最新21装配生产线任务平衡问题的遗传算法MATLAB源代码汇总

合集下载

利用MATLAB编制的遗传算法代码

利用MATLAB编制的遗传算法代码

function gaTSPCityNum=30;[dislist,Clist]=tsp(CityNum);inn=100; %初始种群大小¡gnmax=1000; %最大概率pc=0.8; %交叉概率pm=0.8; %变异概率%产生初始种群for i=1:inns(i,:)=randperm(CityNum);end[f,p]=objf(s,dislist);gn=1;while gn<gnmax+1for j=1:2:innseln=sel(s,p); %选择操作scro=cro(s,seln,pc); %交叉操作scnew(j,:)=scro(1,:);scnew(j+1,:)=scro(2,:);smnew(j,:)=mut(scnew(j,:),pm); %变异操作smnew(j+1,:)=mut(scnew(j+1,:),pm);ends=smnew; %产生了新的种群[f,p]=objf(s,dislist); %计算新种群的适应度%记录当前代最好和平均的适应度[fmax,nmax]=max(f);ymean(gn)=1000/mean(f);ymax(gn)=1000/fmax;%记录当前代的最佳个体x=s(nmax,:);drawTSP(Clist,x,ymax(gn),gn,0);gn=gn+1;%pause;endgn=gn-1;figure(2);plot(ymax,'r'); hold on;plot(ymean,'b');grid;title('ËÑË÷¹ý³Ì');legend('×îÓŽâ','ƽ¾ù½â');end%------------------------------------------------%计算适应度函数function [f,p]=objf(s,dislist);inn=size(s,1); %读取种群大小¡for i=1:innf(i)=CalDist(dislist,s(i,:)); %计算函数值,即适应度endf=1000./f';%计算选择概率fsum=0;for i=1:innfsum=fsum+f(i)^15;endfor i=1:innps(i)=f(i)^15/fsum;end%计算累积概率p(1)=ps(1);for i=2:innp(i)=p(i-1)+ps(i);endp=p';end%--------------------------------------------------function pcc=pro(pc);test(1:100)=0;l=round(100*pc);test(1:l)=1;n=round(rand*99)+1;pcc=test(n);end%--------------------------------------------------%“选择”操作function seln=sel(s,p);inn=size(p,1);%从种群中选择两个个体for i=1:2r=rand; %产生一个随机数prand=p-r;j=1;while prand(j)<0j=j+1;endseln(i)=j; %选中个体的序号endend%------------------------------------------------%“交叉”操作function scro=cro(s,seln,pc);bn=size(s,2);pcc=pro(pc); %根据交叉概率决定是否进行交叉操作,1则是,0则否scro(1,:)=s(seln(1),:);scro(2,:)=s(seln(2),:);if pcc==1c1=round(rand*(bn-2))+1; %在[1,bn-1]范围内随机产生一个交叉位 c2=round(rand*(bn-2))+1;chb1=min(c1,c2);chb2=max(c1,c2);middle=scro(1,chb1+1:chb2);scro(1,chb1+1:chb2)=scro(2,chb1+1:chb2);scro(2,chb1+1:chb2)=middle;for i=1:chb1while find(scro(1,chb1+1:chb2)==scro(1,i))zhi=find(scro(1,chb1+1:chb2)==scro(1,i));y=scro(2,chb1+zhi);scro(1,i)=y;endwhile find(scro(2,chb1+1:chb2)==scro(2,i))zhi=find(scro(2,chb1+1:chb2)==scro(2,i));y=scro(1,chb1+zhi);scro(2,i)=y;endendfor i=chb2+1:bnwhile find(scro(1,1:chb2)==scro(1,i))zhi=find(scro(1,1:chb2)==scro(1,i));y=scro(2,zhi);scro(1,i)=y;endwhile find(scro(2,1:chb2)==scro(2,i))zhi=find(scro(2,1:chb2)==scro(2,i));y=scro(1,zhi);scro(2,i)=y;endendendend%--------------------------------------------------%“变异”操作function snnew=mut(snew,pm);bn=size(snew,2);snnew=snew;pmm=pro(pm); %¸根据变异概率决定是否进行变异操作,1则是,0则否if pmm==1c1=round(rand*(bn-2))+1; %在[1,bn-1]范围内随机产生一个变异位 c2=round(rand*(bn-2))+1;chb1=min(c1,c2);chb2=max(c1,c2);x=snew(chb1+1:chb2);snnew(chb1+1:chb2)=fliplr(x); endend。

