温度源的温度控制实验

合集下载

温度控制的实验报告

温度控制的实验报告

温度控制的实验报告1. 引言温度是物体分子热运动的表现,是许多实验和工业过程中需要精确控制的一个变量。

本实验旨在研究温度控制的原理和方法,通过实验验证不同温控设备的性能,并对温度控制的误差进行分析。

2. 实验目的1. 了解温度控制的基本原理和方法;2. 掌握温度控制设备的操作方法;3. 分析温度控制的误差来源,并提出改进方案。

3. 实验装置和材料- 温度控制设备:恒温水浴器、温度计;- 反应容器:玻璃烧杯、烧杯夹;- 实验溶液:蒸馏水。

4. 实验步骤1. 将恒温水浴器放在实验台上,接通电源并调整温度设置;2. 在玻璃烧杯中加入适量蒸馏水;3. 将烧杯夹固定在温水浴器外壁上,并将玻璃烧杯置于夹子中,使其与恒温水浴器中的水接触;4. 等待一段时间,使烧杯中的水温稳定在设定的温度;5. 用温度计测量烧杯中水的实际温度,并记录下来;6. 根据测量结果,分析温度控制设备的误差和准确度。

5. 实验结果设置温度() 实际温度():: ::30 29.540 39.850 49.960 59.76. 结果分析通过实验结果可以看出,温度控制设备在大部分情况下能够实现较为准确的温度控制,但仍存在一定的误差。

可能的误差来源包括:1. 温度计的准确度:温度计本身存在一定的误差,会对实际温度测量结果产生影响;2. 温度控制设备的稳定性:恒温水浴器在调整温度过程中可能存在波动,导致实际温度与设定温度不完全一致;3. 烧杯和夹子的传热性能:烧杯与恒温水浴器之间的传热效果可能存在差异,影响实际温度的稳定性。

为减小温度控制误差,可以采取以下改进措施:1. 使用更加精准的温度计进行测量,减小温度计本身误差对实验结果的影响;2. 对恒温水浴器进行进一步调试,提高其温度控制的稳定性;3. 优化烧杯与夹子之间的接触条件,改善传热效果。

7. 结论通过本实验的探究,我们对温度控制的原理和方法有了更深入的了解,并掌握了温度控制设备的操作方法。

温度控制系统实验报告

温度控制系统实验报告

温度控制系统实验报告温度控制系统实验报告一、引言温度控制系统作为现代自动化领域的重要组成部分,广泛应用于工业生产、家电和环境控制等领域。

本实验旨在通过搭建一个简单的温度控制系统,了解其工作原理和性能特点。

二、实验目的1. 了解温度控制系统的基本原理;2. 掌握温度传感器的使用方法;3. 熟悉PID控制算法的应用;4. 分析温度控制系统的稳定性和响应速度。

三、实验装置本实验使用的温度控制系统由以下组件组成:1. 温度传感器:用于测量环境温度,常见的有热敏电阻和热电偶等;2. 控制器:根据温度传感器的反馈信号,进行温度控制;3. 加热器:根据控制器的输出信号,调节加热功率;4. 冷却装置:用于降低环境温度,以实现温度控制。

