则
∠C的度数为()A.35°B.40°C.45°
D.50°
7.若方程组31
33
x y k x y +=+⎧⎨
+=⎩的解为x 、y ,且x +y >0,则k 的取值范围
是( )A .k >4 B .k >-4 C .k <4 D .k <-4 8.已知函数2
3(1)m y m x -=+是正比例函数,且图像在第二、四象限内,则m 的值是( )
A .2
B .2-
C .2±
D .1
2
- 二.填空题:(每题3分,共21分)
9. 已知直线x+2y=5与直线x+y=3的交点坐标是(1,2),则方程组
{
523
=+=+y x y x 的解是
10. 不等式10(x -4)+x ≥-84的非正整数解是_____________. 11. 已知一次函数y =kx +b (k ≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则一次函数的解析式为_____________. 12. 已知a 的平方根是8±,则它的立方根是 .
13. 四根小木棒的长分别为5 cm,8 cm,12 cm ,13 cm ,任选三根组成三角形,其中有________个直角三角形.
14. 若点A 在第二象限,且A 点到x 轴的距离为3,到y 轴的距离为4,则点A 的坐标为 .
15. 一次函数y =x +1的图象与y =-2x -5的图象的交点坐标是
__________.
三.解答题:(16,17每小题5分,共20分)
16.计算:(1)2
1
6
3)1526(-⨯- (2))23)(23()132(2-++-
17.(1)解方程组⎩⎨⎧-=-=-5
479
65y x y x
(2)解不等式:3(x+2)-8≥1-2(x -1)
18. (本题6分) 已知:一次函数y =kx +b 的图象经过M (0,2),N
(1,3)两点.求该图象与x 轴交点的坐标。
19. (本题9分) 某厂的甲、乙两个小组共同生产某种产品,若甲组
先生产1天,然后两组又各生产5天,则两组产量一样多;若甲组先生产了300个产品,然后两组又各生产了4天,则乙组比甲组多生产100个产品;甲、乙两组每天各生产多少个产品?
A
B E
C F
D
G
20.(本小题8分)如图,点B 、E 、C 、F 在同一直线上,AC 与DE
相交于点G ,∠A=∠D ,AC ∥DF ,求证: AB ∥DE
21. (本小题12分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:① 金卡售价600元/张,每次凭卡不再收费;② 银卡售价150元/张,每次凭卡另收10元.暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设游泳x 次时,所需总费用为y 元. (1)分别写出选择银卡、普通票消费时,y 与x 之间的函数关系式; (2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A 、B 、C 、D 的坐标;
(3)请根据函数图象,直接写出选择哪种消费方式更合算.。