一元二次方程测试题(含答案)

合集下载

九年级数学解一元二次方程专项练习题(带答案)【40道】

九年级数学解一元二次方程专项练习题(带答案)【40道】

解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)

一元二次方程测试题(时间120分钟满分150分)一、填空题:(每题2分共50分)1.一元二次方程(1-3x)(x+3)=2x2+1 化为一般形式为:,二次项系数为:,一次项系数为:,常数项为:。

2.若m是方程x2+x-1=0的一个根,试求代数式m3+2m2+2013的值为。

3.方程是关于x的一元二次方程,则m的值为。

4.关于x的一元二次方程的一个根为0,则a的值为。

5.若代数式与的值互为相反数,则的值是。

6.已知的值为2,则的值为。

7.若方程是关于x的一元二次方程,则m的取值范围是。

8.已知关于x的一元二次方程的系数满足,则此方程必有一根为。

9.已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是。

10.设x1,x2是方程x2﹣x﹣2013=0的两实数根,则= 。

11.已知x=﹣2是方程x2+mx﹣6=0的一个根,则方程的另一个根是。

12.若,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是。

13.设m、n是一元二次方程x2+3x-7=0的两个根,则m2+4m+n=。

14.一元二次方程(a+1)x2-ax+a2-1=0的一个根为0,则a= 。

15.若关于x的方程x2+(a﹣1)x+a2=0的两根互为倒数,则a= 。

16.关于x的两个方程x2﹣x﹣2=0与有一个解相同,则a= 。

17.已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③.则正确结论的序号是.(填上你认为正确结论的所有序号)18.a是二次项系数,b是一次项系数,c是常数项,且满足+(b-2)2+|a+b+c|=0,满足条件的一元二次方程是。

19.巳知a、b是一元二次方程x2-2x-1=0的两个实数根,则代数式(a-b)(a+b-2)+ab的值等于____.20.已知关于x的方程x2+(2k+1)x+k2-2=0的两实根的平方和等于11,则k的值为.21.已知分式,当x=2时,分式无意义,则a= ;当a<6时,使分式无意义的x的值共有个.22.设x1、x2是一元二次方程x2+5x﹣3=0的两个实根,且,则a= 。

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)一元二次方程测试题一、填空题:(每题2分共5分)1.将一元二次方程(1-3x)(x+3)=2x2化为一般形式为:2x^2-9x-9=0,二次项系数为2,一次项系数为-9,常数项为-9.2.若m是方程x^2+x-1=0的一个根,代入m+2m+2013得到(m+1)^2+2012的值为。

3.方程2+x-1=0是关于x的一元二次方程,根据一元二次方程的定义,二次项系数为1,一次项系数为1,常数项为-1.所以m的值为1.4.关于x的一元二次方程a-2x+x^2+a-4=0的一个根为x=2,则代入得到a=5.5.代数式4x-2x-5与2x+1的值互为相反数,即4x-2x-5=-(2x+1),解得x=-3/2.代入4y^2+2y+1得到9/2.6.已知2y+y-3的值为2,则代入4y^2+2y+1得到21.7.若方程(m-1)x+m·x=1是关于x的一元二次方程,则根据一元二次方程的定义,二次项系数为m-1+m=2m-1,一次项系数为m,常数项为1.所以m的取值范围为m≠1/2.8.已知关于x的一元二次方程x^2-x-1=0的一个根为x=2,则代入得到另一个根为x=-1.9.已知关于x的一元二次方程x^2+mx-6=0的一个根为2,代入得到另一个根为-3,且m的取值范围为m≠0.10.设x1,x2是方程x^2+bx+b-1=0有两个相等的实数根,则根据一元二次方程的定义,判别式D=b^2-4(b-1)=0,解得b=2或b=-1.但由于有两个相等的实数根,所以b=2.11.已知x=-2是方程x^2-3x+k=0的一个根,代入得到k=-2.12.若2是方程x^2+mx-6=0的一个根,代入得到另一个根为-3,且一元二次方程kx+ax+b=0有两个实数根,则根据一元二次方程的定义,判别式D=a^2-4kb≥0,又因为有两个实数根,所以D>0,即a^2-4kb>0.代入得到k9/4.13.设m、n是一元二次方程x^2+2x-3=0的两个根,则根据一元二次方程的定义,二次项系数为1,一次项系数为2,常数项为-3,根据求根公式得到m+n=-2,mn=-3.代入得到m^2+n^2+4m+4n+4=10.14.一元二次方程(a+1)x^2-ax+a-1=0的一个根为x=1,则代入得到a=1/2.15.若关于x的方程x^2-2x+2=0的两个根互为倒数,则根据一元二次方程的定义,判别式D=8-8a≥0,解得0≤a≤1.代入得到a=1/2.16.关于x的两个方程x^2-2x+3=0和x^2-3x+2=0的公共根为x=1,则代入得到另一个根分别为2和1,正确结论的序号为①和②。

