北师大版七年级数学下册第二章平行线与相交线汇总

合集下载

北师大版七下数学知识点总结

北师大版七下数学知识点总结

北师大版七下数学知识点总结北师大版七年级下册数学知识点总结。

一、整式的乘除。

1. 同底数幂的乘法。

- 法则:a^m· a^n=a^m + n(m、n为正整数)。

例如2^3×2^4=2^3 + 4=2^7。

- 推广:a^m· a^n· a^p=a^m + n+p(m、n、p为正整数)。

2. 幂的乘方。

- 法则:(a^m)^n=a^mn(m、n为正整数)。

例如(3^2)^3=3^2×3=3^6。

3. 积的乘方。

- 法则:(ab)^n=a^nb^n(n为正整数)。

例如(2×3)^2=2^2×3^2=4×9 = 36。

4. 同底数幂的除法。

- 法则:a^m÷ a^n=a^m - n(a≠0,m、n为正整数且m>n)。

例如5^6÷5^3=5^6 - 3=5^3。

- 零指数幂:a^0=1(a≠0)。

- 负整数指数幂:a^-p=(1)/(a^p)(a≠0,p为正整数)。

5. 整式的乘法。

- 单项式乘单项式:系数相乘,同底数幂相乘。

例如3x^2·2x^3=(3×2)x^2 + 3=6x^5。

- 单项式乘多项式:m(a + b)=ma+mb。

例如2x(x + 3)=2x^2+6x。

- 多项式乘多项式:(a + b)(c + d)=ac+ad+bc+bd。

例如(x + 2)(x+3)=x^2+3x+2x + 6=x^2+5x + 6。

6. 整式的除法。

- 单项式除以单项式:系数相除,同底数幂相除。

例如6x^5÷2x^3=(6÷2)x^5 - 3=3x^2。

- 多项式除以单项式:(a + b)÷ m=(a)/(m)+(b)/(m)。

例如(4x^2+2x)÷2x =4x^2÷2x+2x÷2x = 2x + 1。

二、相交线与平行线。

1. 相交线。

北师大版七年级下册第二单元相交线与平行线单元——同位角、内错角、同旁内角(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——同位角、内错角、同旁内角(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——同位角、内错角、同旁内角(知识梳理与考点分类讲解)【知识点一】同位角、内错角、同旁内角的概念(“三线八角”模型)如图1,直线AB、CD 与直线EF 相交(或者说两条直线AB、CD 被第三条直线EF 所截),构成八个角,简称为“三线八角”,如图1.特别提醒:⑴两条直线AB,CD与同一条直线EF 相交.⑵“三线八角”中的每个角是由截线与一条被截线相交而成.【知识点二】同位角、内错角、同旁内角的定义在“三线八角”中,如上图1,(1)同位角:像∠1与∠5,这两个角分别在直线AB、CD 的同一方,并且都在直线EF 的同侧,具有这种位置关系的一对角叫做同位角.(2)内错角:像∠3与∠5,这两个角都在直线AB、CD 之间,并且在直线EF 的两侧,像这样的一对角叫做内错角.(3)同旁内角:像∠3和∠6都在直线AB、CD 之间,并且在直线EF 的同一旁,像这样的一对角叫做同旁内角.特别提醒:(1)“三线八角”是指上面四个角中的一个角与下面四个角中的一个角之间的关系,显然是没有公共顶点的两个角.(2)“三线八角”中共有4对同位角,2对内错角,2对同旁内角.【知识点三】同位角、内错角、同旁内角位置特征及形状特征图1特别提醒:巧妙识别三线八角的两种方法:(1)巧记口诀来识别:一看三线,二找截线,三查位置来分辨.(2)借助方位来识别根据这三种角的位置关系,我们可以在图形中标出方位,判断时依方位来识别,如图2.【考点目录】【考点1】“三线八角”模型的认识;【考点2】同位角、内错角、同旁内角的辨别;【考点3】与同位角、内错角、同旁内角相关的综合【考点1】“三线八角”模型的认识;【例1】(1)图1中,∠1、∠2由直线被直线所截而成.(2)图2中,AB为截线,∠D是否属于以AB为截线的三线八角图形中的角?【答案】(1)EF,CD;AB;(2)不是.【分析】(1)根据三线八角的定义求解即可;(2)根据三线八角的定义求解即可;解:(1)∠1、∠2两角共同的边所在的直线为截线,而另一边所在的直线为被截线.所以图1中,∠1、∠2由直线EF,CD被直线AB所截而成.(2)因为∠D的两边都不在直线AB上,所以∠D不属于以AB为截线的三线八角图形中的角.【点拨】此题主要考查了“三线八角”,熟练掌握:“三线八角”的定义是解答此题的关键.【变式1】如图,下列说法正确的是()A.∠2与∠3是同旁内角B.∠1与∠2是同位角C.∠1与∠3是同位角D.∠1与∠2是内错角【答案】A【分析】根据同旁内角定义可判断A、根据同位角定义可判断B、根据内错角的定义可判断C、D即可.解:A、由图与同旁内角定义,∠2和∠3是两直线被第三条直线所截,在截线的同侧,在被截直线内部的角可知:∠2和∠3是同旁内角,故选项A正确符合题意;B、∠1和∠2是两条直线被两条直线所截得到的角,不是同位角,故选项B不正确不符合题意;C、∠1和∠3是两直线被第三条直线所截,在截线的两侧,在被截直线内部的角是内错角,不是同位角,故选项C不符合题意;D、∠1和∠2是两条直线被两条直线所截得到的角不是内错角,故选项D不符合题意;故选:A .【点拨】本题考查了同旁内角、同位角、内错角,熟练掌握同位角、内错角、同旁内角的定义是解题关键.