基于MATLAB燃料电池半实物仿真系统设计
基于MATLAB/MATRIX—X的半实物仿真技术在PC机上的实现及应用

二 基 于 MA L B的 x C TA P 半实物仿真系统
x C半实物仿真 目标是Ma Wok P t rs h
公司提供和发行的一个基于 MA L B T A / R a—i rso 体系框架的辅助产 el me T Wokh p
来生成可执行 代码并将 其在第二个 P C 兼容机上实时地 运行 。围 显示 了半实 物仿真环境 中 x C目标的使用情况。 P x C目标具有许多特点,包括: P () 1可将 任何 Itl 8 /e t m或 ne x 6P ni u A 5K6 P MD K / 的 C机 作为实时 目标 机,
维普资讯
杨旭
李立涛
王炳全
本文作者畅旭女士,哈尔滨T业人学航 天下程 与力学 系讲师:李立涛先生,讲师:王炳全
建词 :半实物仿真
实时仿真机
P C机
实现
先生,博 t  ̄。2 0 年 6, 4[收到。 : - 02 J L {1 j
引言
任何一个较复杂系统的设计研制, 需要经过系统建模、设计 、分析 、数 防真 、系统或部件测试 、系统半实物 全物理实时仿真等工作阶段及不同阶 司的多次反复修改历 程。传统设计技
’ s系列产品等 。它们具备 以下特点: () 1将系统建模、设计 、分析 、 数学
真一体化,且实现上述功能的手段简 齐全,从而保证简捷方便地实现系统
A oI6 o. V . N 7 7 ・2002
维普资讯
基于M T A /A RXX A L BM T I 的半实物仿真技术在P 机上的实现及应用 . C
功能。
有效性低。现代设计技术是将上述
充工作放在一个统一有效的设计环境 即在系统建模 、设 计、分析 、数学
基于MATLAB的微型燃气轮机发电系统的建模与仿真

独立运行和并网模式下微型燃气轮机的建模与性能分析Modeling and Performance Analysis of Microturbine in Independent Operation and Grid -Connection ModeABSTRACT:The microturbine generation system will be the most widely used distributed generation in the near future. According to the dynamic characteristics of the Microturbine system, a mathematic model which treats the Microturbine and its electric system as a whole is built. Further researches on the basic control of the Microturbine system are presented. The dynamic characteristics of the Micro gas turbine system are emphasized, especially the characteristics of the load disturbance. Simulation results demonstrate the model is coordinate to the real Microturbine system. The general purpose of this project is for further researching thermodynamic engine control of the Microturbine and giving the basic resources to corresponding control of inverter control of generator electric side.KEY WORDS:distributed generation; microturbine; modeling; simulation; PWM摘要:微型燃气轮机发电系统是一种具有广泛应用前景的分布式发电系统。
任务书1-半实物仿真体系设计

进 序号 1 2 3 4 5 6 7 8
度
安
排 时间(起止周数)
1 周至 2 周 3 周至 6 周 7 周至 9 周 10 周至 15 周 16 周至 18 周 周至 周至 周至 周 周 周
设计(论文)工作内容 文献综述、开题报告 混合发电系统总体性能分析 半实物仿真主体设备造型 初步设计计算、优化分析 结果分析、撰写论文
重庆大学本科学生毕业设计(论文)附件
附件 A:任务书
附件 A:
毕业设计(论文)任务书
设计(论文)中文题目: SOFC/MGT 混合发电系统半实物仿真体系设计
设计(论文)的主要内容与要求: 针对现有条件,设计以 SOFC/MGT 构成的混合发电系统为对象的半实物 仿真系统的体系结构,包括硬件组成、循环方式、初步设计计算等。主要内 容包括压气机、烟气涡轮机及燃烧室的选型及设计计算、系统结构、管道、 阀门等附属设备的组成等。 要求具备热工设备的初步设计能力,针对已有微型燃气轮机,开展初步 匹配计算,选择合适的压气机、燃气透平及燃烧室等。并进行初步热力计算 及优化分析。 本项目综合性强、工作量大,涉及专业知识、计算机通讯、控制、电气 等。难度较大。
A1
重庆大学本科学生毕业设计(论文)附件
附件 A:任务书
主要参考文献: 1. 侯健敏,周德群. 分布式能源系统的复杂性特征分析 [J]. 中国矿业, 2010, 19(2): 3 2. 刘爱虢, 翁一武. 熔融碳酸盐燃料电池/燃气轮机混合动力系统启动停机过 程特性分析 [J]. 中国电机工程学报, 2012, 17): 7-12+136 3. 包成 蔡. SOFC-MGT 混合发电系统的半实物仿真方案研究 [J]. 动力工程 学报, 2011, 31(6): 6. 4. Thomas Paul Smith, HARDWARE SIMULATION OF FUEL CELL / GAS TURBINE HYBRIDS, Georgia Institute of Technology, May 2007
基于MatlabSimulink的质子交换膜燃料电池建模仿真