一元二次方程100道计算题练习(含答案)

一元二次方程100道计算题练习(含答案)

一元二次方程100道计算题练习(含答案)1、(x+4)=5(x+4)^22、(x+1)=4x3、(x+3)=(1-2x)24、2x^2-10x=35、(x+5)^2=166、2(2x-1)-x(1-2x)=07、8x=648、5x^2-2=09、8(3-x)^2/5-72=010、3x(x+2)=5(x+2)11、(1-3y)^2+2(3y-1)=012、x^2+2x+3=013、x^2-4x+3=014、x^2-2x-1=015、3x^2+2x-1=016、5x^2-3x+2=017、-x^2+x+12=018、7x-4x-3=019、x-6x+9=020、(3x-2)=(2x-3)21、x-2x-4=022、(2x-3)-12=2(2x+2)23、x^2-9x+8=024、x=3/425、3x^2+8x-3=026、(3x+2)(x+3)=x+1427、无解28、2(x-3)^2=x^2-929、-3x^2+22x-24=030、(2x-1)+3(2x-1)+2=031、2x^2-9x+8=032、3x^2=x(5-x)33、(x+2)^2=8x34、x^2-4x+4=2x+335、7x+2x=3636、4t-4t+1=037、5x^2-2x-3=038、7x-31x+35=039、(2x-3)-12=2^240、2x^2-23x+65=0补充练:1、(x-2)^2=(2x-3)^22、x^2-4x+3=03、(x-5)-8(x-5)+16=24、(2y-1)^2=115、4(x-3)^2=256、(3x-2)^2=3(x-6)7、2x^2-5x+2=08、2x^2-7x+10=09、(x+1)^2-3(x+1)+2=(2x+1)^2-910、x^2-2x-3=01、某商场每天平均售出20件名牌衬衫,每件衬衫盈利40元。

为了增加销售和盈利,商场采取降价措施。

调查发现,每降价1元,每天可多售出2件衬衫。

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)

一元二次方程测试题(时间120分钟满分150分)一、填空题:(每题2分共50分)1.一元二次方程(1-3x )(x +3)=2x2+1 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。

2.若m 是方程x 2+x -1=0的一个根,试求代数式m 3+2m 2+2013的值为 。

3.方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。

4.关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

5.若代数式5242--x x 与122+x 的值互为相反数,则x 的值是 。

6.已知322-+y y 的值为2,则1242++y y的值为 。

7.若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

8.已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。

9.已知关于x 的一元二次方程x 2+bx+b ﹣1=0有两个相等的实数根,则b 的值是。

10.设x 1,x 2是方程x2﹣x ﹣2013=0的两实数根,则= 。

11.已知x=﹣2是方程x 2+mx ﹣6=0的一个根,则方程的另一个根是。

12.若,且一元二次方程kx 2+ax+b=0有两个实数根,则k 的取值范围是 。

13.设m 、n 是一元二次方程x 2+3x -7=0的两个根,则m 2+4m +n = 。

14.一元二次方程(a+1)x 2-ax+a 2-1=0的一个根为0,则a= 。

15.若关于x 的方程x2+(a ﹣1)x+a 2=0的两根互为倒数,则a =。

16.关于x 的两个方程x 2﹣x ﹣2=0与有一个解相同,则a = 。

17.已知关于x 的方程x2﹣(a+b )x+ab ﹣1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③.则正确结论的序号是 .(填上你认为正确结论的所有序号)18.a 是二次项系数,b 是一次项系数,c 是常数项,且满足1-a +(b -2)2+|a+b+c|=0,满足条件的一元二次方程是 。

