有介质时的高斯定理,写出其物理意义

合集下载

介质的极化和介质中的高斯定理

介质的极化和介质中的高斯定理

部电都介产质生内附部加的电总场场E强'。E
E0
E'
E0
'
'
极化电荷所产生的附加电场不足以将介质中的外电
场完全抵消,它只能削弱外电场。称为退极化场。
介质内部的总场强不为零! 在各向同性均匀电介质中: E
E0
r
r称为相对介电常数或电容率。
3
二、介质中的高斯定理 电位移矢量
1.介质中的高斯定理
d
D2S 0S D1 D2 0 , D2 0
E2
D2
0r
0 0r
11
I区:D1
0,
E1
0 0
0
II区:D2 0 ,
②.求电容C
E2
0 0r
由C q U ab
与 U ab
Ed
高 斯
C q
0S

U ab E1(d d ' ) E 2d '
d' 0
D P1 P2
r
d
质中的高斯定理求场强:先根据自由电荷的分布利用 介质中的高斯定理求出电位移矢量的分布,再根据电 位移矢量与场强的关系求出场强的分布。
7
例1:将电荷 q 放置于半径为 R 相对电容率为 r 的介
质球中心,求:I 区、II区的 D、E、 及 U。
解:在介质球内、外各作半径为 r 的
高斯球面。
SD dS q0
荷密度为 0 , 其间插有厚度为 d’ 、电容率为 r 的电介质。
求 : ①. P1 、P2点的场强E;②.电容器的电容。
解: ①. 过 P1 点作高斯柱面, 左右底面分别经过导体
和 P1 点。
D SD dS q0

有电介质的高斯定理

有电介质的高斯定理

(2)根据电位移矢量与电场的关系,求出电场。
(3)根据电极化强度与电场的关系,求出电极化强度。 (4)根据束缚电荷与电极化强度关系,求出束缚电荷。
例1 平行板电容器上自由电荷面密度为 0 充满相对介电常数为 r 的均匀各向同 性电介质 求:板内的场 解:均匀极化 表面出现束缚电荷 故束缚电荷分布亦沿平面均匀分布 则:电场方向沿x方向
S1 S2 上底
0 0
r
S
S D d S D d S D d S D d
S
由高斯定理:
D 底 0 S 内 S
D 0
0 E 0 r
D
S3
下底 底
D 内 S 底
例2 一无限大各向同性均匀介质平板厚度为d 相对介电常数为r ,内部均匀分布体电荷密度为 0 的自由电荷 求:介质板内、外的 DEP 解: 面对称 取坐标系如图
o o
(2) U Q 2b r b r 1t Q C o S2 r b r 1t
问: Q左? =Q右
例 . 平板电容器极板面积为S间距为d,接在电池上维持V 。 均匀介质r 厚度d,插入电容器一半忽略边缘效应 求(1)1、2两区域的 E 和 D ;(2)介质内的极化强度 P, 表面的极化电荷密度 ' ;(3)1、2两区域极板上自由 2。 电荷面密度 1 , 解:(1)V E1d E2d
D 0d E 0 2 0 均匀场
2DS0 0 2 x S0 D 0 x 0 x D E 0 r 0 r
0
S
r
0x
x
x
2
P 0 r 1E 0
例3:将电荷 q 放置于半径为 R 相对电容率为 r 的介 质球中心,求:I 区、II区的 D、E、 及 U。 解:在介质球内、外各作半径为 r 的 高斯球面。 R D dS q

第七节 有电介质时的高斯定理

第七节 有电介质时的高斯定理

3
第七节 有电介质时的高斯定理
1. 有极分子和无极分子
电介质
无极分子:(氢、甲烷、石蜡等)
有极分子:(水、有机玻璃等)
有极分子— 极性电介质
特点:分子正负电重心不重合,有固有电偶极矩;
4
第七节 有电介质时的高斯定理
无极分子 — 非极性电介质 例如 H2、O2、CO2、CH4
特点:分子正负电中心重合,无固有电偶极
布求得合场强的分布。
11
第七节 有电介质时的高斯定理
例 7-13 设一带电量为Q 的点电荷周围充满电容率 为 的均匀介质,求场强分布。 解: 根据介质中的高斯定理
2 D ds D 4 r q0
S
r
q0 D 4 r 2
1 q0 E 2 4 r D
8
第七节 有电介质时的高斯定理
(2)有电介质时的高斯定理
1 SE dS ε0 (Q0 Q)
Q0 由 εr Q0 - Q
Q0
Q
Q0 得 E dS S ε0 ε r

S
0 r E dS Q0
9
第七节 有电介质时的高斯定理

S
0 r E dS Q0
S
D 2 π rl l
D

2πr


D E ε0 ε r 2 π ε0 ε r r
( R1 r R2 )
R2
r
R1
14
第七章 静电场
一 电介质的极化
二 有电介质时的高斯定理
1
第七节 有电介质时的高斯定理
一、电介质的极化
电介质指的是导电性极差的物质。在电介质内 几乎不存在自由电子(或正离子)。通常条件下的