【变式2】如图,有下列说法:①能与DEF ∠构成内错角的角的个数有2个;②能与BFE ∠构成同位角的角的个数有2个;③能与C ∠构成同旁内角的角的个数有4个.其中正确结论的序号是.【答案】①【分析】根据同位角、内错角、同旁内角的定义判断.解:①能与DEF ∠构成内错角的角的个数有2个,即EFA Ð和EDC ∠,故正确;②能与EFB ∠构成同位角的角的个数只有1个:即FAE ∠,故错误;③能与C ∠构成同旁内角的角的个数有5个:即CDE ∠,B ∠,CED ∠,CEF ∠,A ∠,故错误;所以结论正确的是①.故答案为:①.【点拨】本题主要考查了同位角、内错角、同旁内角,解题的关键是熟记相关的定义.【考点2】同位角、内错角、同旁内角的辨别;【例2】两条直线被第三条直线所截,∠1是∠2的同旁内角,∠2是∠3的内错角.(1)画出示意图,标出∠1,∠2,∠3.(2)若∠1=2∠2,∠2=2∠3,求∠3的度数.【答案】(1)见分析;(2)36°【分析】(1)根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角;同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行分析即可,进而画出图形即可;(2)利用邻补角的关系可求出∠3的度数.解:(1)如图所示:(2)∵∠1=2∠2,∠2=2∠3,∴设∠3=x,则∠2=2x,∠1=4x,故x+4x=180°,解得:x=36°,故∠3的度数为36°.【点拨】此题主要考查了三线八角以及邻补角的性质,得出∠1与∠3的关系是解题关键.【变式1】下列四幅图中,1∠和2∠是同位角的是几个()A.1个B.2个C.3个D.4个【答案】B【分析】根据同位角的定义(截线的同一侧,被截线的同一方位)解决此题.解:根据同位角的定义,第一张图和第四张图中的∠1和∠2是同位角.故选:B.【点拨】本题主要考查同位角的定义,熟练掌握同位角的定义是解决本题的关键.【变式2】如图,直线a,b被直线c所截,145∠=︒,2110∠=︒,则1∠的同位角的度数是;4∠的内错角的度数是;3∠的同旁内角的度数是.【答案】70︒/70度45︒/45度70︒/70度【分析】根据同位角,内错角和同旁内角的概念以及邻补角求解即可.解:∵24180∠+∠=︒,2110∠=︒,∴470∠=︒,∵1∠和4∠是一组同位角,∴1∠的同位角的度数是70︒;∵145∠=︒,∴31801135∠=︒-∠=︒,∴4∠的内错角的度数是180318013545︒-∠=︒-︒=︒;3∠的同旁内角4∠的度数是70︒.故答案为:70︒;45︒;70︒.【点拨】此题考查了邻补角,同位角,内错角和同旁内角的概念,解题的关键是熟练掌握以上知识点.【考点3】与同位角、内错角、同旁内角相关的综合【例3】如图,直线AB ,CD 被直线EF 所截,交点分别为G ,H ,∠CHG =∠DHG =34∠AGE .(1)CD 与EF 有怎样的位置关系?请说明理由.(2)求∠CHG 的同位角、内错角、同旁内角的度数.【答案】(1)CD ⊥EF ;(2)∠CHG 的同位角∠AGE =120°,内错角∠BGF =∠AGE =120°,同旁内角∠AGF =60°【分析】(1)先由∠CHG +∠DHG =180°及∠CHG =∠DHG ,可得∠CHG =∠DHG =90°,再根据垂直的定义得到CD 与EF 互相垂直;(2)先由∠CHG =∠DHG =34∠AGE ,可得∠AGE =120°,再根据同位角、内错角、同旁内角的定义即可求解.解:(1)CD ⊥EF .理由如下:因为CD是直线,所以∠CHG+∠DHG=180°,又∠CHG=∠DHG,所以∠CHG=∠DHG=90°,所以CD⊥EF.(2)由(1)知∠CHG=∠DHG=90°,因为∠CHG=∠DHG=34∠AGE,所以∠AGE=120°,所以∠CHG的同位角∠AGE=120°,内错角∠BGF=∠AGE=120°,同旁内角∠AGF=180°-∠AGE=60°.【点拨】本题考查了垂直的定义,邻补角的定义,同位角、内错角、同旁内角的定义,以及对顶角和邻补角的性质的计算,是基础知识,比较简单.【变式1】如图,下列判断正确的是()A.有2对同位角,2对内错角,2对同旁内角B.有2对同位角,2对内错角,3对同旁内角C.有4对同位角,2对内错角,4对同旁内角D.以上判断均不正确【答案】B【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角作答.解:观察图形可知,有2对同位角,2对内错角,3对同旁内角.故选B.【点拨】本题考查了同位角、内错角、同旁内角的概念.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.注意按顺序一个点一个点的数,不要重复,不要遗漏.【变式2】如图两条直线被第三条直线所截,2∠是3∠的同旁内角,1∠是3∠的内错角,若243∠=∠,321∠=∠,则1∠的度数是.【答案】20︒/20度【分析】设1x ∠=︒,则32x ∠=︒,28x ∠=︒,根据邻补角互补可得方程,求解即可.解:如图,设1x ∠=︒,则32x ∠=︒,28x ∠=︒,∵12180∠+∠=︒,∴8180x x ︒+︒=︒,解得:20x =,∴120∠=︒.故答案为:20︒.【点拨】本题考查了内错角、同旁内角、邻补角互补、角的计算,解本题的关键是掌握内错角的边构成“Z ”形,同旁内角的边构成“U ”。