完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)1、(x+4)=5(x+4)^22、(x+1)=4x3、(x+3)=(1-2x)^24、2x^2-10x=35、x^2=646、(x+5)^2=167、2(2x-1)-x(1-2x)=08、5x^2-2/5=09、8(3-x)^2-72=010、3x(x+2)=5(x+2)11、(1-3y)^2+2(3y-1)=012、x^2+2x+3=013、x^2+6x-5=014、x^2-4x+3=015、x^2-2x-1=016、2x^2+3x+1=017、3x^2+2x-1=018、5x^2-3x+2=019、3x-3=020、-2x+12=021、x^2-6x+9=022、3x-2=2x+323、x-2x-4=024、x=3/425、3x^2+8x-3=026、3x^2+11x+14=027、x=-9 or x=-228、2(x-3)^2=x^2-929、-3x^2+22x-24=030、4t^2-4t+1=031、(2x-3)^2-121=032、x^2-4x=033、(x+2)^2=8x34、x=1/3 or x=-235、7x^2+2x-36=036、x=1 or x=-1 or x=3/237、4(x-3)^2+x(x-3)=038、6x^2-31x+35=039、x=1/2 or x=140、2x^2-23x+65=0这是一组一元二次方程的计算题练,需要用不同的方法来解决这些问题。

为了方便,我们可以将这些方程按照不同的方法分类。

一种方法是因式分解法,另一种方法是开平方法,还有一种方法是配方法,最后一种方法是公式法。

根据不同的题目,我们可以选择不同的方法来解决问题。

例如,对于方程(x-2)^2=(2x-3)^2,我们可以使用因式分解法来解决。

将方程化简后,得到x=5/3或x=-1/3.对于方程2x^2-5x+2=0,我们可以使用配方法来解决。

将方程化简后,得到x=1/2或x=2.对于方程-3x^2+22x-24=0,我们可以使用公式法来解决。

(完整版)一元二次方程经典测试题(含答案)

(完整版)一元二次方程经典测试题(含答案)

一元二次方程测试题考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共12小题,每题3分,共36分)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣52.下列方程是一元二次方程的是( )A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣1)2+1=03.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.34.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=175.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是( )A.2秒钟 B.3秒钟 C.4秒钟 D.5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210C.2x+2(x+12)=210 D.2x+2(x﹣12)=2107.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根 B.有一正根一负根且正根的绝对值大C.有两个负根 D.有一正根一负根且负根的绝对值大8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1 B.或﹣1 C.D.﹣或19.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根 B.有两个负根C.有一正根一负根且正根绝对值大 D.有一正根一负根且负根绝对值大10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=111.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A.7 B.11 C.12 D.1612.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,每题3分,共24分)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x 1•x2=1,则b a的值是.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m= .16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q= .17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为米.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△0(填:“>"或“=”或“<”).评卷人得分三.解答题(共8小题)21.(6分)解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)22.(6分)关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.23.(6分)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.24.(6分)关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.25.(8分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.26.(8分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青"的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.27.(10分)某商店经销甲、乙两种商品,现有如下信息: 信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元; 信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元. 请根据以上信息,解答下列问题: (1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0。

一元二次方程经典测试题(含答案)

一元二次方程经典测试题(含答案)

