石灰石湿法烟气脱硫技术
石灰石-石膏湿法烟气脱硫脱水系统运行优化

石灰石-石膏湿法烟气脱硫脱水系统运行优化石灰石-石膏湿法烟气脱硫脱水系统是烟气脱硫脱水技术中常见的一种方法,对于工业生产中排放的烟气进行净化处理具有重要意义。
系统的运行优化对于提高处理效率、降低能耗、保障环境安全同样至关重要。
本文将对石灰石-石膏湿法烟气脱硫脱水系统运行优化进行探讨,并提出相关建议和解决方案。
一、系统结构与工作原理石灰石-石膏湿法烟气脱硫脱水系统主要由烟气脱硫脱水装置、石灰石浆液制备系统、脱水系统、石膏脱水再生系统等部分组成。
其工作原理是将排放的烟气经过脱硫塔,利用石灰石浆液中的Ca(OH)2与SO2反应生成CaSO3、CaSO4等沉淀物,并将烟气中的SO2、NOx 等有害物质吸收、氧化、转化成固体废物,然后通过脱水系统将脱硫脱水产生的石膏脱水,达到排放标准后进行再生利用。
二、系统运行优化1. 设备优化石灰石-石膏湿法烟气脱硫脱水系统中的关键设备包括脱硫塔、搅拌器、脱水设备等,对于这些设备的工作状态进行优化是系统运行优化的重要环节。
首先要做好设备的定期维护保养工作,保证设备的正常运行和使用寿命。
其次是对设备进行技术改造和升级,采用先进的技术手段完善设备功能,提高设备的稳定性和耐久性。
还要加强对设备运行数据的监测和分析,及时发现并处理设备运行中的问题,保障系统的平稳运行。
2. 工艺优化石灰石-石膏湿法烟气脱硫脱水系统的工艺优化主要包括石灰石浆液制备、脱硫反应、石膏脱水等环节。
在石灰石浆液制备过程中,应注意石灰石粉末与水的比例、搅拌速度、搅拌时间等参数的调整,以保证制备出浆液的浓度和稳定性。
在脱硫反应过程中,应根据烟气中SO2、NOx的含量和流速等参数,调整脱硫塔中浆液的供应量和分布方式,实现对有害物质的高效吸收和转化。
在石膏脱水环节,应根据脱水设备的特性,合理控制脱水速度和温度,提高脱水效率和质量。
3. 能耗优化石灰石-石膏湿法烟气脱硫脱水系统的运行中涉及大量的能源消耗,包括水泵、搅拌器、脱水设备等设备的驱动能耗,石灰石浆液制备、脱硫反应、石膏脱水等过程中的能量消耗等。
石灰石湿法脱硫原理四个步骤

石灰石湿法脱硫原理四个步骤
石灰石湿法脱硫是一种常用的烟气脱硫技术,主要用于燃煤电厂等工业领域中
排放含硫气体的治理。
其原理是利用石灰石(CaCO3)和水(H2O)反应生成石灰
水(Ca(OH)2),再将石灰水喷入烟气中,与烟气中的二氧化硫(SO2)发生化学
反应形成硫酸钙(CaSO3),达到脱除二氧化硫的目的。
下面将详细介绍石灰石湿
法脱硫的四个步骤。
第一步:石灰石磨碎
首先,将石灰石破碎成适当的颗粒大小,通常要求粒度均匀,以提高与烟气中
二氧化硫的接触面积,增加反应效率。
第二步:石灰石制浆
将破碎后的石灰石与水混合制成石灰水浆料,使其达到适当的浓度和粘度,以
便后续的喷射和混合过程中均匀分布。
第三步:石灰水喷射
将制成的石灰水浆料通过喷射器喷入烟气脱硫设备中,形成细小的石灰水颗粒,并与烟气中的二氧化硫接触反应,生成硫酸钙。
第四步:脱硫产物处理
经过湿法脱硫过程后,生成的硫酸钙沉淀将被收集,并进行进一步处理,通常
通过过滤、压滤、脱水等方法将硫酸钙固化成产品或废弃物,以便后续的处理和处置。
综上所述,石灰石湿法脱硫的原理主要包括将石灰石破碎、制浆,再喷射进入
烟气中进行反应生成硫酸钙,最终将脱硫产物处理的四个步骤。
这种方法可以有效地将燃煤电厂等工业烟气中的二氧化硫去除,减少大气污染物排放,保护环境和人类健康。
石灰石石膏湿法脱硫的工艺

石灰石石膏湿法脱硫的工艺【石灰石石膏湿法脱硫的工艺】导语:石灰石石膏湿法脱硫是一种常见的烟气脱硫技术,通过将石灰石与石膏反应,可以高效地去除燃煤发电厂和工业锅炉烟气中的二氧化硫。