总740期第六期2021年2月河南科技Henan Science and Technology基于Matlab/Simulink的质子交换膜燃料电池建模仿真孙桂芝1宋振泉2(1.烟台职业学院汽车与船舶工程系,山东烟台264670;2.烟台之星汽车服务有限公司,山东烟台264000)摘要:本文简述了质子交换膜燃料电池的结构及工作原理,重点介绍了燃料电池电压与电流模型结构和建模原理,并在Matlab/Simulink平台上对所建燃料电池模型进行仿真。
仿真分析结果反映出电池活化极化损耗、欧姆损耗以及浓度极化损耗随电流增大而改变的关系,最终以燃料电池极化曲线的形式显示出来,为燃料电池电动汽车建模与控制仿真奠定基础。
关键词:燃料电池;建模仿真;Matlab/Simulink中图分类号:TM911.4文献标识码:A文章编号:1003-5168(2021)06-0126-04Modeling and Simulation of Proton Exchange Membrane FuelCell Based on Matlab/SimulinkSUN Guizhi1SONG Zhenquan2(1.Department of Automobile and Ship Engineering,Yantai Vocational College,Yantai Shandong264670;2.Yantai StarAutomobile Service Co.,Ltd.,Yantai Shandong264000)Abstract:This paper briefly described the structure and working principle of the proton exchange membrane fuel cell,focusing on the fuel cell voltage and current model structure and modeling principle,and simulated the built fuel cell model on the Matlab/Simulink platform.The simulation analysis results reflected the relationship between bat⁃tery activation polarization loss,ohmic loss and concentration polarization loss as the current increased,and finally displayed in the form of fuel cell polarization curve,laying a foundation for fuel cell electric vehicle modeling and control simulation basis.Keywords:fuel cell;modeling and simulation;Matlab/Simulink燃料电池是一种将储存在燃料和氧化剂中的化学能通过电极反应直接转化为电能的发电装置。
基于MATLAB的能源系统仿真分析

基于MATLAB的能源系统仿真分析能源系统仿真分析在现代工程设计和技术建模中扮演着重要角色,它可以帮助工程师和科学家预测并优化能源消耗、降低费用以及减少对环境的影响。
MATLAB作为一款广泛使用的科学计算软件,可以为能源系统的建模、仿真和分析提供最佳解决方案,使得能源系统设计和优化变得更加高效和准确。
本文将介绍基于MATLAB的能源系统仿真分析的基本原理、技术特点和应用前景。
1. 能源系统仿真的基本原理能源系统仿真分析是建立在能量守恒、质量守恒和热平衡原理的基础上的,它涉及到能源转化、传输和消耗过程的多个环节。
能源系统的仿真分析可以通过数值方法对各种复杂的物理、化学、机械、电子和热力学过程进行数学建模,以便更好地了解和优化能源系统的运行状况。
在MATLAB中,要进行能源系统仿真分析,需要先确定仿真模型的类型和仿真框架,并结合能源系统的物理、化学和数学背景来确定所需的数学方程和计算方法。
然后,需要将所需的数据和参数输入仿真模型中,以进行基于数值模拟的实时计算和分析。
最后,需要通过仿真结果和分析结论对能源系统进行优化和改进。
2. 基于MATLAB的能源系统仿真分析的技术特点MATLAB作为一款易于使用、灵活性强、功能丰富的科学计算软件,具有如下特点:2.1 易于学习和使用MATLAB的用户界面友好、交互式命令式编程方式易于掌握,便于工程师和科学家快速上手。
此外,MATLAB库中有大量的实例程序和工具箱,可用于各种不同的应用场景,从而进一步降低学习和使用的难度。
2.2 提供完整的工具集MATLAB提供了多种仿真、建模和分析工具,可支持多种能源系统应用场景,包括燃料电池、太阳能、风能、水力发电、核能、电网等。
此外,MATLAB还提供了多种可视化工具,帮助用户直观地了解和分析仿真结果。
2.3 灵活性和可定制性高MATLAB提供了可扩展性强的编程语言,用户可以根据需要编写自己的仿真模型和算法,从而实现更高度的自定义和控制。
基于Matlab和DCS的半实物仿真系统平台设计开发