完整的遗传算法函数Matlab程序

完整的遗传算法函数Matlab程序

完整的遗传算法函数Matlab程序遗传算法是一种模拟自然进化过程的算法,通过遗传代数操作来搜索最优解。

它是一种优化算法,可以用于解决复杂问题,例如函数优化、组合优化、机器学习等。

在Matlab 中,遗传算法可以通过使用内置函数进行实现,也可以编写自己的遗传算法函数。

以下是一个完整的遗传算法函数Matlab程序的示例:function [x_best, f_best] = GA(fit_func, nvars)% fit_func: 适应度函数句柄% nvars: 变量个数% 遗传算法参数设置pop_size = 100; % 种群大小prob_crossover = 0.8; % 交叉概率prob_mutation = 0.02; % 变异概率max_gen = 1000; % 最大迭代次数% 初始化种群pop = rand(pop_size, nvars);for i = 1:max_gen% 计算适应度for j = 1:pop_sizefitness(j) = feval(fit_func, pop(j,:));end% 找到最优个体[f_best, best_idx] = max(fitness);x_best = pop(best_idx,:);% 交叉操作for j = 1:2:pop_sizeif rand < prob_crossover% 随机选择父代idx_parent1 = randi(pop_size);idx_parent2 = randi(pop_size);parent1 = pop(idx_parent1,:);parent2 = pop(idx_parent2,:);% 交叉idx_crossover = randi(nvars-1);child1 = [parent1(1:idx_crossover) parent2(idx_crossover+1:end)];child2 = [parent2(1:idx_crossover) parent1(idx_crossover+1:end)];% 更新种群pop(j,:) = child1;pop(j+1,:) = child2;endend% 变异操作for j = 1:pop_sizeif rand < prob_mutation% 随机选择变异个体idx_mutation = randi(nvars);pop(j,idx_mutation) = rand;endendendend在上述程序中,遗传算法的参数通过设定变量的值进行设置,包括种群大小、交叉概率、变异概率和最大迭代次数等。

MATLAB课程遗传算法实验报告及源代码

MATLAB课程遗传算法实验报告及源代码

硕士生考查课程考试试卷考试科目:考生姓名:考生学号:学院:专业:考生成绩:任课老师(签名)考试日期:年月日午时至时《MATLAB 教程》试题:A 、利用MATLAB 设计遗传算法程序,寻找下图11个端点最短路径,其中没有连接端点表示没有路径。

要求设计遗传算法对该问题求解。

ae h kB 、设计遗传算法求解f (x)极小值,具体表达式如下:321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =⎧=⎪⎨⎪-≤≤=⎩∑ 要求必须使用m 函数方式设计程序。

C 、利用MATLAB 编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河?D 、结合自己的研究方向选择合适的问题,利用MATLAB 进行实验。

以上四题任选一题进行实验,并写出实验报告。

选择题目:B 、设计遗传算法求解f (x)极小值,具体表达式如下:321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =⎧=⎪⎨⎪-≤≤=⎩∑ 要求必须使用m 函数方式设计程序。

一、问题分析(10分)这是一个简单的三元函数求最小值的函数优化问题,可以利用遗传算法来指导性搜索最小值。

实验要求必须以matlab 为工具,利用遗传算法对问题进行求解。

在本实验中,要求我们用M 函数自行设计遗传算法,通过遗传算法基本原理,选择、交叉、变异等操作进行指导性邻域搜索,得到最优解。

二、实验原理与数学模型(20分)(1)试验原理:用遗传算法求解函数优化问题,遗传算法是模拟生物在自然环境下的遗传和进化过程而形成的一种自适应全局优化概率搜索方法。

