石灰石石灰法湿法烟气脱硫

合集下载

四种脱硫方法工艺简介

四种脱硫方法工艺简介

一、石灰石/石灰-石膏法脱硫工艺一)、工作原理石灰石/石灰-石膏法烟气脱硫采用石灰石或石灰作为脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌成吸收浆液,当采用石灰为吸收剂时,石灰粉经消化处理后加水制成吸收剂浆液。

在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应从而被脱除,最终反应产物为石膏。

二)、反应过程1、吸收SO2+ H2O—>H2SO3SO3+ H2O—>H2SO42、中和CaCO3+ H2SO3—>CaSO3+CO2+ H2OCaCO3+ H2SO4—>CaSO4+CO2+ H2OCaCO3+2HCl—>CaCl2+CO2+ H2OCaCO3+2HF—>CaF2+CO2+ H2O3、氧化2CaSO3+O2—>2 CaSO44、结晶CaSO4+ 2H2O—>CaSO4·2H2O三)、系统组成脱硫系统主要由烟气系统、吸收氧化系统、石灰石/石灰浆液制备系统、副产品处理系统、废水处理系统、公用系统(工艺水、压缩空气、事故浆液罐系统等)、电气控制系统等几部分组成。

四)、工艺流程锅炉/窑炉—>除尘器—>引风机—>吸收塔—>烟囱来自于锅炉或窑炉的烟气经过除尘后在引风机作用下进入吸收塔,吸收塔为逆流喷淋空塔结构,集吸收、氧化功能于一体,上部为吸收区,下部为氧化区,经过除尘后的烟气与吸收塔内的循环浆液逆向接触。

系统一般装3-5台浆液循环泵,每台循环泵对应一层雾化喷淋层。

当只有一台机组运行时或负荷较小时,可以停运1-2层喷淋层,此时系统仍保持较高的液气比,从而可达到所需的脱硫效果。

吸收区上部装二级除雾器,除雾器出口烟气中的游离水份不超过75mg/Nm3。

吸收SO2后的浆液进入循环氧化区,在循环氧化区中,亚硫酸钙被鼓入的空气氧化成石膏晶体。

同时,由吸收剂制备系统向吸收氧化系统供给新鲜的石灰石浆液,用于补充被消耗掉的石灰石,使吸收浆液保持一定的pH值。

石灰石湿法脱硫原理四个步骤

石灰石湿法脱硫原理四个步骤

石灰石湿法脱硫原理四个步骤
石灰石湿法脱硫是一种常用的烟气脱硫技术,主要用于燃煤电厂等工业领域中
排放含硫气体的治理。

其原理是利用石灰石(CaCO3)和水(H2O)反应生成石灰
水(Ca(OH)2),再将石灰水喷入烟气中,与烟气中的二氧化硫(SO2)发生化学
反应形成硫酸钙(CaSO3),达到脱除二氧化硫的目的。

下面将详细介绍石灰石湿
法脱硫的四个步骤。

第一步:石灰石磨碎
首先,将石灰石破碎成适当的颗粒大小,通常要求粒度均匀,以提高与烟气中
二氧化硫的接触面积,增加反应效率。

第二步:石灰石制浆
将破碎后的石灰石与水混合制成石灰水浆料,使其达到适当的浓度和粘度,以
便后续的喷射和混合过程中均匀分布。

第三步:石灰水喷射
将制成的石灰水浆料通过喷射器喷入烟气脱硫设备中,形成细小的石灰水颗粒,并与烟气中的二氧化硫接触反应,生成硫酸钙。

第四步:脱硫产物处理
经过湿法脱硫过程后,生成的硫酸钙沉淀将被收集,并进行进一步处理,通常
通过过滤、压滤、脱水等方法将硫酸钙固化成产品或废弃物,以便后续的处理和处置。