化工自动化及仪表 , 2009, 36( 5): 92~ 95 Contro l and Instrum ents in Che m ical Industry
基于 M atlab和 DCS的半实物 仿真系统平台设计开发
任丽丽, 陈爱军 , 邹玉龙
( 兰州石化公司 自动化研究院 , 兰州 730060)
图 1 仿真系统平台框架图
图 2 三个模块间交互传递的数据接口图
仿真系统平台的设计采用了众多理论和技术: ( 1 ) 理论: 化工流 程模 拟 现代控制理论
[ 4] [ 3]
本、 M atlab 7. 0工程计算语言 、
[5 , 6]
、 V isual C+ + 6 0编
、 古典 控制 理论
[ 3]
*
发环境。 兰 州 石 化 公 司 目 前 使 用最 多 的 DCS 系 统 是 Em erson D elta V 系统, 基于此, 首次提出采用 M atlab / Sm i u link结合 D elta V DCS, 进 行半 线 式仿 真 系 统的 设计与开发, 仿真结果显示, 仿真软件能够完全脱离 M atlab /S m i u link环境运行。仿真系统平台 由三个模 块 组成: 过 程模 型 由 M atlab / S m i u link 来 创 建, 控制 器 采用 DCS系统 控制器, 模型与 控制器 间的数 据接
对于生产环境 易燃易 爆的石 油化 工行业, 由于 工业过程的高度非线性、 过程强耦合性、 固有的大时 滞性、 以及操作的连续安全性要求, 新技术研究和员 工培训不可能在 实际 生产装 置中进 行。因此, 建立 一套系统的生产过程的仿真平台来进行新技术理论 的研究和实践是一种非常有效的手段。员工可以在 仿真平台上进行工 厂生产 系统的 仿真 操作, 满 足技 术人才培养, 也可以 根据自 己的需 要进 行多种 生产 操作环境的模拟研 究, 为新 技术研 究建 立良好 的研
Matlab技术在电力系统仿真中的应用指南

Matlab技术在电力系统仿真中的应用指南I. 引言电力系统仿真是电力领域中重要的研究工具之一。
它能够帮助电力工程师、研究人员和决策者分析电力系统的运行情况,评估系统的稳定性和可靠性,并进行优化和规划。
在电力系统仿真中,Matlab技术被广泛应用,本文将探讨Matlab在电力系统仿真中的具体应用指南。
II. 电力系统建模与仿真在电力系统的仿真过程中,建模是关键。
Matlab提供了一系列强大的工具和函数,用于电力系统的建模和仿真。
电力系统通常可以分为三个主要的子系统:发电系统、输电系统和配电系统。
每个子系统都有其特定的建模需求。
1. 发电系统建模发电系统的建模包括发电机、励磁系统和稳定器的建模。
Matlab提供了多种建模方法,如传递函数模型、状态空间模型和非线性模型。
用户可以根据实际情况选择合适的建模方法,并使用Matlab的仿真工具进行系统稳定性和响应性能的评估。
2. 输电系统建模输电系统建模是电力系统仿真中的一个关键环节。
Matlab提供了强大的电力网络建模工具,可以用来建立输电线路、变压器和各种网络拓扑结构。
用户可以通过Matlab的图形用户界面或脚本语言来创建并配置电力网络模型,然后进行仿真分析。
3. 配电系统建模配电系统建模是电力系统仿真的最后一个环节。
Matlab提供了用于建立配电系统的工具和函数。
用户可以使用Matlab的电力系统模块来创建配电网络模型,并进行负载流、短路分析、电能质量评估等仿真计算。
这些模型和仿真分析结果可以帮助用户评估配电系统的可靠性和效益。
III. 电力系统模拟与分析在电力系统仿真中,模拟和分析是非常重要的步骤。
Matlab提供了各种仿真和分析工具,用户可以利用这些工具来模拟电力系统的运行情况,并评估系统的性能。
1. 稳定性分析电力系统的稳定性是电力系统仿真中的一个关键指标。
Matlab提供了用于稳定性分析的工具,可以帮助用户评估电力系统的电压稳定性和频率稳定性。
质子交换膜燃料电池建模与matlab仿真