北师大版七年级下册第二单元相交线与平行线单元——平行线的性质(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——平行线的性质(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——平行线的性质(全章知识梳理与考点分类讲解)【知识点一】平行线的判定方法11.方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称为:同位角相等,两直线平行.2.表达方式:因为∠1=∠2,(已知)所以a//b(同位角相等,两直线平行)特别提醒:“同位角相等,两直线平行”是通过两个同位角的大小关系(相等)推导出两直线的位置关系(平行).它是构建起角的大小关系与直线的位置关系的桥梁.【知识点二】平行线的画法过直线外一点画已知的直线平行线的步骤一落:把三角尺的一边落在一直的直线上;二靠:紧靠三角尺的另一边放一直尺;三移:把三角尺沿着直尺移动使其经过已知点;四画:沿三角尺的一边画直线.此直线即为已知直线的平行线.特别提醒:1.经过直线上一点不可以作已知直线的平行线.2.画线段或射线的平行线是画它们所在直线的平行线.3.移动是要始终保持紧靠.【知识点三】平行线的性质及其推论1.平行线的性质:过直线外一点有且只有一条直线与这条直线平行.2.表达方式:如果a//b,b//c,那么a//b.特别提醒:平行线的性质的前提是“过直线外一点”,若点在直线上,则不可能有平行线.【考点目录】【平行线性质求角的等量关系】【考点1】同位角相等两直线平行;【考点2】内错角相等两直线平行;【考点3】同旁内角互补两直线平行;【平行线性质探究角的关系】【考点4】平行线判探究角的关系或求角度;【平行线性质性质与判定综合】【考点5】平行线判定与性质求角度;【考点6】平行线判定与性质证明;【平行线间的距离】【考点7】平行线间的距离(应用).【平行线性质求角的等量关系】【考点1】同位角相等两直线平行【答案】相等;理由见分析【分析】根据平行投影可得∠B=∠E,再根据垂直可得∠C=∠F=90°,然后利用“角边角”证明△ABC 和△DEF全等,根据全等三角形对应边相等即可得证.解:两根旗杆的高度相等.理由如下:∵太阳光线AB与DE是平行,∴∠B=∠E,∵两根旗杆都垂直于地面放置,∴∠C=∠F=90°,∵两根旗杆在太阳光下的影子一样长,∴BC =EF ,∵在△ABC 和△DEF 中B E BC EF C F ∠∠⎧⎪⎨⎪∠∠⎩===∴△ABC ≌△DEF (ASA ),∴AC =DF ,即两根旗杆的高度相等.【点拨】本题考查了全等三角形的应用,根据题意找出三角形全等的条件,然后证明两三角形全等是解题的关键.【变式1】(2023·黑龙江齐齐哈尔·统考中考真题)如图,把一块三角板的30︒角顶点A 放在直尺的一边BC 上,若1:23:7∠∠=,则2∠=()A .126︒B .118︒C .105︒D .94︒【答案】C 【分析】根据平行线的性质和平角的定义即可得到结论.解:如图,由题意知:DE BC ∥,∴31∠=∠,∵1:23:7∠∠=,∴3:23:7∠∠=,∴3327∠=∠,∵2330180∠+∠+︒=︒,∴322301807∠+∠+︒=︒,∴2105∠=︒.故选:C .【点拨】本题考查的是平行线的性质和平角的定义.熟练掌握两直线平行,同位角相等是解题的关键.【变式2】(2022·甘肃嘉峪关·校考一模)如图两平行线a、b被直线l所截,且∠1=60°,则∠2的度数为.【答案】60°/60度【分析】由a∥b,根据两直线平行,同位角相等,即可求得∠3=∠1=60°,又由对顶角相等,即可求得答案.解:∵a∥b,∴∠3=∠1=60°,∴∠2=∠3=60°.故答案为:60°.【点拨】此题考查了平行线的性质.此题比较简单,注意掌握数形结合思想的应用.【考点2】内错角相等两直线平行【例2】(2014下·贵州铜仁·七年级统考期末)已知:如图,点D、E分别在AB、BC上,DE AC∥,165∠=︒,265∠=︒,请说明:F CBF ∠=∠.(不必注明依据)【答案】证明见分析【分析】根据平行线的性质得出165C ∠=∠=︒,得出2C ∠=∠,根据平行线的判定得出AF BC ∥,再根据平行线的性质即可得证.解:∵DE AC ∥,165∠=︒,265∠=︒,∴165C ∠=∠=︒,∴2C ∠=∠,∴AF BC ∥,∴F CBF ∠=∠.【点拨】本题考查平行线的判定和性质,能灵活运用平行线的性质和判定定理进行推理是解题的关键.【变式1】(2023·吉林白城·校联考三模)已知,如图,AB ∥CD ,∠A=70°,∠B=40°,则∠ACD=()A .55°B .70°C .40°D .110°【答案】B解:AB CD ∥.A ACD ∴∠=∠70.A ∠=︒ 70.ACD ∠=︒故选B.【点拨】两直线平行,内错角相等.【变式2】(2023·辽宁阜新·统考中考真题)如图,直线a b ,直线l 与直线a 相交于点P ,直线l 与直线b 相交于点Q ,PM l ⊥于点P ,若155∠=︒,则2∠=.︒【答案】35【分析】本题主要考查平行线性质以及垂线的性质.根据平行线性质得3155∠=∠=︒,利用垂线性质即可求得2∠.解:直线a b ,3155∴∠=∠=︒,又PM l ⊥ 于点P ,90MPQ ∴∠=︒,2903905535∴∠=︒-∠=︒-︒=︒.故答案为:35.【考点3】同旁内角互补两直线平行【例3】(2023下·山东烟台·六年级统考期末)如图,ABD ∠和BDC ∠的角平分线交于点E ,BE 交CD 于点F ,1290∠+∠=︒.(1)试说明://AB CD .(2)若228∠=︒,求3∠的度数.【答案】(1)见分析;(2)62︒【分析】(1)根据角平分线的定义,结合1290∠+∠=︒,可得180ABD BDC ∠+∠︒=,进而即可得到结论;(2)由228∠=︒,得162∠=︒,进而得62ABF ∠=︒,结合//AB CD ,即可得到答案.解:(1)∵ABD ∠和BDC ∠的角平分线交于点E ,∴21ABD ∠∠=,22BDC ∠∠=,又∵1290∠+∠=︒,∴2(12)180ABD BDC ∠+∠∠+∠=︒=,∴//AB CD ;(2)∵228∠=︒,1290∠+∠=︒,∴162∠=︒,又∵BF 平分ABD ∠,∴162ABF ∠=∠=︒,又∵//AB CD ,∴362ABF ∠=∠=︒.【点拨】本题主要考查角平分线的定义,平行线的判定和性质定理,掌握“同旁内角互补,两直线平行”,“两直线平行,内错角相等”,是解题的关键.【变式1】(2012下·广东茂名·七年级统考期中)两条平行线被第三条直线所截,一对同旁内角的比为4:5,则这两个角中较小的角的度数为()A .20︒B .80︒C .100︒D .120︒【答案】B【分析】根据比例设两个角为4x 、5x ,再根据两直线平行,同旁内角互补列式求解即可.解:设两个角分别为4x 、5x ,∵这两个角是两平行线被截所得到的同旁内角,∴45180x x +=︒,解得20x =︒,480x =︒,5100x =︒,所以较小的角的度数等于80︒.