其采纳了自然进化模型,从代表问题可能潜在解集的一个种群开始,种群由经过基因编码的一定数目的个体组成。

每个个体实际上是染色体带有特征的实体;初始种群产生后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的解:在每一代,概据问题域中个体的适应度大小挑选个体;并借助遗传算子进行组合交叉和主客观变异,产生出代表新的解集的种群。

matlab遗传算法代码

matlab遗传算法代码

matlab遗传算法代码
1 、算法概述
遗传算法(Genetic Algorithms,GA)是一种仿生学优化算法,它借用遗传学中物
竞天择的进化规则,模拟“自然选择”与“遗传进化”得出选择最优解的过程。

其基本原
理是对现有的种群中的各个个体,将其表示成某种形式的编码,然后根据自变量与约束条件,利用杂交、变异等操作,产生新一代解的种群,不断重复这一过程,最终求出收敛到
最优解的种群。

2、遗传算法的作用
遗传算法的主要作用在于优化多元函数,能够在大量的变量影响目标函数值的情况下
寻求最优解。

和其它现有的数值优化技术比较,如梯度下降法等,遗传算法更能适应“凸”和“非凸”都能解决,不受约束条件与搜索空间的影响较大,又叫做“智能搜索法”。


计算机视觉等计算机技术领域,经常用遗传算法来对一系列特征参数进行搜索和调节,成
功优化提高了系统的正确处理率。

3、matlab遗传算法的实现
Matlab的遗传算法应用是基于GA Toolbox工具箱,它提供了一个功能强大的、可扩
展的包装器,可用于构建遗传算法模型。

(1)编写最优化函数:
使用和设置最优化表达式或函数、变量;
(2)设置参数编码:
设置变量的编码,比如选择0-1二进制、0-10十进制;
(3)选择遗传算法的方法
选择遗传算法的方法,可以在多个选择中选择,比如变异、杂交等;
(4)设置运算参数:
设置每代的种群数、最大进化的世代数;
(5)运行遗传算法:
根据设定的参数运行遗传算法,算出收敛到最优解的种群;
(6)获得最优解:
获得收敛到最优解的条件下的最优解,得出最优解所在位置等参数,完成整个优化搜索。

遗传算法及其MATLAB程序

遗传算法及其MATLAB程序

遗传算法及其MATLAB实现主要内容遗传算法简介遗传算法的MATLAB实现应用举例一、遗传算法简介遗传算法(Genetic Algorithm,GA)最先是由美国Mic-hgan大学的John Holland于1975年提出的。

遗传算法是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型。

它的思想源于生物遗传学和适者生存的自然规律,是具有“生存+检测”的迭代过程的搜索算法。

遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。

其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定等5个要素组成了遗传算法的核心内容。

遗传算法的基本步骤:遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,与传统搜索算法不同,遗传算法从一组随机产生的称为“种群(Population)”的初始解开始搜索过程。