本文将深入探讨石灰石石膏湿法脱硫的工艺原理、优势以及相关问题。
一、工艺原理1. 石灰石石膏湿法脱硫原理:石灰石与石膏发生反应生成硬石膏,将烟气中的二氧化硫转化为硫酸钙,并形成可回收利用的石膏产物。
主要反应方程式如下所示:CaCO3 + SO2 + 2H2O → CaSO4·2H2O + CO22. 脱硫反应的特点:该反应是一个快速的液相反应,在一定反应温度、气体流速和石膏浆液浓度下进行。
反应速率受碱性、反应温度、质量浓度等因素的影响。
二、工艺步骤1. 石灰石石膏湿法脱硫的基本步骤:(1)石灰石破碎、磨细:将原料石灰石经过破碎和磨细处理,提高其活性和反应速率。
(2)制备石膏浆液:将石灰石与水混合,形成石灰石浆液。
为了提高脱硫效果,还可加入一定量的添加剂。
(3)脱硫反应:将石灰石浆液喷入脱硫塔,通过与烟气的接触和反应,使二氧化硫转化为硫酸钙。
(4)石膏产物处理:将脱硫过程中生成的硬石膏经过脱水、干燥等处理后,得到成品石膏。
2. 工艺改进:为了提高脱硫效率和经济性,石灰石石膏湿法脱硫工艺进行了多方面的改进。
例如引入喷雾器、增加反应塔数目、采用高效填料等,以增加烟气与石灰石浆液的接触面积,加强反应效果。
三、工艺优势1. 脱硫效率高:石灰石石膏湿法脱硫工艺能够高效地将烟气中的二氧化硫转化为重质石膏产物,脱硫效率可达到90%以上。
2. 石膏产物可回收利用:脱硫过程中生成的硬石膏可以用于建材、石膏板等行业,实现资源的循环利用。
3. 工艺成熟可靠:石灰石石膏湿法脱硫工艺经过多年的实践应用,技术成熟可靠,广泛应用于燃煤发电厂和工业锅炉等领域。
四、问题与挑战1. 石膏处理与排放:脱硫过程中生成的硬石膏需要进行后续的脱水、干燥等处理,同时还需要解决石膏产物的长期存储和排放问题。
石灰石.石膏湿法烟气脱硫技术

石灰石-石膏湿法脱硫工艺1 石灰石/石膏湿法烟气脱硫技术特点:1).高速气流设计增强了物质传递能力,降低了系统的成本,标准设计烟气流速达到4.0 m/s。
2).技术成熟可靠,多于55,000 MWe 的湿法脱硫安装业绩。
3).最优的塔体尺寸,系统采用最优尺寸,平衡了SO2 去除与压降的关系,使得资金投入和运行成本最低。
4).吸收塔液体再分配装置,有效避免烟气爬壁现象的产生,提高经济性,降低能耗。
从而达到:·脱硫效率高达95%以上,有利于地区和电厂实行总量控制;·技术成熟,设备运行可靠性高(系统可利用率达98%以上);·单塔处理烟气量大,SO2脱除量大;·适用于任何含硫量的煤种的烟气脱硫;·对锅炉负荷变化的适应性强(30%—100%BMCR);·设备布置紧凑减少了场地需求;·处理后的烟气含尘量大大减少;·吸收剂(石灰石)资源丰富,价廉易得;·脱硫副产物(石膏)便于综合利用,经济效益显著;2 系统基本工艺流程石灰石(石灰)/石膏湿法脱硫工艺系统主要有:烟气系统、吸收氧化系统、浆液制备系统、石膏脱水系统、排放系统组成。
其基本工艺流程如下:锅炉烟气经电除尘器除尘后,通过增压风机、GGH(可选)降温后进入吸收塔。
在吸收塔内烟气向上流动且被向下流动的循环浆液以逆流方式洗涤。
循环浆液则通过喷浆层内设置的喷嘴喷射到吸收塔中,以便脱除SO2、SO3、HCL和HF,与此同时在“强制氧化工艺”的处理下反应的副产物被导入的空气氧化为石膏(CaSO4·2H2O),并消耗作为吸收剂的石灰石。
循环浆液通过浆液循环泵向上输送到喷淋层中,通过喷嘴进行雾化,可使气体和液体得以充分接触。
每个泵通常与其各自的喷淋层相连接,即通常采用单元制。
在吸收塔中,石灰石与二氧化硫反应生成石膏,这部分石膏浆液通过石膏浆液泵排出,进入石膏脱水系统。