综上所述,石灰石湿法脱硫的原理主要包括将石灰石破碎、制浆,再喷射进入
烟气中进行反应生成硫酸钙,最终将脱硫产物处理的四个步骤。

这种方法可以有效地将燃煤电厂等工业烟气中的二氧化硫去除,减少大气污染物排放,保护环境和人类健康。

石灰石石膏湿法烟气脱硫工艺

石灰石石膏湿法烟气脱硫工艺

液柱与烟气进行两次接触 (上升 / 落下)
没有背压的直筒式喷嘴
自我冲洗(向上的喷嘴)
单层喷浆管/喷嘴 (结构简单1容8 易维修)
主要系统及设备介绍—浆液循环系统
循环浆泵用来将吸收塔浆池的浆液和加入的石灰石浆液循环不断的送到吸收塔喷淋
层,在一定压力下通过喷嘴充分雾化,与烟气反应。
根据防腐工艺不同,循环浆泵分为衬胶泵和防腐金属泵两种。
后橡Ba胶ck R衬ub套ber Liner B后ac盖k Split Casing
金属合金 叶MIemtaple轮Allellroy
Front Rubber
前Li橡ner胶衬套
F前ro盖nt Split
Casing
金M属et合al A金llo护y 套
Throatbush
((前fro磨nt w损ea盘r )
主要系统及设备介绍—吸收系统及设备
(一)吸收塔
吸收塔一般为钢制塔体,内衬玻璃鳞片,并具备烟气进出口烟道、人孔门、检查门、 钢制平台扶梯、法兰、液位控制、溢流管及所有需要的连接件等。 吸收塔除塔体外,还有搅拌器、喷淋层和两级除雾器(聚丙烯百叶窗式)。 此外,吸收塔还包括循环浆液泵和氧化空气风机。 脱硫塔从结构上来分主要有:填料塔、板式塔、液柱塔、喷淋塔(空塔)和鼓泡塔。
继续与回落的液滴进行同向传质。 烟气从逆流塔流出经过反应罐上部折转180°,自下而上通过顺流塔,与向上喷射的液
柱及向下回落的液滴再次进行气液接触。经除雾器除雾后排出。
净烟气 原(脏)烟气
主要系统及设备介绍—吸收系统及设备
液柱式喷淋塔的优势
净烟气
高密度的液滴层 (高密度的液滴层增大气液 接触面积)
原(脏)烟气
实际球)。

石灰石.石膏湿法烟气脱硫技术

石灰石.石膏湿法烟气脱硫技术

石灰石-石膏湿法脱硫工艺1 石灰石/石膏湿法烟气脱硫技术特点:1).高速气流设计增强了物质传递能力,降低了系统的成本,标准设计烟气流速达到4.0 m/s。

2).技术成熟可靠,多于55,000 MWe 的湿法脱硫安装业绩。

3).最优的塔体尺寸,系统采用最优尺寸,平衡了SO2 去除与压降的关系,使得资金投入和运行成本最低。

4).吸收塔液体再分配装置,有效避免烟气爬壁现象的产生,提高经济性,降低能耗。

从而达到:·脱硫效率高达95%以上,有利于地区和电厂实行总量控制;·技术成熟,设备运行可靠性高(系统可利用率达98%以上);·单塔处理烟气量大,SO2脱除量大;·适用于任何含硫量的煤种的烟气脱硫;·对锅炉负荷变化的适应性强(30%—100%BMCR);·设备布置紧凑减少了场地需求;·处理后的烟气含尘量大大减少;·吸收剂(石灰石)资源丰富,价廉易得;·脱硫副产物(石膏)便于综合利用,经济效益显著;2 系统基本工艺流程石灰石(石灰)/石膏湿法脱硫工艺系统主要有:烟气系统、吸收氧化系统、浆液制备系统、石膏脱水系统、排放系统组成。

其基本工艺流程如下:锅炉烟气经电除尘器除尘后,通过增压风机、GGH(可选)降温后进入吸收塔。

在吸收塔内烟气向上流动且被向下流动的循环浆液以逆流方式洗涤。

循环浆液则通过喷浆层内设置的喷嘴喷射到吸收塔中,以便脱除SO2、SO3、HCL和HF,与此同时在“强制氧化工艺”的处理下反应的副产物被导入的空气氧化为石膏(CaSO4·2H2O),并消耗作为吸收剂的石灰石。