四、实验步骤1. 搭建温度控制系统:将温度传感器与控制器、加热器和冷却装置连接起来,确保各组件正常工作。

2. 设置控制器参数:根据实际需求,设置控制器的比例、积分和微分参数,以实现稳定的温度控制。

3. 测量环境温度:使用温度传感器测量环境温度,并将测量结果输入控制器。

4. 控制温度:根据控制器输出的控制信号,调节加热器和冷却装置的工作状态,使环境温度保持在设定值附近。

5. 记录数据:记录实验过程中的环境温度、控制器输出信号和加热器/冷却装置的工作状态等数据。

五、实验结果与分析通过实验数据的记录和分析,我们可以得出以下结论:1. 温度控制系统的稳定性:根据控制器的调节算法,系统能够在设定值附近维持稳定的温度。

但是,由于传感器的精度、控制器参数的选择等因素,系统可能存在一定的温度波动。

2. 温度控制系统的响应速度:根据实验数据,我们可以计算出系统的响应时间和超调量等参数,以评估系统的控制性能。

3. 温度传感器的准确性:通过与已知准确度的温度计进行对比,我们可以评估温度传感器的准确性和误差范围。

六、实验总结本实验通过搭建温度控制系统,探究了其工作原理和性能特点。

通过实验数据的分析,我们对温度控制系统的稳定性、响应速度和传感器准确性有了更深入的了解。

实验室温度控制技术使用指南

实验室温度控制技术使用指南

实验室温度控制技术使用指南在现代科学研究中,实验室温度控制是一个至关重要的环节。

温度的变化能够直接影响实验结果的准确性和可重复性。

因此,对于实验室温度的控制非常重要。

本文将介绍一些实验室温度控制技术的使用指南,帮助科研人员更好地进行实验。

1. 环境温度的控制实验室内的环境温度对于实验结果的准确性有着重要的影响。

首先,实验室应该安装空调设备,并确保温度的稳定性和均匀性。

一般来说,实验室的温度应该保持在20℃-25℃之间,以避免外界温度对实验结果的影响。

此外,实验室还需配备温湿度记录仪,以实时监测环境温湿度的变化情况。

2. 实验器材的温度控制实验器材的温度对实验结果同样至关重要。

不同的实验对温度控制的要求各不相同。

在低温实验中,科研人员可以使用低温冰箱或液氮罐等设备来控制样品温度。

而在高温实验中,可以使用高温炉等设备来控制试剂或样品的温度。

此外,在一些需要控制反应温度的化学合成实验中,可以通过加热器或冷却器来调控反应过程的温度。

3. 恒温槽的使用恒温槽是实验室中常见的温度控制设备,它能够通过水或液态介质来维持设定的恒定温度。

在使用恒温槽时,科研人员需注意以下几点:(1)选择适合的介质:根据实验的需求选择合适的液态介质,如水、油或其他能够满足实验要求的介质。

(2)设定合适的温度:根据实验需求设定合适的温度,并确保恒温槽能够稳定地维持该温度。

(3)注意散热问题:长时间运行恒温槽会产生热量,为防止过热损坏设备,应保证恒温槽有足够的散热条件。

4. 温度控制曲线的绘制和分析为了更好地了解实验过程中温度的变化情况,科研人员可以通过绘制温度控制曲线来分析实验结果。

绘制温度控制曲线需要记录实验过程中的温度变化,并将数据进行整理和分析。

这些曲线可以帮助科研人员发现实验过程中的异常温度变化,以及在实验设计、仪器选择和参数优化等方面提供指导。

综上所述,实验室温度控制在科学研究中起着至关重要的作用。

科研人员应该关注实验室环境温度的控制、实验器材温度的调节、恒温槽的使用以及温度控制曲线的分析。

温度控制实验技术的使用方法与调优技巧

温度控制实验技术的使用方法与调优技巧

温度控制实验技术的使用方法与调优技巧引言:温度控制是许多实验和工业过程中的重要环节。