种群中的每个个体是问题的一个解,称为“染色体(chromos ome)”。

染色体是一串符号,比如一个二进制字符串。

这些染色体在后续迭代中不断进化,称为遗传。

在每一代中用“适值(fitness)”来测量染色体的好坏,生成的下一代染色体称为后代(offspring)。

后代是由前一代染色体通过交叉(crossover)或者变异(mutation)运算形成的。

在新一代形成过程中,根据适度的大小选择部分后代,淘汰部分后代。

从而保持种群大小是常数。

适值高的染色体被选中的概率较高,这样经过若干代之后,算法收敛于最好的染色体,它很可能就是问题的最优解或次优解。

主要步骤如下所示:(1)编码:GA在进行搜索之前先将解空间的解数据表示成遗传空间的基因型串结构数据,这些串结构数据的不同组合便构成了不同的点。

(2)初始群体的生成:随机产生N个初始串结构数据,每个串结构数据称为一个个体,N个个体构成了—个群体。

GA以这N个串结构数据作为初始点开始迭代。

遗传算法Matlab源代码

遗传算法Matlab源代码

function [X,MaxFval,BestPop,Trace]=fga(FUN,bounds,MaxEranum,PopSize,options,pCross,pMutation,pInversion)% [X,MaxFval,BestPop,Trace]=fga(FUN,bounds,MaxEranum,PopSize,options,pCross,pMutation,pInversion)% Finds a maximum of a function of several variables.% fga solves problems of the form:% max F(X) subject to: LB <= X <= UB (LB=bounds(:,1),UB=bounds(:,2))% X - 最优个体对应自变量值% MaxFval - 最优个体对应函数值% BestPop - 最优的群体即为最优的染色体群% Trace - 每代最佳个体所对应的目标函数值% FUN - 目标函数% bounds - 自变量范围% MaxEranum - 种群的代数,取50--500(默认200)% PopSize - 每一代种群的规模;此可取50--200(默认100)% pCross - 交叉概率,一般取0.5--0.85之间较好(默认0.8)% pMutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1)% pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2)% options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编码,option(2)设定求解精度(默认1e-4)T1=clock;%检验初始参数if nargin<2, error('FMAXGA requires at least three input arguments'); endif nargin==2, MaxEranum=150;PopSize=100;options=[1 1e-4];pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==3, PopSize=100;options=[1 1e-4];pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==4, options=[1 1e-4];pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==5, pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==6, pMutation=0.1;pInversion=0.25;endif nargin==7, pInversion=0.25;endif (options(1)==0|options(1)==1)&find((bounds(:,1)-bounds(:,2))>0)error('数据输入错误,请重新输入:');end% 定义全局变量global m n NewPop children1 children2 VarNum% 初始化种群和变量precision = options(2);bits = ceil(log2((bounds(:,2)-bounds(:,1))' ./ precision));%由设定精度划分区间VarNum = size(bounds,1);[Pop] = InitPop(PopSize,bounds,bits,options);%初始化种群[m,n] = size(Pop);fit = zeros(1,m);NewPop = zeros(m,n);children1 = zeros(1,n);children2 = zeros(1,n);pm0 = pMutation;BestPop = zeros(MaxEranum,n);%分配初始解空间BestPop,TraceTrace = zeros(1,MaxEranum);Lb = ones(PopSize,1)*bounds(:,1)';Ub = ones(PopSize,1)*bounds(:,2)';%二进制编码采用多点交叉和均匀交叉,并逐步增大均匀交叉概率%浮点编码采用离散交叉(前期)、算术交叉(中期)、AEA重组(后期)OptsCrossOver = [ones(1,MaxEranum)*options(1);...round(unidrnd(2*(MaxEranum-[1:MaxEranum]))/MaxEranum)]';%浮点编码时采用两种自适应变异和一种随机变异(自适应变异发生概率为随机变异发生的2倍)OptsMutation = [ones(1,MaxEranum)*options(1);unidrnd(5,1,MaxEranum)]';if options(1)==3D=zeros(n);CityPosition=bounds;D = sqrt((CityPosition(:, ones(1,n)) - CityPosition(:, ones(1,n))').^2 +...(CityPosition(:,2*ones(1,n)) - CityPosition(:,2*ones(1,n))').^2 );end%==========================================================================% 进化主程序%%==========================================================================eranum = 1;H=waitbar(0,'Please wait...');while(eranum<=MaxEranum)for j=1:mif options(1)==1%eval(['[fit(j)]=' FUN '(Pop(j,:));']);%但执行字符串速度比直接计算函数值慢fit(j)=feval(FUN,Pop(j,:));%计算适应度elseif options(1)==0%eval(['[fit(j)]=' FUN '(b2f(Pop(j,:),bounds,bits));']);fit(j)=feval(FUN,(b2f(Pop(j,:),bounds,bits)));elsefit(j)=-feval(FUN,Pop(j,:),D);endend[Maxfit,fitIn]=max(fit);%得到每一代最大适应值Meanfit(eranum)=mean(fit);BestPop(eranum,:)=Pop(fitIn,:);Trace(eranum)=Maxfit;if options(1)==1Pop=(Pop-Lb)./(Ub-Lb);%将定义域映射到[0,1]:[Lb,Ub]-->[0,1] ,Pop-->(Pop-Lb)./(Ub-Lb) endswitch round(unifrnd(0,eranum/MaxEranum))%进化前期尽量使用实行锦标赛选择,后期逐步增大非线性排名选择case {0}[selectpop]=TournamentSelect(Pop,fit,bits);%锦标赛选择case {1}[selectpop]=NonlinearRankSelect(Pop,fit,bits);%非线性排名选择end[CrossOverPop]=CrossOver(selectpop,pCross,OptsCrossOver(eranum,:));%交叉[MutationPop]=Mutation(CrossOverPop,fit,pMutation,VarNum,OptsMutation(eranum,:)); %变异[InversionPop]=Inversion(MutationPop,pInversion);%倒位%更新种群if options(1)==1Pop=Lb+InversionPop.*(Ub-Lb);%还原PopelsePop=InversionPop;endpMutation=pm0+(eranum^3)*(pCross/2-pm0)/(eranum^4); %逐步增大变异率至1/2交叉率percent=num2str(round(100*eranum/MaxEranum));waitbar(eranum/MaxEranum,H,['Evolution complete ',percent,'%']);eranum=eranum+1;endclose(H);% 格式化输出进化结果和解的变化情况t=1:MaxEranum;plot(t,Trace,t,Meanfit);legend('解的变化','种群的变化');title('函数优化的遗传算法');xlabel('进化世代数');ylabel('每一代最优适应度');[MaxFval,MaxFvalIn]=max(Trace);if options(1)==1|options(1)==3X=BestPop(MaxFvalIn,:);elseif options(1)==0X=b2f(BestPop(MaxFvalIn,:),bounds,bits);endhold on;plot(MaxFvalIn,MaxFval,'*');text(MaxFvalIn+5,MaxFval,['FMAX=' num2str(MaxFval)]);str1=sprintf(' Best generation:\n %d\n\n Best X:\n %s\n\n MaxFval\n %f\n',...MaxFvalIn,num2str(X),MaxFval);disp(str1);% -计时T2=clock;elapsed_time=T2-T1;if elapsed_time(6)<0elapsed_time(6)=elapsed_time(6)+60; elapsed_time(5)=elapsed_time(5)-1;endif elapsed_time(5)<0elapsed_time(5)=elapsed_time(5)+60;elapsed_time(4)=elapsed_time(4)-1;end。