一元二次方程经典测试题(含答案)一元二次方程经典测试题(含答案)1. 解下列一元二次方程:(1)x^2 - 5x + 6 = 0(2)2x^2 - 7x + 3 = 0(3)3x^2 + 4x - 1 = 0(4)4x^2 + 4x + 1 = 0解答:(1)x^2 - 5x + 6 = 0(x - 2)(x - 3) = 0x = 2 或 x = 3(2)2x^2 - 7x + 3 = 0(2x - 1)(x - 3) = 0x = 1/2 或 x = 3(3)3x^2 + 4x - 1 = 0(3x - 1)(x + 1) = 0x = 1/3 或 x = -1(4)4x^2 + 4x + 1 = 0(2x + 1)(2x + 1) = 0x = -1/22. 解下列一元二次方程并给出其图像是否与x轴正向相交:(1)x^2 - 4x + 3 = 0(2)2x^2 + 3x + 2 = 0(3)3x^2 - 6x + 3 = 0(4)4x^2 - 5x + 1 = 0解答:(1)x^2 - 4x + 3 = 0(x - 3)(x - 1) = 0x = 1 或 x = 3图像与x轴正向相交。

(2)2x^2 + 3x + 2 = 0该方程无实数解,图像不与x轴正向相交。

(3)3x^2 - 6x + 3 = 0x^2 - 2x + 1 = 0(x - 1)(x - 1) = 0x = 1图像与x轴正向相交。

(4)4x^2 - 5x + 1 = 0(2x - 1)(2x - 1) = 0x = 1/2图像与x轴正向相交。

3. 求解下列一元二次方程的根的范围:(1)x^2 - 6x + 5 > 0(2)2x^2 + 3x + 2 ≤ 0(3)3x^2 - 6x - 9 < 0(4)4x^2 - 5x + 1 ≥ 0解答:(1)x^2 - 6x + 5 > 0(x - 5)(x - 1) > 0x < 1 或 x > 5(2)2x^2 + 3x + 2 ≤ 0该方程无实数解,根的范围为空集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程测试题(含答案) 一元二次方程测试题1.一元二次方程$(1-3x)(x+3)=2x^2+1$化为一般形式为:二次项系数$2$,一次项系数$-7$,常数项$10$。

2.若$m$是方程$x^2+x-1=3mx+1$的一个根,代入可得$m+2\sqrt{m+2013}$的值为$-1$,解得$\sqrt{m+2013}=-\frac{m+1}{2}$,代入可得$m=-2014$。

4.关于$x$的一元二次方程$(a-2)x^2+x+a-4$的一个根为$1$,代入可得$a=5$。

5.若代数式$4x-2x-5$与$2x+1$的值互为相反数,则$x=-\frac{3}{2}$。

6.已知$2y+y-3=2$,代入可得$4y^2+2y+1=27$。

7.若方程$(m-1)x+m\cdot x=1$是关于$x$的一元二次方程,则$m$的取值范围为$m\neq 0$。

8.已知关于$x$的一元二次方程$ax+bx+c(a\neq 0)$的系数满足$a+c=b$,则此方程必有一根为$\frac{c}{a}$。

10.设$x_1,x_2$是方程$x^2+bx+b-1=0$有两个相等的实数根,则$b=2$。

12.若$x=-2$是方程$x^2+mx-6=0$的一个根,则方程的另一个根是$3$。

13.设$m,n$是一元二次方程$x^2+4x+m=0$的两个根,则$m+n=-4$。

14.一元二次方程$(a+1)x^2-ax+a-1=0$的一个根为$1$,代入可得$a=2$。

15.若关于$x$的方程$x^2-2ax+a^2=0$的两个根互为倒数,则$a=\pm\sqrt{2}$。

17.已知关于$x$的方程$x^2-x-2=0$与$2x^2-(a+b)x+ab-1=0$有一个解相同,则$a=1$。

18.$a$是二次项系数,$b$是一次项系数,$c$是常数项,且满足$a-1+(b-2)+|a+b+c|=0$,则满足条件的一元二次方程为$(a-1)x^2+(b-2)x+c=0$。

19.已知$a,b$是一元二次方程$x^2-2x-1=0$的两个实数根,则代数式$(a-b)(a+b-2)+ab$的值等于$-2$。

20.已知关于$x$的方程$x^2+(2k+1)x+k^2-2=0$的两实根的平方和等于$11$,则$k=\pm\sqrt{2}$。

21.已知分式$\frac{2x-6}{x-3}$的值等于$x+1$,则$x=4$。

22.当x=2时,分式无意义,则a=5;当a<6时,使分式无意义的x的值共有4个。

23.方程1999x^2-1998*2000x-1=0的较大根为r,方程2007x^2-2008x+1=0的两个实根,且2的较小根为s,则s-r的值为2006.24.若2x+5y-3=0,则4*32xy=192xy。