不同实验室应用和工业生产过程中的温度要求各异,因此温度控制的准确性和稳定性对实验结果和工业产品的质量至关重要。

本文将介绍一些常见的温度控制实验技术的使用方法和调优技巧,帮助读者更好地掌握这一关键领域。

一、传统温度控制技术的使用方法1.1 温控仪的选择在常见的温度控制实验中,我们通常会使用温控仪来监测和控制温度。

选择适合实验需求的温控仪十分重要。

常见的温控仪有PID控制器、ON/OFF控制器等。

PID控制器通常能提供更精确的温度控制,而ON/OFF控制器则适用于对温度要求不是很高的实验。

1.2 温度传感器的安装和校准温度传感器是传统温度控制系统中不可或缺的组成部分。

在使用温度传感器前,我们需要确保其准确性和精度。

安装温度传感器时,避免其与外界环境发生热交换,防止测量误差的产生。

此外,定期对温度传感器进行校准是必不可少的步骤,以保证测量结果的准确性。

1.3 控制器参数的设定在使用传统温度控制技术时,我们需要设定一些控制器的参数,以实现对温度的准确控制。

常见的参数包括P(比例系数)、I(积分时间)和D(微分时间),它们的设定与实验要求和系统的惯性有关。

一般而言,P系数较大可提供较快的响应,而较小的I和D系数可使控制更加平稳。

在设定参数时,我们可以根据实验数据进行反复试验和调整,以达到最佳的控制效果。

二、现代温度控制技术的调优技巧2.1 模型预测控制(MPC)模型预测控制是一种基于系统动态模型的高级控制技术。

它可以根据系统的状态和被控对象的动态特性进行预测,并通过优化算法计算出最优的控制策略。

MPC技术在温度控制中的应用越来越广泛,可以提供更高的控制精度和鲁棒性。

2.2 自适应控制自适应控制技术能够根据被控对象的动态变化和环境条件的变化,在控制过程中自动地调整控制算法和参数。

与传统方法相比,自适应控制能够更好地适应不确定性和变化性,提供更加稳定和精确的温度控制。

温度控制器实验报告

温度控制器实验报告

温度控制器实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验设备与材料 (2)3. 实验原理 (3)二、实验内容与步骤 (4)1. 实验内容 (5)1.1 温度控制器的基本操作 (6)1.2 温度控制器的参数设置与调整 (7)2. 实验步骤 (8)2.1 安装温度控制器 (9)2.2 校准温度计 (9)2.3 设置温度控制器参数 (11)2.4 观察并记录实验数据 (13)2.5 分析实验结果 (13)三、实验数据与结果分析 (14)1. 实验数据 (15)1.1 温度控制器的温度读数 (17)1.2 温度控制器的设定温度 (18)1.3 温度控制器的实际输出温度 (19)2. 结果分析 (19)2.1 温度控制器的性能评价 (20)2.2 温度控制器在不同条件下的适应性分析 (21)四、实验结论与建议 (22)1. 实验结论 (23)2. 实验建议 (24)一、实验概述本实验旨在通过设计和制作一个温度控制器,让学生了解温度控制器的基本原理、结构和工作原理,并掌握温度控制器的制作方法。

学生将能够熟练掌握温度控制器的设计、制作和调试过程,为今后从事相关领域的工作打下坚实的基础。

本实验的主要内容包括,在实验过程中,学生将通过理论学习和实际操作相结合,全面掌握温度控制器的相关知识和技能。

1. 实验目的本实验旨在探究温度控制器的性能及其在实际应用中的表现,通过一系列实验,了解温度控制器的控制原理、操作过程以及性能特点,验证其在实际环境中的温度控制精度和稳定性。