脱水系统主要包括石膏水力旋流器(作为一级脱水设备)、浆液分配器和真空皮带脱水机。
石灰石(石灰)湿法脱硫技术

石灰石(石灰)湿法脱硫技术湿法脱硫中所应用的脱硫系统位于烟道的末端,脱硫过程中的反应温度低于露点,因此,脱硫后的烟气需要进行加热处理才能排出。
由于脱硫过程中的反应类型为气液反应,其脱硫效率和所用脱硫添加剂的使用效率均较高,因此,在许多大型燃煤电站中都已建成使用。
一、石灰石(石灰)湿法脱硫技术概述根据最新的技术统计资料显示,到目前为止投入使用的脱硫技术种类已经超过200种,在形式多样的脱硫技术中,湿法脱硫技术是应用范围最广、脱硫效率最高的一种应用技术,占脱硫设备总装机量的80%以上,始终占据着脱硫技术领域的主导地位。
石灰石(石灰)湿法脱硫技术作为最成熟的一种脱硫技术,其脱硫效率可到90%以上,成为效果最显著的脱硫方法。
石灰石(石灰)湿法脱硫技术经过几十年的发展,已被应用于600MW 烟气单塔的烟气处理系统中,脱硫剂的利用效率基本稳定在95%以上,反应过程所消耗的电能不足电厂出力的1.5%,与十多年前的脱硫系统相比,在脱硫成本轻微上升的条件下脱硫效果却得到了质的飞跃。
二、石灰石(石灰)湿法脱硫技术的应用原理(一)工艺流程石灰石(石灰)湿法脱硫技术的基本过程是:烟气经锅炉排出后进入除尘器,之后进入脱硫塔,脱硫塔内的石灰石浆液与烟气中的SO2进行气液反应,生成CaCO3和CaCO4。
在反应之后的浆液中充入氧气,可将CaCO3氧化成CaCO4和石膏,石膏经脱水处理后可作为脱硫反应的副产品被回收利用。
工业实践中采用最多的脱硫塔方式是单塔,在单塔中可完成脱硫反应的全过程,脱硫成本和运行费用也更低。
(二)反应过程烟气中的SO2在脱硫塔内的反应过程可用下面两个方程表示,其中,第二个反应过程中生产的CaSO3会被烟气中的氧气氧化生成CaSO4,形成副产品被回收利用。
SO2+CaCO3—CaSO3+CO2 石灰石浆液(1)SO2+Ca(OH)2—CaSO3+H2O 石灰浆液(2)(三)脱硫效率脱硫效率受到诸多因素的影响,其中,脱硫塔中的pH值对脱硫效率会产生较大的影响。
石灰石-石膏湿法烟气脱硫工艺的化学原理

石灰石-石膏湿法烟气脱硫工艺的化学原理一、概述:脱硫过程就是吸收,吸附,催化氧化和催化还原,石灰石浆液洗涤含SO2烟气,产生化学反应分离出脱硫副产物,化学吸收速率较快与扩散速率有关,又与化学反应速度有关,在吸收过程中被吸收组分的气液平衡关系,既服从于相平衡(液气比L/G,烟气和石灰石浆液的比),又服从于化学平衡(钙硫比Ca/S,二氧化硫与炭酸钙的化学反应)。
1、气相:烟气压力,烟气浊度,烟气中的二氧化硫含量,烟尘含量,烟气中的氧含量,烟气温度,烟气总量2、液相:石灰石粉粒度,炭酸钙含量,黏土含量,与水的排比密度,3、气液界面处:参加反应的主要是SO2和HSO3-,它们与溶解了的CaCO3的反应是瞬间进行的。
二、脱硫系统整个化学反应的过程简述:1、 SO2在气流中的扩散,2、扩散通过气膜3、 SO2被水吸收,由气态转入溶液态,生成水化合物4、 SO2水化合物和离子在液膜中扩散5、石灰石的颗粒表面溶解,由固相转入液相6、中和(SO2水化合物与溶解的石灰石粉发生反应)7、氧化反应8、结晶分离,沉淀析出石膏,三、烟气的成份:火力发电厂煤燃烧产生的污染物主要是飞灰、氮氧化物和二氧化硫,使用静电除尘器可控制99%的飞灰污染。
四、二氧化硫的物理、化学性质:①. 二氧化硫SO2的物理、化学性质:无色有刺激性气味的有毒气体。
密度比空气大,易液化(沸点-10℃),易溶于水,在常温、常压下,1体积水大约能溶解40体积的二氧化硫,成弱酸性。
SO2为酸性氧化物,具有酸性氧化物的通性、还原性、氧化性、漂白性。
