电能转化为化学能电解池(1)

合集下载

第6单元 第2节 电能转化为化学能——电解

第6单元  第2节  电能转化为化学能——电解

解析 答案
第六单元
考点一
考点二
第2节 电能转化为化学能——电解
核心考点分·分层层突突破破 体系构建·随堂演练
-13-
必备知识·自主预诊 关键能力·考向突破
关闭
用石墨作电极电解 KNO3 和 Cu(NO3)2 的混合溶液,阳极反应式为 4OH--4e- 2H2O+O2↑,阴极先后发生两个反应:Cu2++2e- Cu, 2H++2e- H2↑。从收集到 O2 为 2.24 L(标准状况下)这个事实可推 知电解过程中共转移 0.4 mol 电子,而在生成 2.24 L H2 的过程中转移 0.2 mol 电子,所以 Cu2+共得到 0.4 mol-0.2 mol=0.2 mol 电子,电解前 Cu2+的物质的量和电解得到的 Cu 的物质的量都为 0.1 mol。电解前
-17-
必备知识·自主预诊 关键能力·考向突破
电解原理在工业生产中的应用
1.电解饱和食盐水
(1)电极反应。
阳极:
2Cl--2e-==Cl2↑
阴极:
2H++2e-==H2↑
(2)总反应式。
(反应类型:氧化反应), (反应类型:还原反应)。
总反应方程式: 2NaCl+2H2O 2NaOH+H2↑+Cl2↑ 。
电子:从电源 负极 流出后,流向电解池的 阴极 ;从电解池
的 阳极 流出,流向电源的 正极 。
离子:阳离子移向电解池的 阴极 ,阴离子移向电解池的 阳极 。
第六单元
第2节 电能转化为化学能——电解
核心考点分·分层层突突破破 体系构建·随堂演练
-5-
考点一

电解池工作原理

电解池工作原理

电解池工作原理
电解池工作原理是指将电能转化为化学能的过程。

电解池由两个电极(阴极和阳极)和电解质溶液组成。

当外部电源施加电压时,电子从阴极流向阳极,形成电流。

在电解质溶液中,离子会根据电荷的性质被吸引到相反的电极上。

阴离子会被吸引到阳极上,而阳离子会被吸引到阴极上。

在阳极上,阴离子接受电子并发生氧化反应,从而释放出电荷为正的离子或原子。

这个过程称为氧化。

在阴极上,阳离子获得电子并发生还原反应,从而由电荷为正的离子或原子转化为电荷为零的原子或分子。

这个过程称为还原。

通过这个电化学反应过程,化学物质被转化为其他物质。

同时,在电解池中会产生电解液中的离子,导致电解液中的离子浓度的变化。

电解池的工作原理可以通过法拉第电解定律来描述,该定律表明电解的物质的质量与电流的量成正比,并与电解物质的化学当量、电流通过时间和反应的化学方程式有关。

电解池广泛应用于电镀、电解制氢、电解水、电解盐水等各种工业和实验室过程中。

电能转化为化学能

电能转化为化学能

阴极
2H++2e- =H2↑
化学方 程式
2NaCl+2H2O====2NaOH+H2↑+Cl2↑
被氧化
被还原
离子的放电顺序:
(1)在阴极上,阳离子放电顺序: 放电由易到难
排在这两种离子后 面的离子在水中不 参与反应。
Ag+、Cu2+、H+(酸)、Fe2+、Zn2+、 H+(水)、 Al3+、Mg2+、 Na+
Cu+H2SO4
CuSO4+H2↑
电能转化为化学能
电解反应实例
实例 电解H2O制 H2和O2
电解饱和食 盐水制H2和 Cl2和NaOH
被电解物质 电解产物
化学方程式
通电
H2O
H2、O2
2H2O==2H2↑+ O2↑
2H H2、Cl2、 通电2O+2NaCl NaCl、H2O ==2NaOH+H2 NaOH ↑ +Cl2 ↑ 通电 电解NaCl制 Na 、Cl2 2NaCl==2Na NaCl Cl2和Na +Cl2 ↑ 通电 电解Al2O3 Al2O3 Al、O2 2Al2O3==4Al 制Al +3O2 ↑
电解氯化铜:
现象 电极反应式
阳极
阴极
有气泡产生,能 2Cl--2e- =Cl2↑ 使湿润的淀粉- KI溶液变蓝 颜色加深,碳棒上 2+ Cu +2e- =Cu 有红色物质生成
CuCl2===Cu+Cl2 ↑
被氧化
通电
化学方程式
被还原
电解原理 1、电解池 (1)定义:将电能转化为化学能的装置 ①直流电源 (2)构成条件:

电能转化为化学能—电解池

电能转化为化学能—电解池

1、电解原理(1)定义:使电流通过电解质溶液(或熔融的电解质)而在阴阳两极引起氧化还原反应过程。

(2)装置特点:电能转化为化学能(3) 形成条件:○1与电源相连的两个电极;○2电解质溶液(或熔融的电解质);○3形成闭合电路。

注意:电力和电解地比较2、电解时电极产物的判断(1)阳极产物的判断首先看电极,如果使活性电极(金属活泼顺序表Ag以前),则电极材料是电子,电极被溶解,溶液中的阴离子不能失电子。

如果是惰性电极(Pt、Au、石墨),则要在单溶液中的离子的失电子能力。

此时根据阴离子放电顺序加以判断。

(放电顺序及为得、失电子能力顺序) 阳极上的放电顺序:S2->I->Br->Cl->OH->NO3->SO42->F-即:活性阳极(金属)>无氧酸根离子>OH->含氧酸根离子>F-S2-、I-、Br-、Cl-、OH-‖NO3-、SO42-、F-在溶液中只考虑此部分注意:在溶液中含氧酸根离子不放电,常至最高价(中心原子)含氧酸根不放电,但非最高价(中心原子)含氧酸根的放电能力比OH-的强,如SO32-、MnO42-等。

(2)阴极阳离子的放电顺序:K+<Ca2+<Na+<Mg2+<Al3+<Zn2+<(H+)<Fe2+<Sn2+<Pb2+<(H+)<Cu2+<Fe3+<Hg2+<Ag+Ag+、Hg2+、Fe3+、Cu2+、H+‖Pb2+、Sn2+、Fe2+、Zn2+ Al3+、Mg2+、Na+、Ca2+、K+水溶液中只考虑此部分浓度很大时排在H+前只在熔融状态下放电阳离子的放电顺序基本上符合金属活动性顺序表,一般将H+的位置放在Cu2+后。

但在电镀条件下,H+的位置在Zn2+后,Fe2+、Zn2+与H+顺序颠倒,即在水溶液中Fe2+、Zn2+的得电子能力比H+强,可人为水电离产生的氢离子浓度很小之故。

高中化学:电能转化为化学能

高中化学:电能转化为化学能
电解质溶液,构成电解池。反应方程式为:
阳极:Cu-2e-====Cu2+
阴极:2H++2e-====H2↑ 总反应: Cu+H2SO4(通稀电)==== CuSO4+H2↑
电解池的工作原理
电解池的形成条件
电解原理的应用
1.电镀 2.氯碱工业 3.金属冶炼 4.铜的电解精炼
B
D
1.如图所示的装置能够组成电解池的是 ( C )
或合金
在铁制品上镀铜:阳极——铜 阴极——铁制品 电镀液——CuSO4溶液 阴极:Cu2++2e-====Cu
溶液中CuSO4的 浓度保持不变
或变小
阳极:Cu-2e-=====Cu2+
电镀材料的选择: 阴极——镀件 阳极——镀层金属 电镀液——含有镀层金属离子的溶液
2.电解精炼铜 阅读课本45页拓展视野
阴极:2H+ +2e- == H2
阳极产物
阴极产物
电解池的工作原理
第 11 页
阴极放电顺序(阳离子得电子能力)
Ag+>Hg2+> Fe3+> Cu2+>H+(浓度大)>Pb2+>Sn2+>Fe2+>Zn2+> H+(浓度小) >Al3+>Mg2+>Na+ >Ca2+>K+
Al3+~ K+水溶液中不放电,熔融状态放电 阳极放电顺序(阴离子失电子能力) 活性金属电极>S2->I->Br->Cl->OH->非还原性含氧酸根>F-
通电 2Al2O3 ==== 4Al +3O2 ↑