故选:B .【点拨】本题考查了平行线的性质,主要利用了两直线平行,同旁内角互补的性质,熟记性质是解题的关键.【变式2】(2023下·辽宁大连·七年级统考期末)如图,AB ∥CD ,射线AE 交CD 于点F ,若∠1=116°,则∠2的度数等于.【答案】64°【分析】根据两直线平行,同旁内角互补可求出∠AFD 的度数,然后根据对顶角相等求出∠2的度数.解:∵AB ∥CD ,∴∠1+∠AFD =180°.∵∠1=116°,∴∠AFD =64°.∵∠2和∠AFD 是对顶角,∴∠2=∠AFD =64°.故答案为64°.【点拨】本题考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补.【平行线性质探究角的关系】【考点4】平行线判探究角的关系或求角度【例4】(2017下·北京东城·七年级统考期中)已知:直线AB CD ,点M 、N 分别在直线AB 、直线CD 上,点E 为平面内一点,(1)如图1,请写出AME ∠,E ∠,ENC ∠之间的数量关系,并给出证明;(2)如图2,利用(1)的结论解决问题,若30AME ∠=︒,EF 平分MEN ∠,NP 平分ENC ∠,EQ NP ∥,求FEQ ∠的度数;(3)如图3,点G 为CD 上一点,AMN m EMN ∠=∠,GEK m GEM ∠=∠,EH MN 交AB 于点H ,GEK ∠,BMN ∠,GEH ∠之间的数量关系(用含m 的式子表示)是.【答案】(1)MEN AME ENC ∠=∠+∠,证明见分析;(2)15︒;(3)180GEK BMN m GEH ∠+∠-∠=︒.【分析】(1)过点E 作EE AB ' ,根据平行线的性质进行证明即可;(2)利用EF 平分MEN ∠,NP 平分ENC ∠,可得11,22NEF MEN ENP ENC ∠=∠∠=∠,再根据MEN AME ENC ∠=∠+∠,进行等量代换进行计算即可;(3)由已知条件可得11,22NEF MEN ENP ENC ∠=∠∠=∠,1EMN HEM AMN m∠=∠=∠,再根据平行线的性质进行各角的等量转换即可.解:(1)MEN AME ∠=∠+∠,证明如下:如图1所示,过点E 作EE AB ' ,∵AB CD ,∴AB CD EE 'P P ,∴1,2AME ENC ∠=∠∠=∠,∵12MEN ∠=∠+∠,∴MEN AME ENC ∠=∠+∠.(2)∵EF 平分MEN ∠,NP 平分ENC ∠,∴11,22NEF MEN ENP ENC ∠=∠∠=∠.∵EQ NP ∥,30AME ∠=︒,∴12QEN ENP ENC ∠=∠=∠.∵MEN AME ENC ∠=∠+∠,∴30MEN ENC AME ∠-∠=∠=︒,∴111130152222FEQ FEN QEN MEN ENC AME ∠=∠-∠=∠-∠=∠=⨯︒=︒.(3)180GEK BMN m GEH ∠+∠-∠=︒.证明如下:∵AMN m EMN ∠=∠,GEK m GEM ∠=∠,∴1EMN AMN m ∠=∠,1GEM GEK m∠=∠.∵EH MN ,∴1EMN HEM AMN m∠=∠=∠,∵11GEH GEM HEM GEK AMN m m ∠=∠-∠=∠-∠,∴m GEH GEK AMN ∠=∠-∠,∵180AMN BMN ∠=︒-∠,∴()180m GEH GEK BMN ∠=∠-︒-∠,180GEK BMN m GEH ∠+∠-∠=︒.故答案为:180GEK BMN m GEH ∠+∠-∠=︒.【点拨】本题考查了平行线的判定和性质,角的平分线,熟练掌握平行线的判定和性质是解题的关键.【变式1】(2022下·贵州黔南·七年级统考期中)如图,在五边形ABCDE 中,AE BC ∥,则C D E ∠+∠+∠=()A .540︒B .360︒C .270︒D .180︒【答案】B 【分析】首先过点D 作DF AE ∥,交AB 于点F ,由AE BC ∥,可证得AE DF BC ∥∥,然后由两直线平行,同旁内角互补可知180E EDF Ð+Ð=°,180CDF C Ð+Ð=°,继而证得结论.解:过点D 作DF AE ∥,交AB 于点F ,AE BC ∥,AE DF BC ∴∥∥,180E EDF ∴∠+∠=︒,180CDF C Ð+Ð=°,360C CDE E \Ð+Ð+Ð=°.故选:B .【点拨】此题考查了平行线的性质,注意掌握辅助线的作法,注意数形结合思想的应用.【变式2】(2023下·广东江门·七年级统考期末)如图,AB ∥CD ,∠ABF =23∠ABE ,∠CDF =23∠CDE ,则∠E :∠F 等于【答案】3:2解:如图,过点E、F分别作EG∥AB、FH∥AB,又因AB∥CD,根据平行线的传递性可得AB∥EG∥FH∥CD,∵AB∥FH,∴∠ABF=∠BFH,∵FH∥CD,∴∠CDF=∠DFH,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE;∵∠ABF=23∠ABE,∠CDF=23∠CDE,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF=23(∠ABE+∠CDE)=23∠BED,∴∠BED:∠BFD=3:2.故答案为:3:2.【点拨】本题主要考查了平行线的性质,解决这类题目要常作的辅助线(平行线),充分运用平行线的性质探求角之间的关系是解题的关键.【平行线性质性质与判定综合】【考点5】平行线判定与性质求角度【例5】(2023上·广东潮州·八年级校考阶段练习)如图,A B、两处是灯塔,船只在C处,B处在A 处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求船只与两灯塔的视角ACB的度数.【答案】85°【分析】根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°,然后根据平行线的性质与三角形内角和定理即可求解.解:如图,根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°.∵∠BAE=45°,∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°.∵AE ,DB 是正南正北方向,∴BD ∥AE ,∵∠DBA=∠BAE=45°,又∵∠DBC=80°,∴∠ABC=80°-45°=35°,∴∠ACB=180°-∠ABC-∠BAC=180°-60°-35°=85°.题的关键.【变式1】(2023下·甘肃白银·八年级统考期末)如图所示,已知AB EF ∥,那么BAC ACE CEF ∠+∠+∠=()A .180°B .270°C .360°D .540°【答案】C 【分析】先根据平行线的性质得出180180BAC ACD DCE CEF ∠+∠=︒∠+∠=︒,,进而可得出结论.