25.已知a,b是方程x^2-4x+m=0的两个根,b,c是方程y^2-8y+5m=0的两个根,则m的值为10.二、选择题:1、A;2、B;3、C;4、D;5、(1)、A;(2)、C;(3)、A;(4)、D;(5)、A;(6)、D;6、A;7、C;8、A。

1.无法理解这部分的内容,需要删除。

2.无法理解这部分的内容,需要删除。

3.将题目和选项排版整齐,修改为:关于x的方程:①,②,③,④中,一元二次方程的个数是()A.1 B.2 C.3 D.44.将题目和选项排版整齐,修改为:若方程nxm+xn-2x2=0是一元二次方程,则下列不可能的是()A.m=n=2B.m=2.n=1C.n=2.m=1D.m=n=15.将题目和选项排版整齐,修改为:已知m,n是关于x的一元二次方程x2-3x+a=0的两个解,若(m-1)(n-1)=-6,则a的值为()A.-10 B.4 C.-4 D.106.将题目和选项排版整齐,修改为:若m是关于x的一元二次方程x2+nx+m=0的根,且m≠0,则m+n的值为()A.-1B.1C.-2D.27.将题目和选项排版整齐,修改为:关于x的一元二次方程x2+nx+m=0的两根中只有一个等于0,则下列条件正确的是()A.m=0.n≠0 B.m≠0.n=0 C.m≠0.n≠0 D.m=0.n=08.将题目和选项排版整齐,修改为:若方程ax2+bx+c=(a≠0)中,a,b,c满足a+b+c=0和a-b+c=0,则方程的根是()A.1,0 B.-1,0 C.1,-1 D.无法确定9.证明:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程。

证明:将方程变形为(m2-8m+17)x2+2mx+1=0,可得该方程为关于x的二次方程。

因为m2-8m+17是一个常数,所以该方程对于所有的m都是一元二次方程。

因此,该方程不论m取何值,都是一元二次方程。

10.已知关于x的方程x2+x+n=0有两个实数根-2,m。

求m,n的值。

因为-2是该方程的实数根,所以将x+2作为该方程的一个因式,可得(x+2)(x+m)=0.因为该方程有两个实数根,所以另一个根为-2-m。

根据二次方程的性质,当且仅当判别式b2-4ac≥0时,方程才有实数根。

因此,(1)当m≥5时,判别式b2-4ac≥0,方程有两个实数根;(2)当m<5时,判别式b2-4ac<0,方程无实数根。

因此,m≥5,n=-2m;m<5时,n无解。

11.已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根。

1)由二次方程的求根公式可得,判别式b2-4ac=4-8k≥0,解得k≤1/2.因此,k的取值范围为(-∞,1/2]。

2)当k为正整数时,方程的根都是整数。

因为方程有两个不相等的实数根,所以k-1>0,即k>1.又因为k是正整数,所以只有k=2时,方程的根都是整数。

12.已知m是方程x2-x-2=0的一个实数根,求代数式m+n 的值。

因为m是方程x2-x-2=0的一个实数根,所以有m2-m-2=0,解得m=-1或m=2.因此,m+n的值为1或4.13.已知,关于x的方程x2-2mx=-m2+2x的两个实数根x1,x2满足x1=x2,求实数m的值。

因为x1=x2,所以x1-x2=0,代入方程可得2mx1+m2=0.因为x1,x2是方程的实数根,所以判别式b2-4ac≥0,解得m≥0.因此,m=0或m=-1.14.当x满足条件x(x-2)=4时,求出方程x2-2x-4=0的根。

将条件x(x-2)=4变形为x2-2x-4=0,可得该方程的两个根为x=2+2√3和x=2-2√3.9、已知一元二次方程$x^2+(m+3)x+m+1=0$,证明无论$m$取何值,该方程总有两个不相等的实数根。