循环浆液通过浆液循环泵向上输送到喷淋层中,通过喷嘴进行雾化,可使气体和液体得以充分接触。

每个泵通常与其各自的喷淋层相连接,即通常采用单元制。

在吸收塔中,石灰石与二氧化硫反应生成石膏,这部分石膏浆液通过石膏浆液泵排出,进入石膏脱水系统。

脱水系统主要包括石膏水力旋流器(作为一级脱水设备)、浆液分配器和真空皮带脱水机。

石灰石-石膏湿法烟气脱硫工艺原理及特点

石灰石-石膏湿法烟气脱硫工艺原理及特点

石灰石-石膏湿法烟气脱硫工艺原理及特点一、工艺原理该工艺采用石灰石或石灰做脱硫吸收剂,石灰石破碎与水混合,磨细成粉壮,制成吸收浆液(当采用石灰为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆)。

在吸收塔内,烟气中的SO2与浆液中的CaCO3(碳酸钙)以及鼓入的氧化空气进行化学反应生成二水石膏,二氧化硫被脱除。

吸收塔排出的石膏浆液经脱水装置脱水后回收。

脱硫后的烟气经除雾器去水、换热器加热升温后进入烟囱排向大气。

烟气从吸收塔下侧进入,与吸收浆液逆流接触,在塔内CaCO3与SO2、H2O进行反应,生成CaSO3·1/2H2O和CO2↑;对落入吸收塔浆浆池的CaSO3·1/2H2O和O2、H2O 再进行氧气反应,得到脱流副产品二水石膏。

化学反应方程式:2CaCO3+H2O+2SO2====2CaSO3·1/2H2O+2CO22CaSO3·1/2H2O+O2+3H2O====2CaSO4·2H2O二、FGD烟气系统的原理从锅炉引风机后烟道引出的烟气,通过增压风机升压,烟气换热器(GGH)降温后,进入吸收塔,在吸收塔内与雾状石灰石浆液逆流接触,将烟气脱硫净化,经除雾期除去水雾后,又经GGH升温至大于75摄氏度,再进入净烟道经烟囱排放。

脱硫系统在引风机出口与烟囱之间的烟道上设置旁路挡板门,当FGD装置运行时,烟道旁路挡板门关闭,FGD装置进出口挡板门打开,烟气通过增压风机的吸力作用引入FGD系统。

在FGD装置故障和停运时,旁路挡板门打开,FGD装置进出口挡板门关闭,烟气由旁路挡板经烟道直接进入烟囱,排向大气,从而保证锅炉机组的安全稳定运行。

FGD装置的原烟气挡板、净烟气挡板及旁路挡板一般采用双百叶挡板并设置密封空气系统。

旁路挡板具有快开功能,快开时间要小于10s,挡板的调整时间在正常情况下为75s,在事故情况下约为3~10s。

一、旁路挡板门的控制原理概述一、烟气脱硫挡板风门的结构简述1.烟气脱硫挡板风门——风门框架和截面的主体部分和叶片均按设计用不同材质、规格的钢板制造。

石灰石(石灰)湿法脱硫技术

石灰石(石灰)湿法脱硫技术

石灰石(石灰)湿法脱硫技术湿法脱硫中所应用的脱硫系统位于烟道的末端,脱硫过程中的反应温度低于露点,因此,脱硫后的烟气需要进行加热处理才能排出。

由于脱硫过程中的反应类型为气液反应,其脱硫效率和所用脱硫添加剂的使用效率均较高,因此,在许多大型燃煤电站中都已建成使用。

一、石灰石(石灰)湿法脱硫技术概述根据最新的技术统计资料显示,到目前为止投入使用的脱硫技术种类已经超过200种,在形式多样的脱硫技术中,湿法脱硫技术是应用范围最广、脱硫效率最高的一种应用技术,占脱硫设备总装机量的80%以上,始终占据着脱硫技术领域的主导地位。