还原性更为突出,在潮湿的环境中对金属材料有腐蚀性,液体SO2无色透明,是良好的制冷剂和溶剂,还可作防腐剂和消毒剂及还原剂。
②. 三氧化硫SO3的物理、化学性质:由二氧化硫SO2催化氧化而得,无色易挥发晶体,熔点16.8℃,沸点44.8℃。
SO3为酸性氧化物,SO3极易溶于水,溶于水生成硫酸H2SO4,同时放出大量的热,③. 硫酸H2SO4的物理、化学性质:二元强酸,纯硫酸为无色油状液体,凝固点为10.4℃,沸点338℃,密度为1.84g/cm3,浓硫酸溶于水会放出大量的热,具有强氧化性(是强氧化剂)和吸水性,具有很强的腐蚀性和破坏性,五、石灰石湿-石膏法脱硫化学反应的主要动力过程:1、气相SO2被液相吸收的反应:SO2经扩散作用从气相溶入液相中与水生成亚硫酸H2SO3亚硫酸迅速离解成亚硫酸氢根离子HSO3-和氢离子H+,当PH值较高时,HSO3二级电离才会生成较高浓度的SO32-,要使SO2吸收不断进行下去,必须中和电离产生的H+,即降低吸收剂的酸度,碱性吸收剂的作用就是中和氢离子H+当吸收液中的吸收剂反应完后,如果不添加新的吸收剂或添加量不足,吸收液的酸度迅速提高,PH值迅速下降,当SO2溶解达到饱和后,SO2的吸收就告停止,脱硫效率迅速下降2、吸收剂溶解和中和反应:固体CaCO3的溶解和进入液相中的CaCO3的分解,固体石灰石的溶解速度,反应活性以及液相中的H+浓度(PH值)影响中和反应速度和Ca2+的氧化反应,以及其它一些化合物也会影响中和反应速度。
石灰石-石膏湿法脱硫工艺的基本原理

石灰石-石膏湿法脱硫工艺的基本原理一、石灰石-石膏湿法脱硫工艺的基本原理石灰石——石膏湿法烟气脱硫工艺的原理是采用石灰石粉制成浆液作为脱硫吸收剂,与经降温后进入吸收塔的烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙,以及加入的氧化空气进行化学反应,最后生成二水石膏。
脱硫后的净烟气依次经过除雾器除去水滴、再经过烟气换热器加热升温后,经烟囱排入大气。
由于在吸收塔内吸收剂经浆液再循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低(一般不超过1.1),脱硫效率不低于95%,适用于任何煤种的烟气脱硫。
石灰石——石膏湿法烟气脱硫工艺的化学原理:烟气中的SO2溶解于水中生成亚硫酸并离解成氢离子和HSO 离子;烟气中的氧(由氧化风机送入的空气)溶解在水中,将 HSO 氧化成SO ; ? 吸收剂中的碳酸钙在一定条件下于水中生成Ca2+;在吸收塔内,溶解的二氧化硫、碳酸钙及氧发生化学反应生成石膏(CaSO4?2H2O)。
由于吸收剂循环量大和氧化空气的送入,吸收塔下部浆池中的HSO或亚硫酸盐几乎全部被氧化为硫酸根或硫酸盐,最后在CaSO4达到一定过饱和度后结晶形成石膏—CaSO4?2H2O,石膏可根据需要进行综合利用或抛弃处理。
二、工艺流程及系统湿法脱硫工艺系统整套装置一般布置在锅炉引风机之后,主要的设备是吸收塔、烟气换热器、升压风机和浆液循环泵我公司采用高效脱除SO2的川崎湿法石灰石,石膏工艺。
该套烟气脱硫系统(FGD)处理烟气量为定洲发电厂,1和,2机组(2×600MW)100,的烟气量,定洲电厂的FGD系统由以下子系统组成:(1)吸收塔系统(2)烟气系统(包括烟气再热系统和增压风机)(3)石膏脱水系统(包括真空皮带脱水系统和石膏储仓系统)(4)石灰石制备系统(包括石灰石接收和储存系统、石灰石磨制系统、石灰石供浆系统) (5)公用系统(6)排放系统(7)废水处理系统1、吸收塔系统吸收塔采用川崎公司先进的逆流喷雾塔,烟气由侧面进气口进入吸收塔,并在上升区与雾状浆液逆流接触,处理后的烟气在吸收塔顶部翻转向下,从与吸收塔烟气入口同一水平位置的烟气出口排至烟气再热系统。