解:过点C 作CD EF ∥,∥Q AB EF ,AB CD EF \∥∥,∴180180BAC ACD DCE CEF ∠+∠=︒∠+∠=︒①,②,由①②+得,360BAC ACD DCE CEF ∠+∠+∠+∠=︒,即360BAC ACE CEF Ð+Ð+Ð=°.故选:C .【点拨】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.【变式2】(四川省成都市金牛区2020-2021学年七年级下学期期末数学试题)一副直角三角板如图放在直线m 、n 之间,且//m n ,则图中1∠=度.【答案】15【分析】如图,过点A 作AC ∥m ,则有////AC m n ,然后可得,45BAC CAD CAD ADE ∠=∠∠=∠=︒,进而问题可求解.解:如图所示,过点A 作AC ∥m ,∵//m n ,∴////AC m n ,∴1,45BAC CAD ADE ∠=∠∠=∠=︒,∵60BAC CAD ∠+∠=︒,∴115BAD CAD ∠=∠-∠=︒;故答案为15.【点拨】本题主要考查平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.【考点6】平行线判定与性质证明【例6】(2023下·七年级课时练习)如图,BD 平分ABC ∠,ED BC ∥,130∠=︒,4120∠=︒.(1)求2∠,3∠的度数;(2)证明:DF AB .【答案】(1)230∠=︒,360∠=︒;(2)见详解【分析】(1)根据BD 平分ABC ∠,112ABD ABC ∠=∠=∠,即有130ABD ∠=∠=︒,60ABC ∠=︒,再结合ED BC ∥,即可求解;(2)由60ABC ∠=︒,4120∠=︒可得ABC ∠4=180+∠︒,则DF AB ,问题得解.解:(1)∵BD 平分ABC ∠,130∠=︒,∴112ABD ABC ∠=∠=∠,∴130ABD ∠=∠=︒,60ABC ∠=︒,∵ED BC ∥,∴2130∠=∠=︒,360ABC ∠=∠=︒,即:230∠=︒,360∠=︒;(2)∵60ABC ∠=︒,4120∠=︒,∴ABC ∠4=180+∠︒,∴DF AB .【点拨】本题主要考查了角平分线的定义,平行线的判定与性质等知识,掌握两直线平行同位角相等;两直线平行同位角相等;两直线平行,同旁内角互补是解答本题的关键.【变式1】(2020上·河南洛阳·七年级统考期末)如图,若12∠=∠,DE BC ∥,则下列结论:①FG DC ;②AED ACB ∠=∠;③CD 平分ACB ∠;④190B ∠+∠=︒;⑤BFG BDC ∠=∠.其中,正确结论的个数为()A .2个B .3个C .4个D .5个【答案】B 【分析】由平行线的性质得出内错角相等、同位角相等,得出②正确;再由已知条件证出2DCB =∠∠,得出FG DC ,①正确;由平行线的性质得出⑤正确;即可得出结果.解:DE BC ∥,1DCB ∴∠=∠,AED ACB ∠=∠,故②正确;12∠=∠ ,2DCB ∴∠=∠,FG DC ∴∥,故①正确;BFG BDC ∴∠=∠,故⑤正确;而CD 不一定平分ACB ∠,1B ∠+∠不一定等于90︒,故③,④错误;故选:B .【点拨】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.【变式2】(2021下·江苏盐城·七年级统考期中)如图a b ,c 与a 相交,d 与b 相交,下列说法:①若12∠=∠,则3=4∠∠;②若14180∠+∠=︒,则c d ∥;③4231∠-∠=∠-∠;④1234360∠+∠+∠+∠=︒正确的有(填序号)【答案】①②③【分析】根据平行线的性质和判定逐一进行判断即可.解:如图,①若∠1=∠2,则b ∥e ,则∠3=∠4,故原说法正确;②若∠1+∠4=180°,则c ∥d ;故原说法正确;③由a ∥b 得到∠1=∠6,∠5+∠4=180°,由∠2+∠3+∠5+180°-∠6=360°得,∠2+∠3+180°-∠4+180°-∠1=360°,则∠4-∠2=∠3-∠1,故原说法正确;④由③得,只有∠1+∠4=∠2+∠3=180°时,∠1+∠2+∠3+∠4=360°.故原说法错误.正确的有①②③,故答案为:①②③.【点拨】本题考查了平行线的判定与性质,熟练掌握平行线的性质与判定是解题的关键.【平行线间的距离】【考点7】平行线间的距离(应用)【例7】(2022下·贵州遵义·七年级校考阶段练习)如图,直线a b ∥,AB 与a ,b 分别交于点A ,B ,且AC AB ⊥,AC 交直线b 于点C .(1)若160∠= ,求2∠的度数;(2)若6,8AC AB ==,10BC =,求直线a 与b 的距离.【答案】(1)30︒;(2)245【分析】(1)由直线a b ∥,根据平行线的性质得出3160∠=∠=︒,再由AC AB ⊥,根据垂直的定义即可得到结果;(2)过A 作AD BC ⊥于D ,根据1122ABC S AB AC BC AD =⨯⨯=⨯⨯ ,即可求解.解:(1)∵a b∥∴3160∠=∠=︒又∵AC AB⊥∴290330∠=︒-∠=︒(2)如图,过A 作AD BC ⊥于D ,则AD 的长即为直线a 与b 的距离∵6,8AC AB ==,10BC =,ABC 是直角三角形∵1122ABC S AB AC BC AD =⨯⨯=⨯⨯ ∴8624105AB AC AD BC ⨯⨯===∴直线a 与b 的距离245【点拨】本题考查了平行线的性质及三角形的面积,解题的关键是掌握:从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.【变式1】(2021下·安徽合肥·八年级统考期末)如图,123////l l l ,且相邻两条直线间的距离都是2,A ,B ,C 分别为1l ,2l ,3l 上的动点,连接AB 、AC 、BC ,AC 与2l 交于点D ,90ABC ∠=︒,则BD 的最小值为()A.2B.3C.4D.5【答案】A【分析】求BD的最小值可以转化为求点B到直线AC的距离,当BD⊥AC时,BD有最小值,根据题意求解即可.解:由题意可知当BD⊥AC时,BD有最小值,此时,AD=CD,∠ABC=90°,∴BD=AD=BD=12AC=2,∴BD的最小值为2.故选:A.【点拨】本题考查平行线的性质,需结合图形,根据平行线的性质推出相关角的关系从而进行求解.【变式2】(2019下·上海金山·七年级统考期中)已知直线a∥b∥c,a与b的距离是5cm,b与c的距离是3cm,则a与c的距离是.【答案】8cm或2cm【分析】直线c的位置不确定,可分情况讨论.(1)直线c在直线b的上方,直线a和直线c之间的距离为5cm+3cm=8cm;(2)直线c在直线a、b的之间,直线a和直线c之间的距离为5cm-3cm=2cm.解:(1)直线c在直线b1:直线a和直线c之间的距离为5cm+3cm=8cm;(2)直线c在直线a、b的之间,如图2:直线a和直线c之间的距离为5cm-3cm=2cm;所以a与c的距离是8cm或2cm,故答案为8cm或2cm.【点拨】此题考查两线间的距离,本题需注意直线c的位置不确定,需分情况讨论.。