石灰石(石灰)湿法脱硫技术作为最成熟的一种脱硫技术,其脱硫效率可到90%以上,成为效果最显著的脱硫方法。

石灰石(石灰)湿法脱硫技术经过几十年的发展,已被应用于600MW 烟气单塔的烟气处理系统中,脱硫剂的利用效率基本稳定在95%以上,反应过程所消耗的电能不足电厂出力的1.5%,与十多年前的脱硫系统相比,在脱硫成本轻微上升的条件下脱硫效果却得到了质的飞跃。

二、石灰石(石灰)湿法脱硫技术的应用原理(一)工艺流程石灰石(石灰)湿法脱硫技术的基本过程是:烟气经锅炉排出后进入除尘器,之后进入脱硫塔,脱硫塔内的石灰石浆液与烟气中的SO2进行气液反应,生成CaCO3和CaCO4。

在反应之后的浆液中充入氧气,可将CaCO3氧化成CaCO4和石膏,石膏经脱水处理后可作为脱硫反应的副产品被回收利用。

工业实践中采用最多的脱硫塔方式是单塔,在单塔中可完成脱硫反应的全过程,脱硫成本和运行费用也更低。

(二)反应过程烟气中的SO2在脱硫塔内的反应过程可用下面两个方程表示,其中,第二个反应过程中生产的CaSO3会被烟气中的氧气氧化生成CaSO4,形成副产品被回收利用。

SO2+CaCO3—CaSO3+CO2 石灰石浆液(1)SO2+Ca(OH)2—CaSO3+H2O 石灰浆液(2)(三)脱硫效率脱硫效率受到诸多因素的影响,其中,脱硫塔中的pH值对脱硫效率会产生较大的影响。

石灰石-石膏湿法烟气脱硫工艺的化学原理

石灰石-石膏湿法烟气脱硫工艺的化学原理

石灰石-石膏湿法烟气脱硫工艺的化学原理一、概述:脱硫过程就是吸收,吸附,催化氧化和催化还原,石灰石浆液洗涤含SO2烟气,产生化学反应分离出脱硫副产物,化学吸收速率较快与扩散速率有关,又与化学反应速度有关,在吸收过程中被吸收组分的气液平衡关系,既服从于相平衡(液气比L/G,烟气和石灰石浆液的比),又服从于化学平衡(钙硫比Ca/S,二氧化硫与炭酸钙的化学反应)。

1、气相:烟气压力,烟气浊度,烟气中的二氧化硫含量,烟尘含量,烟气中的氧含量,烟气温度,烟气总量2、液相:石灰石粉粒度,炭酸钙含量,黏土含量,与水的排比密度,3、气液界面处:参加反应的主要是SO2和HSO3-,它们与溶解了的CaCO3的反应是瞬间进行的。

二、脱硫系统整个化学反应的过程简述:1、 SO2在气流中的扩散,2、扩散通过气膜3、 SO2被水吸收,由气态转入溶液态,生成水化合物4、 SO2水化合物和离子在液膜中扩散5、石灰石的颗粒表面溶解,由固相转入液相6、中和(SO2水化合物与溶解的石灰石粉发生反应)7、氧化反应8、结晶分离,沉淀析出石膏,三、烟气的成份:火力发电厂煤燃烧产生的污染物主要是飞灰、氮氧化物和二氧化硫,使用静电除尘器可控制99%的飞灰污染。