遗传算法matlab代码

遗传算法matlab代码
figure(1);%打开第一个窗口
fplot(f,[xmin,xmax]);%隐函数画图
grid on;hold on;
plot(x,fit,'k*');%作图,画初始种群的适应度图像
title('(a)染色体的初始位置');%标题
xlabel('x');ylabel('f(x)');%标记轴
close all;
clc;%清屏
tic;%计时器开始计时
n=20;ger=100;pc=0.65;pm=0.05;%初始化参数
%以上为经验值,可以更改。
% 生成初始种群
v=init_population(n,22); %得到初始种群,22串长,生成20*22的0-1矩阵
[N,L]=size(v); %得到初始规模行,列
v=fliplr(v); %实现左右翻转颠倒
[s,c]=size(v); %c代表串长。求行,列
aux=0:1:c-1; %21维向量
aux=ones(s,1)*aux;%权值向量矩阵
x1=sum((v.*2.^aux)');%权值 %注意转置 %sum是求列和
x=xymin+(xymax-xymin)*x1./(2^c-1); %最大值4194303;
disp(sprintf('Number of generations:%d',ger));
disp(sprintf('Population size:%d',N));
disp(sprintf('Crossover probability:%.3f',pc));

遗传算法MATLAB完整代码(不用工具箱)

遗传算法MATLAB完整代码(不用工具箱)