本实验也旨在培养实验者的实践能力和问题解决能力,为后续相关领域的深入研究和实践打下坚实的基础。

2. 实验设备与材料温度控制器:作为实验的核心设备,本实验选择了高精度数字式温度控制器,具备较高的稳定性和精确度,能够确保实验结果的可靠性。

恒温箱实验箱:为了模拟不同的环境温度,采用了具有温控功能的恒温箱或实验箱。

通过调节箱内的温度,可以观察温度控制器在不同环境下的表现。

温度的控制实验报告

温度的控制实验报告

温度的控制实验报告温度的控制实验报告一、引言温度是我们日常生活中非常重要的一个因素,它不仅影响着我们的舒适度,还对各种化学、物理和生物过程起着重要作用。

为了更好地理解和控制温度,我们进行了一系列实验。

二、实验目的本次实验的目的是探究不同因素对温度的影响,并寻找最佳的温度控制方法。

三、实验材料与方法1. 实验材料:- 温度计- 恒温箱- 热水槽- 冷却器- 实验容器2. 实验方法:- 将温度计插入实验容器中,以测量温度。

- 将实验容器放置在恒温箱中,并设定不同的温度。

- 将实验容器放置在热水槽或冷却器中,以改变温度。

- 记录不同条件下的温度变化。

四、实验结果与分析1. 温度与环境因素的关系:我们首先探究了温度与环境因素的关系。

在恒温箱中,我们设定了不同的温度,分别是25°C、30°C、35°C和40°C。

通过观察温度计的读数,我们发现温度随着设定值的增加而上升,这表明环境温度对实验容器内的温度有直接影响。

2. 温度与时间的关系:我们进一步研究了温度与时间的关系。

在恒温箱中设定了一个温度,并记录了实验容器内的温度随时间的变化。

实验结果显示,温度在设定值附近波动,并逐渐趋于稳定。

这表明温度需要一定的时间来达到平衡状态。

3. 温度与介质的关系:我们还研究了温度与介质的关系。

通过将实验容器放置在热水槽或冷却器中,我们改变了介质的温度。

实验结果表明,实验容器内的温度随着介质温度的变化而变化。

这说明介质的温度对实验容器内的温度有直接影响。

五、实验结论通过本次实验,我们得出了以下结论:1. 温度受环境因素的影响,不同的环境温度会导致实验容器内的温度变化。

2. 温度需要一定的时间来达到平衡状态。

3. 介质的温度对实验容器内的温度有直接影响。

六、实验改进与展望在本次实验中,我们仅探究了温度与环境因素、时间和介质的关系。

未来的实验可以进一步研究其他因素对温度的影响,如湿度、压力等。

温度控制实验

温度控制实验

PID
PROC NEAR MOV AX,UR MOV BL,ADZ MOV BH,0 CLC SBB AX,BX MOV SI,OFFSET E0 MOV [SI],AX MOV BX,KP IMUL BX MOV SI,OFFSET PPK MOV [SI],AX MOV [SI+2],DX MOV SI,OFFSET E0 MOV AX,[SI] MOV BX,KI IMUL BX MOV SI,OFFSET PIK1
data ends
CODE SEGMENT ASSUME CS:CODE,ds:data START: mov ax,data mov ds,ax PUSH DS MOV DX,MY8255_MODE ;初始化8255工作方式 MOV AL,80H OUT DX,AL MOV DX,MY8255_b MOV AL,0H OUT DX,AL cli mov al,1ch mov ah,35h int 21h ;取中断矢量 ;初始化8255工作方式 ;工作方式0,A口输出,B口输入 ;工作方式0,A口输出,B口输入
MOV AL,36H
OUT DX,AL
MOV DX,PC8254_COUNT0; 系统时钟CLK=1.041667MHz MOV AL,69H; 2D69H = 11625B 11625/CLK=11.16ms OUT DX,AL; MOV AL,2DH OUT DX,AL PPP0: sti CALL PICKAD PPP: CMP CNT,250 JE RP1 JMP PPP RP1: MOV CNT,0 CALL PICKAD mov ax,data mov ds,ax 应该为 28B0
用户利用int1ch定时执行的特点改变int1ch的中断矢量使之指向用户编写的定时操作程序即可使cpu在运行主程序过程中定时完成指定的操作如图346所示

温度检测与控制实验报告

温度检测与控制实验报告

实验三十二温度传感器温度控制实验1.了解温度传感器电路的工作原理2.了解温度控制的基本原理3.掌握一线总线接口的使用这是一个综合硬件实验,分两大功能:温度的测量和温度的控制。

1.DALLAS 最新单线数字温度传感器 DS18B20 简介Dallas 半导体公司的数字化温度传感器 DS1820 是世界上第一片支持“一线总线”接口的温度传感器。

现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。

适合于恶劣环境的现场温度测量,如:环境控制、设备或者过程控制、测温类消费电子产品等。

与前一代产品不同,新的产品支持3V~5.5V 的电压范围,使系统设计更灵便、方便。

DS18B20 测量温度范围为 -55°C~+125°C,在-10~+85°C 范围内,精度为±0.5°C。

DS18B20 可以程序设定 9~12 位的分辨率,及用户设定的报警温度存储在EEPROM 中,掉电后依然保存。

DS18B20 内部结构DS18B20 内部结构主要由四部份组成: 64 位光刻ROM、温度传感器、非挥发的温度报警触发器 TH 和 TL、配置寄存器。

DS18B20 的管脚罗列如下: DQ 为数字信号输入/输出端; GND 为电源地; VDD 为外接供电电源输入端(在寄生电源接线方式时接地)。

光刻ROM 中的 64位序列号是出厂前被光刻好的,它可以看做是该DS18B20 的地址序列码。

64 位光刻 ROM 的罗列是:开始 8 位(28H)是产品类型标号,接着的 48 位是该 DS18B20 自身的序列号,最后 8 位是前面 56 位的循环冗余校验码(CRC=X8+X5+X4+1)。