电介质中的高斯定理

电介质中的高斯定理

电介质中的高斯定理
高斯定理,也称为高斯定律或高斯定律,是电磁学中的一个重要定理,描述了电场在电介质中的性质。

其表达式为:
∮S E · da = Q / ε₀
其中,S表示闭合曲面,E表示电场强度,da表示曲面元素的面积矢量,∮表示对整个闭合曲面求面积分,Q表示闭合曲面内的电荷总量,ε₀表示真空介电常数。

高斯定理的意义是,通过对闭合曲面内的电场强度的面积分,可以得到在该闭合曲面内的电荷总量。

具体来说,如果电场强度在闭合曲面上是均匀的且垂直于曲面,那么由闭合曲面边界形成的面积矢量积分等于该电场强度乘以闭合曲面的面积。

当电场强度不均匀或者不垂直于曲面时,可以把曲面细分为小面元,在每个小面元上计算电场强度和面积矢量的点积,再对所有小面元的点积求和,得到整个曲面上电场强度和面积矢量的积分。

高斯定理的应用非常广泛,它不仅可以用于求解电场强度在特定几何形状的闭合曲面上的面积分,还可以用于确定电场强度分布以及计算电荷的总量等问题。

电介质的极化和介质中的高斯定理

电介质的极化和介质中的高斯定理

1.真空中 P = 0 ,真空中无电介质。 真空中 真空中无电介质。 2.导体内 P = 0 ,导体内不存在电偶极子。 导体内 导体内不存在电偶极子。
8
(2)极化(束缚)电荷与极化强度的关系 )极化(束缚) 在电介质的表面上, 在电介质的表面上,极化强度与极化电荷之间有 r r 如下关系: 如下关系: ' = P = P cosθ = P ⋅ e σ
r E'
r E
r E0
εr 称为相对
介电常数或 电容率。 电容率。
2.电介质极化的微观机制 2.电介质极化的微观机制 从电学性质看电介质的分子可分为两类:无极分子、 从电学性质看电介质的分子可分为两类:无极分子、 有极分子。 有极分子。 每个分子负电荷对外影响均可等效为 的作用。 单独一个静止的负电荷 的作用。其大小为 分子中所有负电之和, 分子中所有负电之和,这个等效负电荷的 作用位置称为分子的 负电作用中心” 称为分子的“ 作用位置称为分子的“负电作用中心”。
静电场中的电介质 介质中的高斯定理
1
从电场这一角度看,电介质就是绝缘体。 从电场这一角度看,电介质就是绝缘体。 特点:电介质体内只有极少自由电子。 特点:电介质体内只有极少自由电子。 我们只讨论静电场与各向同性电介质的相互作用。 我们只讨论静电场与各向同性电介质的相互作用。
一、静电场对电介质的作用—电介质的极化 静电场对电介质的作用—
∫ P ⋅ dS = − ∑ q
S S inside
在任一闭合曲面内极化电荷的负值等于极化强度的通量。 在任一闭合曲面内极化电荷的负值等于极化强度的通量。
9
四、介质中的高斯定理 电位移矢量
1.介质中的高斯定理 1.介质中的高斯定理 真空中的高斯定理 φ =

09介质中的高斯定理电位移矢量

09介质中的高斯定理电位移矢量

3
二、介质中的高斯定理 电位移矢量
1.介质中的高斯定理 1.介质中的高斯定理 真空中的高斯定理 φ =
r r ∫∫ E ⋅ dS =
S
∑q
ε0
在介质中,高斯定理改写为: 在介质中,高斯定理改写为:
自由电荷 总场强
v v 1 ∫∫ E ⋅ dS =
S
ε0
∑ (q
S
0
+q )
'
束缚电荷
v v 1 ∫∫ E ⋅ dS =
v = εE
电常量。 电常量。
例1:将电荷 q 放置于半径为 R 相对电容率为 εr 的介 : 质球中心, 质球中心,求:I 区、II区的 D、E、 及 U。 区的 、 、 。 在介质球内、 解:在介质球内、外各作半径为 r 的 高斯球面。 高斯球面。 R
r r ∫∫ D ⋅ dS = ∑q0
S
r r r 球面上各点D大小相等 D 大小相等, 球面上各点 大小相等, // dS , cosθ = 1 II 2 ∑q0 D4πr = q0 , ∴ D = 高斯面 4πr 2 q q I区: 1 = 区 D II区: 2 = 区 D 2 4πr2 4πr
dr =
q 4πε 0r
9
例2:平行板电容器极板间距为 d , 极板面积为 S,面 : , 电荷密度为 σ0 , 其间插有厚度为 d’ 、电容率为 εr 的 电介质。求 : ①. P1 、P2点的场强E;②.电容器的电 电介质。 点的场强 ; 电容器的电 容。 ①. 过 P1 点作高斯柱面 左右底面分别经过导体 点作高斯柱面, 解: d' − σ 和 P1 点。 σ
r r φD = ∫∫ D ⋅ dS = ∑ q0
S