石灰石石膏湿法脱硫

石灰石石膏湿法脱硫
在工业生产过程中,二氧化硫的排放是一项严重的环境污染问题。
为了减少二氧化硫的排放,石灰石石膏湿法脱硫技术应运而生。
石灰石石膏湿法脱硫是一种常见的烟气脱硫技术,其工作原理是利用石灰石(CaCO3)和石膏(CaSO4)来将含有二氧化硫的烟气中的硫氧化物吸收和转化成硫酸盐的方法。
其基本反应方程式如下:
CaCO3 + SO2 + 2H2O -> CaSO4·2H2O + CO2
在工业生产中,石灰石通常以石灰石浆的形式喷入脱硫塔中,而脱硫塔内有填料来增加气液接触面积。
当含有二氧化硫的烟气通过脱硫塔时,二氧化硫会与石灰石浆中的氢氧根和钙离子发生反应,生成硫酸钙和二氧化碳,并最终形成石膏。
石膏是一种无害的产物,可以被应用在建筑材料、水泥生产等领域。
因此,石灰石石膏湿法脱硫技术不仅可以有效减少环境污染,还可以实现资源的再利用,具有双重的环保效益。
相比于其他脱硫技术,石灰石石膏湿法脱硫技术具有高效、低成本、操作简便等优点。
但同时也存在着一些缺点,例如脱硫塔需占用较大的空间,对于废水处理等环节也需要进行综合考虑。
综上所述,石灰石石膏湿法脱硫技术在工业生产中扮演着重要的角色,为减少二氧化硫的排放、改善环境质量提供了一种有效的途径。
在未来的发展中,我们还需不断优化技术,降低成本,提高脱硫效率,推动绿色环保产业的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2气液平衡
当混合气体可吸收组分(吸收质)与液相吸收剂接触 时,则部分吸收质向吸收剂进行质量传递(吸收过 程),同时也发生液相中吸收质组分向气相逸出的 质量传递过程(解吸过程)。
在一定的温度和压力下,吸收过程的传质速率等 于解吸过程的传质速率时,气液两相就达到了动 态平衡,简称相平衡或平衡。
平衡时气相中的组分分压称为平衡分压,溶质在 液相吸收剂(溶剂)中的浓度称为平衡溶解度,简称 溶解度。
2.2.1气体在液体中的溶解度
气体的溶解度是在每l00kg水中溶解气体的 千克数。
它与气体和溶剂的性质有关,并受温度和 压力的影响。由于组分的溶解度与该组分 在气相中的分压成正比,故溶解度也可用 组分在气相中的分压表示。
SO3向H2SO4蒸汽的转变率 r H2SO4与温度的关系
因此,露点也有所下降。但随着烟气向下游流动, 烟温逐渐降低,会继续发生凝结,不过凝结液中 的H2SO4浓度有所降低。因此,随着温度的降低, 或者说随着烟气向下游流动,凝结液中H2SO4浓 度是沿程逐渐减小的。如果H2SO4蒸汽凝结在锅 炉尾部受热面上,或者在烟道内(包括烟囱)凝结, 将引起酸腐蚀,并产生酸性尘;如果排人大气中 再凝结时,将生成硫酸雾,白烟就是这种排人大 气再凝结的硫酸雾。
1硫氧化物的生成机理
1.1煤中硫的赋存形态
煤是一种低品位的化石能源。我国的原煤中硫分 含量较高,大部分煤的硫含量变化范围较大,从0. 2%~8%不等。煤中硫根据其赋存形态,可分为 有机硫和无机硫两大类。
有机硫是指与煤的有机结构相结合的硫,主要以 C—s键结合在煤大分子骨架中,种类较多,结构 复杂,如硫茂(噻吩)、硫醇R—SH、硫醚R—s—R、 二硫化物R—S—S—R等化合物。
--石膏湿法烟气脱硫技 术
环境污染的地球
SO2的危害和我国的排放现状
我国是以燃煤为主的国家,据统计,1995年 煤炭消耗量为12.8亿吨,且呈逐年递增趋势, 二氧化硫的排放量达2370万吨,超过美国 2100万吨的排放量,成为世界二氧化硫排放 第一大国。目前全国62%以上的城市浓度超 过国家环境质量二级标准,占全国面积40% 左右的地区受到大量排放引起的酸雨污染, 因此控制的污染势在必行。