光刻 ROM 的作用是使每一个 DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20 的目的。

DS18B20 中的温度传感器可完成对温度的测量,以 12 位转化为例:用 16 位符号扩展的二进制补码读数形式提供,以 0.0625℃/LSB 形式表达,其中 S 为符号位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二(1)温度源的温度控制调节实验一、实验目的:了解温度控制的基本原理及熟悉温度源的温度调节过程。

二、基本原理:当温度源的温度发生变化时,温度源中的P t100热电阻(温度传感器)的阻值发生变化,将电阻变化量作为温度的反馈信号输给智能调节仪,经智能调节仪的电阻——电压转换后与温度设定值比较再进行数字PID运算输出可控硅触发信号(加热)或继电器触发信号(冷却),使温度源的温度趋近温度设定值。

温度控制原理框图如图1所示。

三、需用器件与单元:主机箱、温度源、Pt100温度传感器。

图1温度控制原理框图四、实验步骤:温度源简介:温度源是一个小铁箱子,内部装有加热器和冷却风扇;加热器上有二个测温孔,加热器的电源引线与外壳插座(外壳背面装有保险丝座和加热电源插座)相连;冷却风扇电源为+24vDC,它的电源引线与外壳正面实验插孔相连。

温度源外壳正面装有电源开关、指示灯和冷却风扇电源+24vDC插孔;顶面有二个温度传感器的引入孔,它们与内部加热器的测温孔相对,其中一个为控制加热器加热的传感器Pt100的插孔,另一个是温度实验传感器的插孔;背面有保险丝座和加热器电源插座。

使用时将电源开关打开(O为关,-为开)。

从安全性、经济性且不影响学生掌握原理的前提下温度源设计温度≤200℃。

1、调节仪的简介及调节仪的面板按键说明。

1.1面板说明。

面板上有PV测量显示窗、SV给定显示窗、4个指示灯窗和4个按键组成。

如图2所示。

图2调节仪面板图面板中1、PV——测量值显示窗2、SV——给定值显示窗3、AT——自整定灯4、ALM1——AL1动作时点亮对应的灯5、ALM2——手动指示灯(兼程序运行指示灯)6、OUT——调节控制输出指示灯7、SET——功能键8、◄——数据移位(兼手动/自动切换及参数设置进入)9、▼——数据减少键(兼程序运行/暂停操作)10、▲——数据增加键(兼程序复位操作)仪表上电后,上显示窗口显示测量值(PV),下显示窗口显示给定值(SV)。

在基本状态下,SV窗口能用交替显示的字符来表示系统某些状态,如下:1、输入的测量信号超出量程(因传感器规格设置错误、输入断线或短路均可能引起)时,则闪动显示:“orAL”。

此时仪表将自动停止控制,并将输出固定在参数oPL 定义的值上。

2、有报警发生时,可分别显示“HIAL”、“LoAL”、“dHAL”或“dLAL”,分别表示发生了上限报警、下限报警、正偏差报警和负偏差报警。

报警闪动的功能是可以关闭的(参看bAud参数的设置),将报警作为控制时,可关闭报警字符闪动功能以避免过多的闪动。

仪表面板上的4个LED指示灯,其含义分别如下:(1)OUT输出指示灯:输出指示灯在线性电流输出时通过亮/暗变化反映输出电流的大小,在时间比例方式输出(继电器、固态继电器及可控硅过零触发输出)时,通过闪动时间比例反映输出大小。