有电介质时的高斯定理

有电介质时的高斯定理

有电介质时的高斯定理
有电介质时的高斯定理是电学中的一个重要定理,它描述了电场的分布与电荷分布的关系。

此定理的公式表述为:电场穿过一个封闭曲面的通量等于该曲面内部的电荷总量的比例,即ΦE=Q/ε0,其中ΦE为电场的通量,Q为曲面内部的电荷总量,ε0为真空中的电介质常数。

在有电介质时,电场的分布受到电介质的影响。

电介质的存在会使电场强度发生改变,这是因为电介质的分子会被电场极化,从而产生极化电荷。

这些极化电荷会改变电场的分布,使电场在电介质中的强度比在真空中的强度小。

因此,在有电介质时,要考虑电介质对电场的影响,才能准确地计算电荷的分布。

在应用高斯定理时,通常需要选择一个适当的曲面来计算电场的通量。

曲面的选择应当考虑到电荷分布的对称性,以便简化计算。

在有电介质时,曲面的选择也需要考虑到电介质的影响。

如果曲面穿过电介质,那么在计算电荷总量时,需要将电介质中的极化电荷也计算在内。

高斯定理的应用范围很广,包括电场的计算、电容器的设计、电荷分布的测量等。

在电场的计算中,高斯定理可以用来求解各种电场分布,例如电偶极子、均匀带电球面等。

在电容器的设计中,高斯定理可以用来计算电容器的电容量,从而确定电容器的电荷储存能
力。

在电荷分布的测量中,高斯定理可以用来测量电荷的总量,从而确定电荷的分布情况。

有电介质时的高斯定理是电学中的一个重要定理,它描述了电场的分布与电荷分布的关系。

在应用该定理时,需要考虑到电介质的影响,并选择适当的曲面来计算电场的通量。

高斯定理的应用范围很广,包括电场的计算、电容器的设计、电荷分布的测量等。

3-5有介质时的高斯定理

3-5有介质时的高斯定理

第三章静电场中电介质
r
R2
R1
(3)由(1)可知
U
E dr
R2
E
2π dr
0
r
r
(R1 r R2 ) ln R2
R1 2π 0 r r 2π 0 r R1
C Q 2π U
单位长度电容
0
C l
rl
ln R2 R1
2π 0
r
ln
r C0
R2 R1
真空圆柱形 电容器电容
r 又叫电容率
D2 2R2
3 – 5 有电介质时的高斯定理
第三章静电场中电介质
1 -P1 D1 0E1
2 -P2 D2 0E2
1
-
2R1
1
1
r
2
2R2
1
1
r
思索:可否由其他途 径求极化强度大小?
P 0E 0r 1E
1 P1 0 r 1E1 2 P2 0 r 1E2
3 – 5 有电介质时的高斯定理
-+
-+ -
-+E-1+ E2
-+--+-
-+ +-
0

1' 2'
2'
3 – 5 有电介质时的高斯定理
E1
D
0 r1
0 0 r1
E2
D
0
r2
0 0 r2
U
E dl
l
E1d1 E2d2
Q ( d1 d2 )
0S r1 r2
C Q0 0 r1 r2S U r1d2 r2d1
0
E
P) ds
q0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有介质时的高斯定理,写出其物理意义
高斯定理(也称为高斯通量定理)是电磁学中的一个基本定理,描述了电场或磁场通过一个封闭曲面的总通量与在该曲面内部源的大小之间的关系。

具体表达式为:对一个任意形状的封闭曲面,电场或磁场通过该曲面的总通量等于该曲面内部电荷或磁荷的代数和。

物理意义如下:
1. 电场或磁场通过一个封闭曲面的总通量是该曲面内部电荷或磁荷的性质之一,可以帮助我们了解场的发源和分布。

例如,通过测量通过一个闭合曲面的电场通量,可以推断该闭合曲面内部的电荷分布情况。

2. 高斯定理对于计算电场或磁场的分布以及场源的性质具有重要的应用。

通过选取适当的曲面以及利用高斯定理,可以简化计算复杂电场或磁场的过程,提高计算效率。

3. 高斯定理还有与能量和电荷守恒定律的联系。

当封闭曲面内部不存在电荷时,即电荷守恒定律成立时,通过该曲面的电场通量为零。

这可以用来推导电场能量的守恒。

总的来说,高斯定理在电磁学中具有重要的作用,它可以帮助我们理解场的分布、推断电荷或磁荷的性质,并且简化电场或磁场计算的过程。

相关文档
最新文档