然后,如果$x_1$和$x_2$是该方程的两个根,且$|x_1-x_2|=22$,求$m$的值以及该方程的两个根。

10、当$m$为何值时,方程$(m-4)x+2(m+1)x+1=0$有实根。

附加题:已知$x_1$和$x_2$是方程$4kx^2-4kx+k+1=0$的两个实数根。

1)是否存在实数$k$,使得$(2x_1-x_2)(x_1-2x_2)=-1$成立?如果存在,求出$k$的值;如果不存在,请说明理由。

2)求使得$x_1x_2-2$为整数的实数$k$的整数值。

答案:9、对于一元二次方程,当判别式$\Delta=b^2-4ac\geq0$时,方程有两个不相等的实数根。

代入题中的方程,得到$\Delta=(m+3)^2-4(m+1)=m^2+2m+1-4=-3+(m+1)^2\geq0$,所以无论$m$取何值,方程都有两个不相等的实数根。

接下来,由于$|x_1-x_2|=22$,所以$(x_1-x_2)^2=484$,即$(x_1+x_2)^2-4x_1x_2=484$。

而$x_1+x_2=-(m+3)$,$x_1x_2=\frac{m+1}{1}$,代入可得$m=-\frac{24}{5}$或$m=4$,对应的方程的两个根分别为$-\frac{5}{2}$和$-\frac{2}{5}$,或$-5$和$-1$。

10、当$m=4$时,方程化简为$6x+8=0$,有一个实根。

当$m\neq4$时,方程化简为$(m-2)x^2+2(m+1)x+1=0$,判别式为$4(m+1)^2-4(m-2)\geq0$,即$m^2+10m+9\geq0$,解得$m\in(-\infty,-1]\cup[-9,+\infty)$。

所以当$m\in(-\infty,-1]\cup(4,+\infty)$时,方程有两个实根。

附加题:1)将$(2x_1-x_2)(x_1-2x_2)=-1$展开,得到$2x_1^2-5x_1x_2+2x_2^2=1$。

由于$x_1$和$x_2$是方程$4kx^2-4kx+k+1=0$的两个根,所以$x_1+x_2=\frac{1}{k}$,$x_1x_2=\frac{k+1}{4k}$。

代入上式,得到$2(\frac{1}{k})^2-5\cdot\frac{k+1}{4k}\cdot\frac{1}{k}+2(\frac{k+1}{4k})^2=1$,化简可得$k=\frac{3}{4}$或$k=-\frac{1}{2}$。

所以存在$k=\frac{3}{4}$或$k=-\frac{1}{2}$时,$(2x_1-x_2)(x_1-2x_2)=-1$成立。

2)由于$x_1x_2=\frac{k+1}{4k}$,所以$x_1x_2-2=\frac{k-7}{4k}$。

要使得$x_1x_2-2$为整数,必须有$k-7=0$,即$k=7$。

所以满足条件的$k$的整数值为$7$。

22、已知一元二次方程 $x^2+5x-3=0$ 的两个实根为$x_1$ 和 $x_2$,求 $2x_1(x_2^2+6x_2-3)+a$ 的值。

解:由题意有 $x_1+x_2=-5$,$x_1x_2=-3$,$x_2^2+5x_2+2=0$。

又根据题目中的式子进行展开化简,得到 $2x_1(x_2^2+6x_2-3)+a=2x_1(3+x_2-3)+a=2x_1x_2+a=4$,解得 $a=14$。

23、24、25、题目缺失,无法进行修改。

二、选择题:1、已知 $a,b$ 是方程 $x^2-2x+1=0$ 的两个根,则$\frac{1}{a}+\frac{1}{b}$ 的值为()。

A。

$-2$。

B。

$0$。

C。

$2$。

D。

不存在解:由题意可得 $a+b=2$,$ab=1$,则$\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{2}{1}=2$,故选 C。

2、设 $x$ 满足方程 $x^2-2x-3=0$,则 $x^3$ 的值为()。

A。

$-5$。

相关文档
最新文档