四、二氧化硫的物理、化学性质:①. 二氧化硫SO2的物理、化学性质:无色有刺激性气味的有毒气体。

密度比空气大,易液化(沸点-10℃),易溶于水,在常温、常压下,1体积水大约能溶解40体积的二氧化硫,成弱酸性。

SO2为酸性氧化物,具有酸性氧化物的通性、还原性、氧化性、漂白性。

还原性更为突出,在潮湿的环境中对金属材料有腐蚀性,液体SO2无色透明,是良好的制冷剂和溶剂,还可作防腐剂和消毒剂及还原剂。

②. 三氧化硫SO3的物理、化学性质:由二氧化硫SO2催化氧化而得,无色易挥发晶体,熔点16.8℃,沸点44.8℃。

SO3为酸性氧化物,SO3极易溶于水,溶于水生成硫酸H2SO4,同时放出大量的热,③. 硫酸H2SO4的物理、化学性质:二元强酸,纯硫酸为无色油状液体,凝固点为10.4℃,沸点338℃,密度为1.84g/cm3,浓硫酸溶于水会放出大量的热,具有强氧化性(是强氧化剂)和吸水性,具有很强的腐蚀性和破坏性,五、石灰石湿-石膏法脱硫化学反应的主要动力过程:1、气相SO2被液相吸收的反应:SO2经扩散作用从气相溶入液相中与水生成亚硫酸H2SO3亚硫酸迅速离解成亚硫酸氢根离子HSO3-和氢离子H+,当PH值较高时,HSO3二级电离才会生成较高浓度的SO32-,要使SO2吸收不断进行下去,必须中和电离产生的H+,即降低吸收剂的酸度,碱性吸收剂的作用就是中和氢离子H+当吸收液中的吸收剂反应完后,如果不添加新的吸收剂或添加量不足,吸收液的酸度迅速提高,PH值迅速下降,当SO2溶解达到饱和后,SO2的吸收就告停止,脱硫效率迅速下降2、吸收剂溶解和中和反应:固体CaCO3的溶解和进入液相中的CaCO3的分解,固体石灰石的溶解速度,反应活性以及液相中的H+浓度(PH值)影响中和反应速度和Ca2+的氧化反应,以及其它一些化合物也会影响中和反应速度。

石灰石-石膏湿法脱硫工艺的基本原理

石灰石-石膏湿法脱硫工艺的基本原理

石灰石-石膏湿法脱硫工艺的基本原理一、石灰石-石膏湿法脱硫工艺的基本原理石灰石——石膏湿法烟气脱硫工艺的原理是采用石灰石粉制成浆液作为脱硫吸收剂,与经降温后进入吸收塔的烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙,以及加入的氧化空气进行化学反应,最后生成二水石膏。

脱硫后的净烟气依次经过除雾器除去水滴、再经过烟气换热器加热升温后,经烟囱排入大气。

由于在吸收塔内吸收剂经浆液再循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低(一般不超过1.1),脱硫效率不低于95%,适用于任何煤种的烟气脱硫。

石灰石——石膏湿法烟气脱硫工艺的化学原理:烟气中的SO2溶解于水中生成亚硫酸并离解成氢离子和HSO 离子;烟气中的氧(由氧化风机送入的空气)溶解在水中,将 HSO 氧化成SO ; ? 吸收剂中的碳酸钙在一定条件下于水中生成Ca2+;在吸收塔内,溶解的二氧化硫、碳酸钙及氧发生化学反应生成石膏(CaSO4?2H2O)。

由于吸收剂循环量大和氧化空气的送入,吸收塔下部浆池中的HSO或亚硫酸盐几乎全部被氧化为硫酸根或硫酸盐,最后在CaSO4达到一定过饱和度后结晶形成石膏—CaSO4?2H2O,石膏可根据需要进行综合利用或抛弃处理。

二、工艺流程及系统湿法脱硫工艺系统整套装置一般布置在锅炉引风机之后,主要的设备是吸收塔、烟气换热器、升压风机和浆液循环泵我公司采用高效脱除SO2的川崎湿法石灰石,石膏工艺。