北师大版七年级数学下册第二章相交线与平行线回顾与思考课件

北师大版七年级数学下册第二章相交线与平行线回顾与思考课件

试说明:∠ADG=∠C 解:∵BD⊥AC,EF⊥AC(已知)
∴∠2=∠3=90°(垂直的定义)
∴BD∥ EF (同位角相等,两直线平)行 ∴∠4=_∠_5___(两直线平行,同位角相)等
∵∠1=∠4 ( 已知

∴∠1=_∠__5__( 等量代换

∴ DG ∥BC (内错角相等,两直线平)行
∴∠ADG=∠C(两直线平行,同位角相等)
6.已知一个角的补角加上10°后,等于这个角余角 的3倍,则这个角的补角是 __ 度。
解:设这个角的度数为x, 则它的补角为:1800-x 它的余角为:900-x
所以有: 1800 - x+100 = 3(900-x) 得: x = 400
所以,它的补角为1400
平行线的判定方法:(数学语言) ①∵∠1=∠2(已知)
2,当点E在图(2)位置时,∠B,∠D,∠BED之间有何关系?
பைடு நூலகம்
A
B
A
B
E
E
C A
D
C
B
A
D B
E
E
C A
D C
B
D
E
∠B+∠E=∠BDE
C
D
3,思考:E的位置还可以在哪里?(除了在直线AB和CD上以外)
随着E的位置变化,∠BED 与∠B、∠D的数量关系会产生 变化吗?
E
A
B
E
A
B
C
图3
D
∠BED=∠B-∠D
互相平行)
∴∠D =∠DEF(两直线平行,内错角相等) ∴∠B+∠D=∠BEF+∠DEF
=∠DEB. 即∠B+∠D=∠DEB.
B E ……F

新北师大版七年级数学下册第二章平行线与相交线知识点梳理汇总

新北师大版七年级数学下册第二章平行线与相交线知识点梳理汇总

新北师大版七年级数学下册第二章平行线与相交线知识点梳理汇总
本文档旨在对新北师大版七年级数学下册第二章平行线与相交
线的知识点进行梳理和汇总。

1. 定义与性质
- 平行线的定义:如果两条直线在同一个平面内,且它们不相交,那么我们称这两条直线为平行线。

- 平行线的性质:
- 平行线上的任意一对对应角相等。

- 平行线上的内错角、同旁内角、同旁外角相等。

2. 平行线的判定
- 相关定理:
- 如果两条直线被第三条直线截断,并且对应的内错角相等或
同旁内角互补,则这两条直线平行。

- 如果两条直线被第三条直线截断,并且对应的同旁外角相等,则这两条直线平行。

3. 直线与平面的相交关系
- 直线与平面的相交情况:
- 直线与平面相交于一点。

- 直线与平面相交于一条直线。

4. 平面与平面的相交关系
- 平面与平面的相交情况:
- 两平面交于一条直线。

- 两平面平行。

- 两平面重合。

5. 平行线与平面的相交关系
- 平行线与平面的相交情况:
- 平行线与平面相交于一点。

- 平行线与平面相交于一条直线。

以上是新北师大版七年级数学下册第二章平行线与相交线的知识点梳理和汇总。

通过研究这些知识,可以帮助同学们更好地理解和应用平行线与相交线的相关概念和定理。

参考资料:
- 新北师大版七年级数学下册教材。

初一数学下册相交线与平行线基础知识点

初一数学下册相交线与平行线基础知识点

初一数学下册相交线与平行线基础知识点
相交线与平行线基础知识点
一、关于相交线
1. 相交线是指两个不同的直线在一个面上产生交叉;
2. 交叉点就是两条直线之间的公共点,表示相交的位置;
3. 相交的角的性质:(1)相交的角是对角线;(2)两个交叉点连接形成的夹角,称之为"夹角";(3)两条相交线各自交叉点形成的夹角是相等的,称为"交叉角";
4. 直角定理是建立在相交线上的,它讲的是,在三角形中,两边为直角时,斜边的平方等于两边相加的平方;
二、关于平行线
1. 平行线指的是两条以上的不同线段,他们没有交叉点;
2. 两条平行线之间形成的夹角就是“平行角”,这个夹角的大小一般都是0°;
3. 对行定理:两条平行直线与一条横线所包围的锐角几何体,对边之和等于邻边之和;
4. 三角形相似定理也是建立在平行线这一基础上的,两个三角形的定义有两个平行直线,这时三角形的边长相等,那么两个三角形也是相似的。

北师大版七年级下册数学《两条直线的位置关系》相交线与平行线研讨说课复习课件

北师大版七年级下册数学《两条直线的位置关系》相交线与平行线研讨说课复习课件
量一量:图中是对顶角量角器,你能说出用它测量 角的度数的原理吗?
对顶角相等
探究新知
素养考点 1利用对顶角的性质求角的度数
例 如图,直线a,b相交,∠1=40°,求 ∠2,∠3,∠4的度数.
解:由平角的定义可知, ∠2=180°-∠1
=180°-40°=140°;
b
1( 2
a
4 )3
由对顶角相等可得,
12 43
58 67
所以∠2的补角有∠1,∠3,∠6和∠8.
连接中考
1.(2020•金昌)若α=70°,则α的补角的度数是( B ) A.130° B.110° C.30° D.20° 2.(2020•陕西)若∠A=23°,则∠A余角的大小是( B ) A.57° B.67° C.77° D.157°
DO
C
12 34
AN B
图2
图3
探究新知
将图2简化为图3,ON 与 DC 相交所成的 ∠ DON和∠CON
都等于90° ,且∠1=∠2.在图 3 中: (1)有哪些角互为补角?有哪些角互为余角? 互补的角: ∠1与∠AOC, ∠1与∠BOD,
DO
C
12
34
∠互2余与的∠角B:OD∠,1与∠∠2与3,∠∠AO1C与,∠∠4,D∠ON2与与∠∠4N,O∠C.2与∠A3,N图3 B (2) ∠3与∠4有什么关系?为什么?
第一课时垂线的定义及性质 核心要点 1垂线的有关概念:两条直线相交成四个角,如果有一个角是 直角 ,那么称这两条直线互相垂直,其中的一条直线叫做另一条直线 的 垂线 ,它们的交点叫做 垂足 。 2.垂线的性质: (1)平面内,过一点有且 只有一条 直线与已知直线垂直。 (2)直线外一点与直线上各点连接的所有线段中,垂线段 最短。 3.点到直线的距离:过点A作直线L的垂线,垂足为B,线段 AB 的长度叫做点A到直线L的距离。