(2)ALM1指示灯:当AL1事件动作时点亮对应的灯。

(3)ALM2指示灯:当手动指示灯。

(4)AT灯:自整定开启时点亮对应的灯。

1.2基本使用操作1、显示切换:按SET键可以切换不同的显示状态。

修改数据:如果参数锁没有锁上,仪表下显示(SV)窗显示的数值数据均可通过按◄(A/M)、▼或▲键来修改。

例如:需要设置给定值时,可将仪表切换到正常显示状态,即可通过按◄(A/M)、▼或▲键来修改给定值。

仪表同时具备数据快速增减法和小数点移位法。

按▼键减小数据,按▲键增加数据,按◄可修改数值位的小数点同时闪动(如同光标)。

按住按键并保持不放,可以快速地增加/减少数值,并且速度会随小数点会右移自动加快(3级速度)。

而按◄(A/M)键则可直接移动修改数据的位置(光标),操作快捷。

2、手动/自动切换:按◄(A/M)键,可以使仪表在自动及手动两种状态下进行无扰动切换。

手动时下排显示器第一字显示“M”,仪表处于手动状态下,直接按▲键或▼键可增加及减少手动输出值。

自动时按SET键可直接查看自动输出值(下排显示器第一字显示“A”)。

通过对run参数设置(详见后文),也可使仪表不允许由面板按键操作来切换至手动状态,以防止误入手动状态。

3、设置参数:按SET键并保持约3秒钟,即进入参数设置状态。

在参数设置状态下按SET键,仪表将依次显示各参数,例如上限报警值HIAL、参数锁Loc等等,对于配置好并锁上参数锁的仪表,只出现操作工需要用到的参数(现场参数)。

用▼、▲、◄(A/M)等键可修改参数值。

按◄(A/M)键并保持不放,可返回显示上一参数。

先按◄(A/M)键不放接着再按SET键可退出设置参数状态。

如果没有按键操作,约30秒钟后会自动退出设置参数状态。

如果参数被锁上(后文介绍),则只能显示被EP参数定义的现场参数(可由用户定义的,工作现场经常需要使用的参数及程序),而无法看到其它的参数。

不过,至少能看到Loc参数显示出来。

1.3自整定(AT)操作1、仪表初次使用时,可启动自整定功能来协助确定M50、P、t等控制参数。

初次启动自整定时,可将仪表切换到正常显示状态下,按◄(A/M)键并保持约2钞钟,此时仪表AT 指示灯点亮,表明仪表已进入自整定状态。

自整定时,仪表执行位式调节,约2-3次振荡后,仪表根据位式控制产生的振荡,分析其周期、幅度及波型来自动计算出M50、P、t等控制参数。

如果在自整定过程中要提前放弃自整定,可再按◄(A/M)键并保持约2钞钟,使仪表AT指示灯熄灭即可。

视不同系统,自整定需要的时间可从数秒至数小时不等。

仪表在自整定成功结束后,会将参数CtrL设置为3(出厂时为1)或4,这样今后无法从面板再按◄(A/M)键启动自整定,可以避免人为的误操作再次启动自整定。

已启动过一次自整定功能的仪表如果今后还要启动自整定时,可以用将参数CtrL设置为2的方法进行启动(参见后文“参数功能”说明)。

2、系统在不同给定值下整定得出的参数值不完全相同,执行自整定功能前,应先将给定值设置在最常用值或是中间值上,如果系统是保温性能好的电炉,给定值应设置在系统使用的最大值上,再执行启动自整定的操作功能。

参数Ct1(控制周期)及dF(回差)的设置,对自整定过程也有影响,一般来说,这2个参数的设定值越小,理论上自整定参数准确度越高。

但dF值如果过小,则仪表可能因输入波动而在给定值附近引起位式调节的误动作,这样反而可能整定出彻底错误的参数。

推荐Ct1=0-2,dF=0.3。

3、手动自整定:由于自整定执行时采用位式调节,其输出将定位在由参数oPL及oPH定义的位置。

在一些输出不允许大幅度变化的场合,如某些执行器采用调节阀的场合,常规的自整定并不适宜。

对此仪表具有手动自整定模式。

方法是先用手动方式进行调节,等手动调节基本稳定后,再在手动状态下启动自整定,这样仪表的输出值将限制在当前手动值+10%及-10%的范围而不是oPL及oPH定义的范围,从而避免了生产现场不允许的阀门大幅度变化现象。