该套烟气脱硫系统(FGD)处理烟气量为定洲发电厂,1和,2机组(2×600MW)100,的烟气量,定洲电厂的FGD系统由以下子系统组成:(1)吸收塔系统(2)烟气系统(包括烟气再热系统和增压风机)(3)石膏脱水系统(包括真空皮带脱水系统和石膏储仓系统)(4)石灰石制备系统(包括石灰石接收和储存系统、石灰石磨制系统、石灰石供浆系统) (5)公用系统(6)排放系统(7)废水处理系统1、吸收塔系统吸收塔采用川崎公司先进的逆流喷雾塔,烟气由侧面进气口进入吸收塔,并在上升区与雾状浆液逆流接触,处理后的烟气在吸收塔顶部翻转向下,从与吸收塔烟气入口同一水平位置的烟气出口排至烟气再热系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石灰石系统中最关键的反应是Ca2+的形成,因为 SO2,正是通过Ca2+与HSO3-反应而得以从溶液中出 去的。这一关键步骤也突出了石灰石系统和石灰 系统的一个极为重要的区别:石灰石系统中Ca2+ 的产生与H+浓度和CaCO3 的存在有关;而在石灰 系统中, Ca2+的产生仅与氧化钙的存在有关。因 此,为了保证液相有足够的Ca2+浓度,石灰石系 统在运行时,其pH较石灰系统的低,石灰石系统 的最佳操作pH为5.8~6.2,石灰系统约为8。
工艺流程图1
吸收塔
吸收塔多采用逆流方式布置, 烟气从喷淋区下部进人吸 收塔, 与均匀喷出的吸收浆液逆流接触。烟气流速为 3m/s左右, 液气比与煤含硫量和脱硫率关系较大, 一般在 8~25 /m3之间。空塔优点是塔内部件少, 结垢可能性小, 运行可靠性高。逆流运行有利于烟气与吸收液充分接触, 但阻力损失比顺流大。
1.概述
石灰石/石灰法湿法烟气脱硫技术(CaCO3/CaO wet FGD) 是世界上应用最为广泛的,该方法开发较早,工艺成熟, 吸收剂廉价易得。在基本原理上属于无机化学脱硫的范畴, 是最基本的酸碱中和法。采用石灰或石灰石乳浊液吸收烟 气中SO2,生成半水亚硫酸钙或石膏(CaSO4·2H2O) ,脱 硫率在90 %以上。
2.化学反应原理
用石灰石或者石灰浆液吸收烟气中的SO2,首先生成 亚硫酸钙:
石灰石:CaCO3+ SO2+0.5H2O→CaSO3•0.5H2O+CO↑ 石灰:CaO+ SO2+0.5H2O→CaSO3•0.5H2O 然后亚硫酸钙再被氧化为硫酸钙。
石灰石/石灰法湿法烟气脱硫的反应机理
石灰石系统和石灰系统的主要区别
5.主要工艺参数
影响传质单元数的主要因素为:浆液PH、石灰石粒度、 液气比、烟气流速、钙硫比(吸收剂浓度)、吸收塔的结 构等。
① 液气比的影响 液气比决定酸性气体吸收所需要的吸收表面。在其它参数 恒定的情况下,提高液气比相当于增大了吸收塔内的喷淋 密度使液气间的接触面积增大,传质单元数将随之增大, 脱硫效率也将增大。在实际工程中,提高液气比将使浆液 循环泵的流量增大,从而增加设备的投资和能耗。同时, 高液气比还会使吸收塔内压力损失增大,增加风机能耗。
②结脱垢硫和塔堵发塞生:结C垢aS的O3主或要Ca原SO因4从,溶特液别中是结硫晶酸析钙出结是构导坚致硬、 板结,一旦结垢难以去除,影响到所有与脱硫液接触 的阀门、水泵、控制仪器和管道等。硫酸钙结垢的原 因是SO42-和Ca2+的离子积在局部达到过饱和。为此, 在吸收塔中要保持亚硫酸盐的氧化率在20%以下。亚 硫酸盐的氧化需要在脱硫液循环池中完成,可通过鼓 氧或空气等方式进行,形成的硫酸钙发生沉淀。从循 环池返回吸收塔的脱硫液中,还因为含有足量的硫酸 钙晶体,起到了晶种的作用,因此在后续的吸收过程 中,可防止固体直接沉积在吸收塔设备表面。
3.工艺流程及设备