北师大版七年级数学下册-第二章相交线与平行线同步串讲

北师大版七年级数学下册-第二章相交线与平行线同步串讲

· M
A · N
B
八.点到直线的距离
1.
2. 3.
定义:从直线外一点到这条直线的垂线段的 长度叫做点到直线的距离。 距离是一个数量;垂线段是一个图形。二者 不能混为一谈。 常见错误:“作出点到直线的距离”就是错 误的表述。
【例8】∠ACB=∠BDC=90°则:
① ② ③ ④ ⑤ 点A到直线BC的距离是( 点A到直线CD的距离是( 点B到直线AC的距离是( 点B到直线CD的距离是( 点C到直线AB的距离是(
1. 2. 3. 余角的性质:同角或等角的余角相等。 补角的性质:同角或等角的补角相等。 每个性质包含了两个两个“不同的性质”。 同角和等角符号语言中的条件是不同的。 举例:符号语言叙述“四个”性质。
(同角) (等角)
4.
∵∠B是∠A的补角;∠C是∠A 的补角。∴∠B=∠C ∵∠A=∠B,∠C是∠A的补角,∠D是∠B的补角∴∠C=∠D
2. 3. 4.
【例7】在平面内,下列语句错误的是(

A. 过一点有且只有一条直线与已知直线垂直。 B. 垂直于已知线段,并且经过这条线段中点的 线段只有一条。 C. 垂直于已知直线的垂线只有一条。 D. 直线外一点与直线上各点连接的所有线段中, 垂线段最短。
【练习】一汽车在笔直的公路上由A向B行驶, M、N为位于公里两侧的两所学校,当汽车 行驶到何处时,对两所学校的影响最大, 在图点标出来。
内蒙古包头瑞星教育原创精品课件——版权所有
第二章 相交线与平行线
七年级(下册)
点→线(两点定线)→角(两线)→(面)图→体
学习几何 基本规律
一个图(三角形、四边形---)形的定义,性质,判定
两个图形之间的关系:全等、相似、对称、位似----
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章平行线与相交线本章教学目标1. 经历观察、操作(包括测量、画、折等)、想像、推理、交流等过程,进一步发展空间观念、推理能力和有条理表达能务。

2. 在具体情境中了解补角、余角、对顶角,知道等角的余角相等,等角的补角相等、对顶角相等。

会用三角尽过已知直线外一点画这条直线的平行线;会用尽规作一条线段等于已知线段、作一个角等于已知角。

3. 经历探索直线平行的条件以及平行线特征的过程,掌握直线平行的条件及平行线的特征。

4. 进一步激发学生对数学方面的兴趣,体验从数学的角度认识现实。

本章教学重点、难点教学重点:(1)余角、补角、对顶角的概念及其初步应用(2)探索直线平行的条件及其应用。

(3)平行线的特征及其应用。

(4)用尺规作线段和角。

教学难点:(1)应用直线平行条件及平行线特征解决问题(2)初步学会有条理的表达。

本章知识之间联系如下2.1余角与补角教学目标1、 经历观察、操作、推理、交流等过程,进一步发展空间观念、推理能力和有条理表达 的能力;2、 在具体情景中了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对 顶角相等,并能解决一些实际问题。

教学重点、难点教学重点:1、余角、补角、对顶角的概念;2、理解等角的余角相等、等角的补角相等、对顶角相等。

教学难点:理解等角的余角相等、等角的补角相等•判断是否是对顶角。

教学方法在教学中,将采用发现式教学法,通过学生自主、独立地发现问题,通过操作、表达与 交流等探索活动,获取知识技能、发展情感与态度。

教学过程一、巧妙设疑,复习引入 如图1,将矩形纸片沿虚线剪开。

问题1:所得的• 1与.2有什么关系? 问题2:从图1中,你能找出和为180的两个角吗?、讲授新课1、 余角和补角概念余角:如果两个角的和是直角,那么这两个角互为余角。

补角:如果两个角的和是平角,那么这两个角互为补角。

2、 探索有关余角和补角的性质参照教材p59光的反射实验提出下列问题:(1) 模拟试验:通过模拟光的反射的试验,为学生提供生 动有趣的问题情景,将其抽象为几何图形,为下面的 探索做好准备。

(2) 利用抽象出的几何图形分三个层次提出问题, 进行探究。

1) 说出图中各角与/ 3的关系。

将学生的回答分类总结,从 而得到余角、补角的定义。

2) 图中还有哪些角互补?哪些角互余?在巩固刚刚得到的概 念的同时,为下一个问题作好铺垫。

3) 图中都有哪些角相等?由此你能够得到什么样的结论?在 学生充分探究、交流后,得到余角、补角的性质。

结论:同角或等角的余角相等,同角或等角的补角相等。

3、 引出对顶角的概念参照教材剪子的实验,抽象出几何图形后提出下列问题:(1) 用剪子剪东西时,哪对角同时变大或变小?你能说明理由吗? 复习巩固上面刚刚得出的性质的同时,为下一个问题作好铺垫。

)1\ \N(2)你能发现这样的两个角有怎样的位置关系吗?(通过学生观察,总结,得出对顶角的概念。

)(3)在图2中,还有相等的角吗?这几组相等的角在位置上有什么样的关系,你能试着描述一下吗?(总结得出对顶角的性质。

)如图2,直线AB与CD相交于点0,. 1与.2有公共顶点0,它们的两边互为反向延长线,这样的两个角叫做对顶角。

4、对顶角的性质问题1:如图2, 1与.2有怎样的数量关系?问题2:你能说明,为什么有这样的数量关系吗?三、变式训练,熟练技能(1)已知,.1 =20,2 =30,3 = 40,能否说.1,2,. 3互为余角?(2)女口图3, 1 =30,. 2 =62,能否说.1与.2互为余角?(3)若.1,. 2 互为余角,1 =50,则.2= __________ 。

-^:4)若.1,2互为补角,• 1=120 ,贝UZ2= ________ 。

(5)锐角的补角是__ 角,直角的补角是_____ 角,钝角的补角是____ 角。

(6)_________________________________________ 若•与•[是对顶角,/二-20,则「= _____________________________ 。