比例/% 46.3 35 10 4.7 1.9 2.1
1.2煤燃烧过程中硫氧化物的生成机理
煤中硫分在燃烧过程中生成的产物主要有二氧化 硫(SO2)、三氧化硫(SO3)和硫酸蒸汽(HSO4)等, 统称为“硫的氧化物”,通常用SOx表示。
,当温度高于200~250℃时,即使烟气中有SO2 其转变为H2SO4蒸汽的份额也是很小的。当温度 低于200℃左右时,随温度降低,反应式
(SO3+H2O H2SO4+热量 )的反应速率显著增大。 当烟气温度低于110℃时,这一反应基本完成,即 几乎全部的SO3与水蒸气结合生成H2SO4蒸汽。
当温度进一步降低至酸露点时,H2SO4蒸 汽开始结成硫酸滴。由于H2SO4蒸汽比水 蒸气更容易凝结,因此,在开始凝结时, 低温壁面上凝结液中的H2SO4浓度很高。
烟气中的硫氧化物可引起脱硫系统尾部烟道的酸 性腐蚀,因此,防腐问题是影响脱硫系统安全运 行的至关重
在石灰石湿法烟气脱硫工艺中,石灰石浆液吸收 二氧化硫是一个气液传质过程,该过程大致分为 四个阶段:
(1)气态反应物质从气相主体向气一液界面的传递; (2)气态反应物穿过气液界面进入液相,并发生化
当前烟气脱硫技术的发展状况
目前,国内外应用的的控制途径有三种:燃烧前脱硫、燃 烧中脱硫和燃烧后脱硫(即烟气脱硫)。其中,烟气脱硫 (FGD即Flue Gas Desulfuration)是目前世界唯一大规模 商业化应用的脱硫方式,是控制污染和酸雨的主要技术手 段。
全世界已有15个国家和地区应用了FGD装置,其设备总装 机容量相当于2-2.5亿Kw,每年去除SO21000万吨。据统计, 1992年,全球安装了FGD装置646套,其中美国占55.3%, 德国占26.4%,日本占8.6%,其余国家占9.7%。由于上述 三国大规模应用FGD装置,且成效显著,虽然近年三国电 站的装机容量不断增加,但排放总量却逐年减少。
我国发电用煤含硫量的统计结果。从表中可以看 到,St,ad≥1.0%的电力用煤量达53.7%, St,ad≥2.0%的电力用煤量达18.7%。因此,我国燃 煤电站SO2排放控制任务是十分艰巨的。
St,ad/% <1.0 1.0~2.0 2.0~3.0 3.0~4.0 4.0~5.0 >5.0 占总燃煤量的
煤中主要有机硫化合物的结构
无机硫是以无机物形态存在的硫,通常以 晶粒状态夹杂在煤中,如硫铁矿和硫酸盐 硫,其中以磺铁矿(Fes2)硫为主,又称矿物 硫,它在煤中通常呈弥散相分布。
此外,还有少量的白铁矿(FeS2)、砷磺铁矿 (FeAsS)、黄铜矿(CuFeS2)、石膏 (cas04.2H~O)、绿矾(FeS04‘7H10)、方铅矿 (PbS)、闪锌矿(ZnS)等。有些煤中还含有少 量的单质硫。
2.2.2亨利定律
物理吸收时,常用亨利定律来描述气液相间的相 平衡关系。当总压不高(一般约小于5×105pa)时, 在一定温度下,当溶解达到平衡时,稀溶液上方 溶质的平衡分压与其在溶液中的浓度成正比,即
P*=Ex
式中P*——溶质在气相中的平衡分压,Pa;
x——溶质在液相中的摩尔分数;
学反应; (3)液相中的反应物由液相主体向相界面附近的反
应区迁移; (4)反应生成物从反应区向液相主体的迁移。
脱硫过程包括扩散、吸收和化学反应等过 程,是一个复杂的物理化学过程。脱硫效 率不仅与气液平衡有关,还与化学平衡有 关。
2.1气体扩散
气体的质量传递过程是借助于气体扩散过程 来实现的。 扩散的结果,会使气体从浓度较高的区域 转移到浓度较低的区域。 对吸收操作来说,混合气体中的气态反应 物A首先要从气相主体扩散到气液界面,然 后才能由界面扩散到液相主体中。