遗传算法MATLAB完整代码(不用工具箱)遗传算法解决简单问题%主程序:用遗传算法求解y=200*exp(-0.05*x).*sin(x)在区间[-2,2]上的最大值clc;clear all;close all;global BitLengthglobal boundsbeginglobal boundsendbounds=[-2,2];precision=0.0001;boundsbegin=bounds(:,1);boundsend=bounds(:,2);%计算如果满足求解精度至少需要多长的染色体BitLength=ceil(log2((boundsend-boundsbegin)'./precision));popsize=50; %初始种群大小Generationmax=12; %最大代数pcrossover=0.90; %交配概率pmutation=0.09; %变异概率%产生初始种群population=round(rand(popsize,BitLength));%计算适应度,返回适应度Fitvalue和累计概率cumsump[Fitvalue,cumsump]=fitnessfun(population);Generation=1;while Generation<generationmax+1< p="">for j=1:2:popsize%选择操作seln=selection(population,cumsump);%交叉操作scro=crossover(population,seln,pcrossover);scnew(j,:)=scro(1,:);scnew(j+1,:)=scro(2,:);%变异操作smnew(j,:)=mutation(scnew(j,:),pmutation);smnew(j+1,:)=mutation(scnew(j+1,:),pmutation);endpopulation=scnew; %产生了新的种群%计算新种群的适应度[Fitvalue,cumsump]=fitnessfun(population);%记录当前代最好的适应度和平均适应度[fmax,nmax]=max(Fitvalue);fmean=mean(Fitvalue);ymax(Generation)=fmax;ymean(Generation)=fmean;%记录当前代的最佳染色体个体x=transform2to10(population(nmax,:));%自变量取值范围是[-2,2],需要把经过遗传运算的最佳染色体整合到[-2,2]区间xx=boundsbegin+x*(boundsend-boundsbegin)/(power((boundsend),BitLength)-1);xmax(Generation)=xx;Generation=Generation+1;endGeneration=Generation-1;Bestpopulation=xx;Besttargetfunvalue=targetfun(xx);%绘制经过遗传运算后的适应度曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21装配生产线任务平衡问题的遗传算法
M A T L A B源代码
装配生产线任务平衡问题的遗传算法MATLAB源代码下面的源码实现了装配生产线任务平衡优化问题(ALB问题)的遗传算法,算法主要参考下面这篇文献,并对其进行了改进。