(7)如图4所示,有一个破损的扇形零件,你能否利用量角器测出这个扇形零件的圆心角的度数?你的根据是什么?答案:(1)不能;(2)不能;(3)40 ; (4)60 ; (5)钝直锐;(6)20 (7)能,根据对顶角相等。

四、课堂总结1、本节课的主要知识点:1)余角、补角的定义;2)同角或等角的余角相等,同角或等角的补角相等;3)对顶角的定义;4)对顶角相等。

2、需要提升的观点:1)余角、补角指两个角之间的数量关系,而并非位置关系;2)当我们要说明两个角相等时,到目前为止有两种方法:方法一是用等式的性质证明; 方法二是用同角或等角的余角相等,同角或等角的补角相等。

五、布置作业课后作业:教材习题2.1六、拓展练习如图,先找到长方形纸的宽DC的中点E,将/C过点E折起任意一个角,折痕是EF,再将/ D过点E折起,使DE与HE重合,折痕是GE请探索下列问题:(1)Z GEF是直角吗?为什么?(2)Z FEH与/ GEK余吗?为什么?(3)在上述折纸的图形中,还有哪些角互为余角?还有哪些角互为补角?2.2探索直线平行的条件(一)教学目标1、经历探索直线平行的条件的过程,掌握直线平行的条件1,并能解决一些问题;2、会用三角心过直线外一点画这条直线的平行线;3、经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达的能力。

教学重点、难点教学重点:会认各种图形下的同位角,并掌握直线平行的条件是“同位角相等,两直线平行” 教学难点:判断两直线平行的说理过程教学方法本课采用“探究与合作交流”的教学方法,通过自探索、合作交流对直线平行的条件进行探索、合作交流对直线平行的条件进行探索。

教学过程一、巧妙设疑,复习引入记得哲学家罗素说过:“数学,如果正确地看待它,不但拥有真理,而且有至高的美。

然而数学的美是潜在的,比如说平行线在我们的生活中无处不在,这些都需要我们用心去体验,现在以教室为背景,同学们想一想,哪些地方存在着平行线?1、平行线的概念(1)什么叫平行线?在同一平面内,两条不相交的直线叫平行线。

(2)两条平行线必须符合什么条件?在同一平面内没有交点。

2、引出课题这些直线平行都给我们一种直观的感觉,那么满足什么条件的两直线是互相平行的呢?引出课题:探索直线平行的条件(一)二、讲授新课1、创设情境我们来探讨一个生活中的情境:一位装修工人正向墙上钉木条,要使得两根木条a,b平行。

问题1:如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘的夹角为多少度时,才能使木条a与b平行?答:木条a与墙壁边缘的夹角为90时,才能使木条a与b平行。

问题2:如果木条b与墙壁边缘不垂直,夹角.1 =45,那么木条a与墙壁边缘所夹角• 2 为多少度时,才能使木条a与b平行?答:• 1工/2 =45时,木条a与b平行小结:我们发现• 1- 2时,木条a与b平行。

2、探究试验试验:材料:三根木条(纸条),纸板。

(两位学生一组,提前一天做好)如图图11,三根木条相交成• 1,2,固定木条a,c,转动木条b,观察• 1,2满足什么条件时木条a与b平行。

操作:(1)按.1为锐角、直角、钝角将全班分成三种情况来试验;(2)转动木条b,观察.1,. 2满足什么条件时木条a与b平行试验结论:.1—2时,木条a与b平行3、建构同位角的概念,得出直线平行的条件1 同位角的概念:具有• 1,. 2这样位置关系的角称为同位角;直线平行的条件1:同位角相等,两直线平行。

三、变式训练,熟悉技能练习1:如图2,直线AB、CD被EF所截,(1)• 1的同位角是,■ 2的同位角是_________ ;(2)当.1 = 2 55时,直线AB,CD平行吗?说明你的理由。

答案:(1). 3,. FGB(2)平行。

因为.1-/2,. 2 二/3,所以.1 二/3。

所以AB//CD 练习2:找出点阵中互相平行的线段(如图3),并说明理由(点阵图2 H中相邻的四个点构成正方形)练习3:如图4,甲从A处沿正东偏南55方向行走,乙从B处沿正东偏南35方向行走,(1)他们所行道路可能相交吗?(2)当乙从B处沿什么方向行走,他们所行道路不相交?请说明其中的理由。

答案:(1)他们所行道路一定相交;(2)东偏南55方向走,所行道路不会相交;图3因为.1与.2是同位角,并且相等,所以两个个方向是平行的四、迁移应用,深化提高练习4:(1)你还记得怎样移动三角尺画两条平行线吗?(2)请用这种方法过已知直线外一点画它的平行线(如图5)。

请说出其中的道理:____________________答案:图略,根据是同位角相等,两直线平行。

练习5: —张纸上画有两条线段,请你设计一个方案,判断这两条线段是否平行。

答案:画直线相交,构建“三线八角”,测量其中的一对同位角,看是否相等。

五、课堂总结本节课的主要知识点①同位角的概念;②直线平行的条件1:同位角相等,两直线平行。

六、布置作业(1)如图1,如果.1-4,根据 ____________________________可得AB//CD ;(2)_______________________________ 如图2,如果• 1 - D,那么// __________________________ ;(3)_______________________________ 如图2,如果• 1=/B,那么// __________________________ 。

图2答案:(1)同位角相等,两直线平行(2) BC AD (3)AB DC2.2探索直线平行的条件(二)教学目标1、经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,推理能力和有条理的表达能力。

2、通过分析题意,能灵活地选用判定直线平行的方法进行说理。

教学重点、难点教学重点:直线平行的条件。

教学难点:选取适当判定直线平行的方法进行说理。

教学方法让学生通过观察,想象,推理,交流等过程,发展学生的空间观念,逻辑推理能力和准确条理的语言表达能力,并在学习中让学生对比三种判定直线平行的方法,建立三种方法间的联系,同时渗透转化的数学思想。

教学过程、巧妙设疑,复习引入1、上节课,我们学习了哪种判定直线平行的方法?2、给出实际问题:小明有一块小画板,他想知道它的上下边缘是否平行,于是他在两个边缘之间画了一条线段AB (如图所示)。

明只有一个量角器,他通过测量某些角的大小就能知道这个画板的上下边缘是否平行,你知道他是怎样做的吗?3、画板上下边缘是否平行能利用同位角来判断吗?如果不能,是否可以利用其他角来判断?请你先自主探索,再与同伴交流。

相关文档
最新文档