质子交换膜燃料电池建模与matlab仿真质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)是一种新型的燃料电池,具有高效、环保、低噪音等优点,被广泛应用于汽车、船舶、航空航天等领域。
本文将介绍PEMFC 的建模方法和matlab仿真过程。
一、PEMFC的建模方法PEMFC的建模方法主要包括物理模型和数学模型两个方面。
1.物理模型PEMFC的物理模型主要包括质子传输模型、电子传输模型、氢气传输模型和氧气传输模型。
质子传输模型:PEMFC中的质子传输是通过质子交换膜(PEM)实现的。
PEM的作用是将氢气和氧气分离,同时允许质子通过。
质子传输模型可以用Fick定律表示:JH+=-Dh∇cH+其中,JH+表示质子的扩散通量,Dh表示质子的扩散系数,cH+表示质子的浓度。
电子传输模型:PEMFC中的电子传输是通过电极和电解质之间的反应实现的。
电子传输模型可以用Ohm定律表示:J=σ∇V其中,J表示电流密度,σ表示电导率,V表示电势。
氢气传输模型:PEMFC中的氢气传输是通过氢气通道实现的。
氢气传输模型可以用Fick定律表示:JH2=-Dh2∇cH2其中,JH2表示氢气的扩散通量,Dh2表示氢气的扩散系数,cH2表示氢气的浓度。
氧气传输模型:PEMFC中的氧气传输是通过氧气通道实现的。
氧气传输模型可以用Fick定律表示:JO2=-DO2∇cO2其中,JO2表示氧气的扩散通量,DO2表示氧气的扩散系数,cO2表示氧气的浓度。
2.数学模型PEMFC的数学模型主要包括质量守恒方程、动量守恒方程、电荷守恒方程和能量守恒方程。
质量守恒方程:PEMFC中的质量守恒方程可以用以下方程表示:∂(εH2cH2)/∂t+∇(εH2cH2vH2)=0其中,εH2表示氢气通道的孔隙率,cH2表示氢气的浓度,vH2表示氢气的速度。
动量守恒方程:PEMFC中的动量守恒方程可以用以下方程表示:∂(εH2ρH2vH2)/∂t+∇(εH2ρH2vH2vH2)=∇P-∇τ其中,ρH2表示氢气的密度,P表示氢气的压力,τ表示氢气的剪切应力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于MATLAB燃料电池半实物仿真系统设计燃料电池作为一种新兴环保发电方式,对缓解能源危机具有重大意义。
燃料电池电堆安全可靠、高效率地运行需要高性能的控制系统,而开发燃料电池控制系统存在开发周期长、调试过程复杂等问题。
针对这一难题,本文搭建了基于MATLAB的燃料电池半实物仿真平台,将半实物仿真的应用扩展到燃料电池的研究领域,可以缩短开发周期以及节省研制成本,为燃料电池的研发工作创造更有利的条件。
本文概述了课题的背景资料、研究意义,探讨了半实物仿真和燃料电池建模等方面的最新国内外研究现状,从工作原理与系统结构的角度介绍燃料电池的特性,以及燃料电池各子系统的工作情况。
根据燃料电池系统工作原理和结构特点,结合机理模型和经验模型的方法,基于MATLAB建立了燃料电池的单片电压模型及燃料电池子系统(空气供给系统、氢气供给系统、冷却系统)的动态模型。
采用CSerialPort串口编程工具实现了控制器与上位机之间的串口通信,提出了Simulink模型与外部接口的解决方案,即RTW/Real-Time Windows Target单机型实时方式,实现了Simulink模型与实物的实时通信。
采用本文构建的基于Real-Time Windows Target实时内核环境下燃料电池半实物仿真系统,在不同的工作条件下对实际燃料电池的测试结果和半实物仿真系统的仿真结果进行对比,仿真结果表明燃料电池半实物仿真平台不受硬件设备及环境等因素的影响,可以模拟一些极限工况,缩短了燃料电池控制器的开发周期,节省研制成本。