此外,当被控物理量响应快速时,手动自整定方式能获得更准确的自整定结果。

1.4参数功能说明仪表通过参数来定义仪表的输入、输出、报警及控制方式(以温度为例)。

以下为参数功能表:2、设置调节仪温度控制参数:合上主机箱上的电源开关;再合上主机箱上的调节仪电源开关,仪表上电后,仪表的上显示窗口(PV)显示随机数;下显示窗口(SV)显示控制给定值或交替闪烁显示控制给定值和“orAL”。

按SET键并保持约3秒钟,即进入参数设置状态。

在参数设置状态下按SET键,仪表将依次显示各参数,例如上限报警值HIAL、参数锁Loc等等,对于配置好并锁上参数锁的仪表,用▼、▲、◄(A/M)等键可修改参数值。

按◄(A/M)键并保持不放,可返回显示上一参数。

先按◄(A/M)键不放接着再按SET键可退出设置参数状态。

如果没有按键操作,约30秒钟后会自动退出设置参数状态。

如果参数被锁上,则只能显示被EP参数定义的参数(可由用户定义的,工作现场经常需要使用的参数及程序),而无法看到其它的参数。

不过,至少能看到Loc参数显示出来。

具体设置温度控制参数方法步骤如下:(1)、按SET键并保持约3秒钟,仪表进入参数设置状态;PV窗显示HIAL(上限),用▼、▲、◄键可修改参数值,使SV窗显示实验温度(>室温),如50。

(2)、再按SET键,PV窗显示LoAL(下限) ,用▼、▲、◄键可修改参数值,使SV窗显示(1)所设置的温度值50。

(3)、再按SET键,PV窗显示dHAL(正偏差报警) ,长按▲键,使SV窗显示9999(消除报警功能)后释放▲键。

(4)、再按SET键,PV窗显示dLAL(负偏差报警) ,长按▲键,使SV窗显示9999(消除报警功能)后释放▲键。

(5)、再按SET键,PV窗显示dF(回差、死区、滞环) ,用▼、▲、◄键修改参数值,使SV窗显示0.1。

(6)、再按SET键,PV窗显示CtrL(控制方式) ,用▼、▲、◄键修改参数值,使SV 窗显示1。

(7)、再按SET键,PV窗显示M50(保持参数) ,用▼、▲、◄键修改参数值,使SV窗显示300。

(8)、再按SET键,PV窗显示P(速率参数) ,用▼、▲、◄键修改参数值,使SV窗显示350。

(9)、再按SET键,PV窗显示t(滞后时间) ,用▼、▲、◄键修改参数值,使SV窗显示153。

(10)、再按SET键,PV窗显示Ct1(输出周期) ,用▼、▲、◄键修改参数值,使SV 窗显示1。

(11)、再按SET键,PV窗显示Sn(输入规格) ,用▼、▲、◄键修改参数值,使SV窗显示21。

(12)、再按SET键,PV窗显示dIP(小数点位置) ,用▼、▲、◄键修改参数值,使SV 窗显示1。

(13)、再按SET键,PV窗显示dIL ,不按键,SV窗显示默认值。

(14)、再按SET键,PV窗显示dIH,不按键,SV窗显示默认值。

(15)、再按SET键,PV窗显示CJC(热电偶冷端补偿温度) ,不按键,SV窗显示默认冷端补偿温度值。

(16)、再按SET键,PV窗显示SC(主输入平移修正) ,用▼、▲、◄键修改参数值,使SV窗显示00。

(17)、再按SET键,PV窗显示oP1(输出方式) ,用▼、▲、◄键修改参数值,使SV 窗显示2。

(18)、再按SET键,PV窗显示oPL(输出下限) ,长按▼键,使SV窗显示0后释放▼键。

(19)、再按SET键,PV窗显示oPH(输出上限) ,长按▲键,使SV窗显示100释放▲键(用▼、▲、◄键修改参数值为100)。

(20)、再按SET键,PV窗显示CF(系统功能选择) ,用▼、▲、◄键修改参数值,使SV窗显示2。

(21)、再按SET键,PV窗显示bAud(通讯波特率/报警定义) ,用▼、▲、◄键修改参数值,使SV窗显示17。

(22)、再按SET键,PV窗显示Addr(通讯地址/打印时间) ,不按键,SV窗显示默认值。

相关文档
最新文档