1.2电能转化为化学能—电解 (第一课时)

1.2电能转化为化学能—电解 (第一课时)
化学 · 选修 4
1.2 电能转化为化学能——电解
电能转化为化学能——电解
第2 页
一、电解的原理
电能转化为化学能——电解
教学目第标3 页
✓ 知道可以通过电解使电能转化为化学能,能使许多在通常条件下 不能发生的化学反应得以进行,具有十分重要的实际意义。
✓ 了解什么是电解,知道电解池是将电能转化为化学能的装置。 ✓ 知道在电解池中,氧化反应和还原反应是在两个电极上分别进行
A.与电源正极相连的是电解池的阴极 B.与电源负极相连的是电解池的阴极
阳极
C.在电解池的阳极发生氧化反应
D.电子从电源的负极沿导线流入电解池的阴极
第 13 页
电能转化为化学能——电解
3.电极产物的判断,电极反应的书写
电极反应:电极上进行的半反应。 阳极:2Cl- →Cl2↑ + 2e- 氧化反应 阴极:2Na+ +2e- →2Na 还原反应 注意:书写电极反应式一定要遵守电子守恒
熔融NaCl
现象
左侧:产生有刺激性的气味, 并能使湿润的KI-淀粉试纸变 蓝 右侧:有固体析出
电能转化为化电学极反能应—:— 2Cl电--2e解- =Cl2↑ 氧化反应
第6 页
实验分析
电流
通电前 通电后
电极反应:2Na+ +2e-=2Na 还原反应


极 石
2NaCl 通电 2Na+Cl2 ↑
极 石
[趁热打铁]
阳极阴极Βιβλιοθήκη 氯氢气NaCl溶液

实例
氯化钠溶液
电极反应
阳极: 2Cl- → 2e- + Cl 2↑ 阴极: 2H ++ 2e- → H2 ↑

电能转化为化学能-电解

电能转化为化学能-电解

阳极
阴极
氧气
氢 气
实例
电极反应
浓度
PH值
复原
Na2SO4
实例
电极反应
浓度
PH值
复原
Na2SO4
阳极: 4OH- → 4e- + 2H2O+O2 ↑
阴极: 4H ++ 4e- → 2H2 ↑
阴极:Ag+>Fe3+>Cu2+>H+>Fe2+>Zn2+>(H+)>Al3+>Mg2+>Na+
电解
2H2O + 2NaCl = H2↑ + Cl2↑ + 2NaOH
电解
现象: 阳极:有黄绿色气体产生,使湿润的淀粉-KI溶液变蓝 阴极:有气泡产生,滴加酚酞溶液变红
Cl2会和NaOH反应,会使得到的NaOH不纯
H2和Cl2 混合不安全
上述装置的弱点:
02
1、生产设备名称:离子交换膜电解槽
阳极:金属钛网(涂钛钌氧化物) 阴极:碳钢网(有镍涂层) 阳离子交换膜:只允许阳离子通过,把电解槽隔成阴极室和阳极室。
(3)分析电解质溶液的变化情况: 氯化铜溶液浓度降低
CuCl2 Cu+Cl2 ↑
电解
思考:
为何当一个电极存在多种可能的放电离子时,不是大家共同放电,而是只有一种离子放电?放电能力与什么因素有关?
离子放电顺序:
阴离子失去电子而阳离子得到电子的过程叫放电。
①当阳极为活性电极时:金属在阳极失电子被氧化成阳离子进人溶液,阴离子不容易在电极上放电。 ②当阳极为惰性电极(Pt、Au、石墨、钛等)时:溶液中阴离子的放电顺序(由难到易)是:

2021届高三化学一轮复习 电解原理及应用

2021届高三化学一轮复习 电解原理及应用

[名师点拨] 由于 AlCl3 为共价化合物,熔融状态下不导电, 所以电解冶炼铝时,电解的为熔点很高的氧化铝,为降低熔化 温度,加入了助熔剂冰晶石(Na3AlF6);而且电解过程中,阳极 生成的氧气与石墨电极反应,所以石墨电极需不断补充。
夯基础•小题
1.金属镍有广泛的用途,粗镍中含有少量 Fe、Zn、Cu、Pt 等
课时3
电解原理及应用
知识点一 电解原理
考必备•清单
1.电解池 (1)电解池:把电能转化为化学能的装置。 (2)构成条件
①有与直流电源相连的两个电极; ②电解质溶液(或熔融盐); ③形成闭合回路。
(3)工作原理(以惰性电极电解 CuCl2 溶液为例) 总反应离子方程式:Cu2++2Cl-=电==解==Cu+Cl2↑
杂质,可用电解法制备高纯度的镍,下列叙述正确的是(已知:
氧化性 Fe2+<Ni2+<Cu2+)
()
A.阳极发生还原反应,其电极反应式为 Ni2++2e-===Ni
B.电解过程中,阳极质量的减少量与阴极质量的增加量一定
相等
C.电解后,电解槽底部的阳极泥中含有 Cu 和 Pt
D.电解后,溶液中存在的金属阳离子有 Fe2+、Zn2+和 Ni2+
___增__大_ ___通___H_C__l
__减__小__
加 CuO、 CuCO3
夯基础•小题ຫໍສະໝຸດ 1.判断正误(正确的打“√”,错误的打“×”)。
(1) 用 铜 作 电 极 电 解 CuSO4 溶 液 的 方 程 式 为 2Cu2 + +
2H2O=电==解==2Cu+O2↑+4H+
(× )
(2)某些不能自发进行的氧化还原反应,通过电解可以实现
2.电极反应式的书写步骤
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电能转化为化学能电解池(1)
电能转化为化学能电解池(1)
电能转化为化学能是一项重要的能量转换过程,其中电
解池是其中一种常用的装置。

电解池通过将电能转化为化学能,实现了物质的电化学反应和储能。

电解池是一种设备,由一个电解质溶液和两个电极组成。

其中一个电极称为阳极,另一个称为阴极。

当外加电压施加到电解质溶液中时,阳极和阴极上会产生氧化和还原反应。

这些反应将电能转化为化学能,并在电解质溶液中产生化学变化。

电解质溶液中的阳离子和阴离子在电解过程中承担着重
要的角色。

阳极上的氧化反应导致阳离子释放出电子,形成自由基。

这些自由基在电解质溶液中移动,而阴极上的还原反应则导致阴离子接收电子,还原为原子或分子。

这样,阳极和阴极之间的电流流动就形成了电解池中的化学反应。

电解池的工作原理可以通过一个简单的例子来说明。


虑到水的电解,将水(H2O)放入电解池中,并添加一些电解质,如盐(NaCl)。

当施加电压时,阳极上的氧化反应导致水中的氢离子(H+)氧化为气态氢(H2),而阴极上的还原反应导致水中的氧离子(OH-)还原为气态氧(O2)。

这样,水的
分子被分解为氢气和氧气,通过电解池将电能转化为化学能。

电解池在能源转换和储存中具有广泛的应用。

例如,在
电化学电池中,电解池被用来将化学能转化为电能,以供应电力。

太阳能电池、燃料电池等能源设备都是通过电解池实现能量转换的。

此外,电解池还可以用于储存电能,例如通过电解
水制备氢气,作为一种能量密集型的储能介质使用。

在实际应用中,电解池的性能和效率非常重要。

为了提
高电解池的效率,人们进行了大量的研究和实验。

例如,选择适当的电解质、电极材料和操作条件可以提高电解池的效率。

此外,优化电解池的结构和设计也是提高效率的重要因素。

例如,改变电解池的电极形状和尺寸,或者增加电解质流动,都可以改善电解池的反应速率和能量转化效率。

总之,电能转化为化学能的过程在电解池中得到了实现。

通过将电能转化为化学能,电解池在能源转换和储存中起着重要的作用。

在实际应用中,提高电解池的效率和性能是一个重要的研究方向。

电解池将继续在能源领域中发挥着重要的作用,并为我们提供更加可持续和清洁的能源解决方案。

相关文档
最新文档