陈永卿,潘刚,李平.基于混合遗传算法的装配线平衡[J].机电工程,2008,25(4):60-62.。

function
[BestX,BestY,BestZ,AllFarm,LC1,LC2,LC3,LC4,LC5]=GSAALB(M,N,Pm,Pd,K,t0, alpha,TaskP,TaskT,TaskV,RT,RV)
% GreenSim团队——专业级算法设计&代写程序
% 欢迎访问GreenSim团队主页→/greensim
%% 装配生产线任务平衡问题的遗传算法
%% 输入参数列表
% M------------遗传算法进化代数
% N------------种群规模,取偶数
% Pm-----------变异概率调节参数
% Pd-----------变异程度调节参数,0<Pd<1,越大,变异的基因位越多
% K------------同一温度下状态跳转次数
% T0-----------初始温度
% Alpha--------降温系数
% Beta---------浓度均衡系数
% TaskP--------任务优先矩阵,n×n矩阵,Pij=1表示任务i需在j之前完成,Pij=0时任务i和j没有优先关系
% TaskT--------任务时间属性,n×1向量
% TaskV--------任务体积属性,n×1向量
% RT-----------时间节拍约束
% RV-----------工位体积约束
%% 输出参数列表
% BestX--------最好个体的编码
% BestY--------最好个体对应的装配方案
% BestZ--------最好个体的目标函数值
% LC1----------最优个体适应值的收敛曲线,M×1
% LC2----------种群平均适应值的收敛曲线,M×1
% LC3----------工位个数收敛曲线,M×1
% LC4----------时间利用率及平衡度综合度量参数收敛曲线,M×1
% LC5----------空间利用率及平衡度综合度量参数收敛曲线,M×1
% AllFarm------各代种群的集合,M×1的细胞结构
%% -----------------------初始化----------------------------------
n=size(TaskP,1);
[AA,BB]=QJHJ(TaskP);%调用子函数,建立每一个任务的前任务集和后任务集
farm=Initialization(N,TaskP,AA,BB);%调用子函数,种群初始化
%输出参数初始化
BestX=zeros(1,n);
BestY=zeros(1,n);
BestZ=0;
LC1=zeros(M,1);
LC2=zeros(M,1);
LC3=zeros(M,1);
LC4=zeros(M,1);
LC5=zeros(M,1);
AllFarm=cell(M,1);
%控制参数初始化
m=1;%迭代计数器
t=t0;%温度指示器
BestPos=1;%初始时任意指定被保护个体
%% -----------------------迭代过程---------------------------------
while m<=M%设置停止条件
%% ----------------------变异退火算子------------------------------
for i=1:N
if rand>Pm&&i~=BestPos
%如果随机数大于变异概率门限值,并且不属于保护个体,就对其实施变异
I=farm(i,:);%取出该个体
k=1;
while k<=K%每一个温度下的状态转移次数
%调用变异子函数
J=Mutation(I,Pd,AA,BB);
%调用计算适应值子函数
[YI,ZI,FI,TGWI,VGWI,f1I,f2I]=Fitness(I,TaskT,TaskV,RT,RV);
[YJ,ZJ,FJ,TGWJ,VGWJ,f1J,f2J]=Fitness(J,TaskT,TaskV,RT,RV);
if FJ>FI
farm(i,:)=J;
elseif rand<exp((FJ-FI)/(FI*t))
farm(i,:)=J;
else
farm(i,:)=I;
end
k=k+1;
end
end
end
%% -----------------------交叉算子---------------------------------
newfarm=zeros(size(farm));
Ser=randperm(N);%用这个函数保证随机配对
for i=1:2:(N-1)
FA=farm(Ser(i),:);
FB=farm(Ser(i+1),:);
[SA,SB]=CrossOver(FA,FB);
newfarm(i,:)=SA;
newfarm(i+1,:)=SB;
end
%新旧种群合并
FARM=[farm;newfarm];
%% -----------------------选择复制---------------------------------
FIT_Y=zeros(2*N,n);
FIT_Z=zeros(2*N,1);
FIT_F=zeros(2*N,1);
FIT_f1=zeros(2*N,1);
FIT_f2=zeros(2*N,1);
fit_Y=zeros(N,n);
fit_Z=zeros(N,1);
fit_F=zeros(N,1);
fit_f1=zeros(N,1);
fit_f2=zeros(N,1);
for i=1:(2*N)
XX=FARM(i,:);
[Y,Z,F,TGW,VGW,f1,f2]=Fitness(XX,TaskT,TaskV,RT,RV); FIT_Y(i,:)=Y;
FIT_Z(i)=Z;
FIT_F(i)=F;
FIT_f1(i)=f1;
FIT_f2(i)=f2;
end
Ser=randperm(2*N);
for i=1:N
ff1=FIT_F(Ser(2*i-1));
ff2=FIT_F(Ser(2*i));
if ff1>=ff2
farm(i,:)=FARM(Ser(2*i-1),:);
fit_Y(i,:)=FIT_Y(Ser(2*i-1),:);
fit_Z(i)=FIT_Z(Ser(2*i-1));
fit_F(i)=FIT_F(Ser(2*i-1));
fit_f1(i)=FIT_f1(Ser(2*i-1));
fit_f2(i)=FIT_f2(Ser(2*i-1));
else
farm(i,:)=FARM(Ser(2*i),:);
fit_Y(i,:)=FIT_Y(Ser(2*i),:);
fit_Z(i)=FIT_Z(Ser(2*i));
fit_F(i)=FIT_F(Ser(2*i));
fit_f1(i)=FIT_f1(Ser(2*i));
fit_f2(i)=FIT_f2(Ser(2*i));
end
end
%% -----------------------记录与更新------------------------------- maxF=max(fit_F);
meanF=mean(fit_F);
LC1(m)=maxF;
LC2(m)=meanF;
pos=find(fit_F==maxF);
BestPos=pos(1);
BestX=farm(BestPos,:);
BestY=fit_Y(BestPos,:);
BestZ=fit_Z(BestPos);
LC3(m)=fit_Z(BestPos);
LC4(m)=fit_f1(BestPos);
LC5(m)=fit_f2(BestPos);
AllFarm{m}=farm;
disp(m);
m=m+1;
t=t*alpha;
end
源代码运行结果展示。

相关文档
最新文档