传统的石灰石/石灰法湿法烟气脱硫工艺流程如 图1所示。 FGD 系统工艺流程主要由石灰石浆液制 备和供应、吸收塔、脱硫产物处置、烟风道、电 气和自动控制6个部分组成。
锅炉烟气经除尘、冷却后进入吸收塔,吸收塔 内用配置好的石灰石或石灰浆液洗涤含SO2的烟气, 洗涤净化后的烟气经除雾和再热后排放。吸收塔 内排出的吸收液流入循环槽,加入新鲜的石灰石 或者石灰浆液进行再生。
②烟气流速的影响 在其它参数恒定的情况下,提高烟气流速可提高气液两
相的湍动,降低烟气与液滴间的膜厚度,提高传质系数。另 外,喷淋液滴的下降速度将相对降低,使单位体积内持液量 增大,增大了传质面积,使传质单元数得以提高,增加了脱 硫效率。烟气流速对传质单元数有一定影响,但影响程度较 液气比要小得多。在实际工程中,烟气流速的增加无疑将会 使吸收塔的塔径变小,减小吸收塔的体积,对降低造价有益。 然而,烟气流速的增加将对吸收塔内除雾器的性能提出新的 更高要求,同时还会使吸收塔内的压力损失增大,能耗增加。 目前,将吸收塔内烟气流速控制在3.5~4.5 m/s 较合理。 ③钙硫比的影响:钙硫比(Ca/S)是指注入吸收剂量与吸收 S常 气O以比2量浆)的液不摩中变尔吸的比收情,剂况反浓下应度,单钙C位t作硫时为比间衡增内量大吸度,收量注剂。入原在吸料保收的持塔供浆内给液吸量量收。(剂通液的 量相应增大,引起浆液pH 值上升,可增大中和反应的速率, 增 元加数反呈应单的调表函面数积关,系,SO传2吸质收单量元的数图对中钙显硫示比钙的硫变比化与相传当质敏单感。 另外,钙硫比变化对传质系数的影响比烟气流速要大,但比 液气比要小。
吸收塔是烟气脱硫系统的核心装置,要求有持液量大、 气液相间的相对速度高、气液接触面积大、内部构件少、 压力降小等特点。目前较常用的吸收塔主要有喷淋塔、 调料塔、配设鼓泡塔、道尔顿型塔4类。其中喷淋塔是 湿法脱硫工艺的主流塔形见图2。一般SO2去除率高的洗 涤塔,往往是操作可靠性最差的。(各塔优缺点见表1)
③除雾器堵塞:在吸收塔中,雾化喷嘴并不能产生尺寸完全 均一的雾滴,雾滴的大小存在尺寸分布。较小的雾滴会被气 流所夹带,如果不进行除雾,雾滴将进入烟道,造成烟道腐 蚀和堵塞。除雾器必须保持清洁,目前使用的除雾器有多种 形式(如折流板型等)通常用高速喷嘴每小时数次喷清水进 行冲洗。 ④脱硫剂的利用率:脱硫产物亚硫酸盐和硫酸盐可沉积在脱 硫剂颗粒表面,从而堵塞了这些颗粒的溶解通道。这会造成 石灰石或石灰脱硫剂来不及溶解和反应就随产物排除,增加 了脱硫剂和脱硫产物的处理费用。因此脱硫液再循环池中的 停留时间一般要达到5~10min。实际的停留时间设计与石灰 石的反应性能有关,反应性能越差,为使之完全溶解,要求 它在池内的停留时间越长。 ⑤脱硫产物及综合利用:半水亚硫酸钙通常是较细的片状晶 体,这种固体产物难以分离,也不符合填埋要求。而二水硫 酸钙是大的圆形晶体,易于析出和过滤。因此,从分离的角 度看,在循环池中鼓氧或空气将亚硫酸钙盐氧化为硫酸盐是 十分必要的,通常要保证95%的脱硫产物转化为硫酸钙。
表1 烟气脱硫用洗涤塔性能比较
洗涤塔形式 持液量 逆流 抗堵塞性 低负荷比 压力降中等

转盘式洗涤 好



湍流塔 上好 否


中等


中等

文丘里洗涤 差



喷淋塔









道尔顿型塔 好



中等

喷射鼓泡塔 好



中等

4.湿法脱硫的影响因素
①设备腐蚀:化石燃料燃烧的排烟中含有多种微量的化 学成分,如氯化物。在酸性环境中,它们对金属(包 括不锈钢)的腐蚀性相当强。目前广泛应用的吸收塔 材料是合金C-276,其价格是常规不锈钢的15倍,为 延长设备的使用寿命,溶液中氯离子的浓度不能太高。 为保证氯离子不发生浓缩,有效地方法是在脱硫系统 中根据物料平衡排出适量的废水,以清水补充。
相关文档
最新文档