平面与平面立体面相交
相贯线1-两平面立体,平面与曲面立体相交.

2、求相贯线上的贯穿点。
3、先判断可见性,依次
连接贯穿点。
4、补全棱线。
例5:补全带孔三棱柱的水平投影,求作侧面投影。
空间分析
d' a' b'
c'
1、三个截平面相交,在三棱 d" 柱体内形成三条交线。
2、三个截平面与三棱柱形成
a"
b" 前、后 两部分截交线,且截交
(c")
线均在棱柱表面,其水平投影
7
(3) 立体相对位置不同,相贯线形状不一样:
两圆柱轴 线斜交
两圆柱轴线 偏交
8
图例:
全贯
互贯
平×曲
柱柱正交
柱柱正交(等径) 孔孔正交
柱柱偏交
柱穿锥
锥穿柱
球柱偏交
球柱正交 9
二、 平面体与平面体 相交
10
相贯及相贯线的概念
相贯:两立体相交。
相贯线:两立体相交,
其表面的交线。
相贯线
11
平面立体相贯种类及 相贯线的特点
(11’) 1’ 2’ 3’
(31’)
(41’) 4’
11
41 31
1
3
11” 1” (31”) (3”)
41”
2” 4”
解题步骤: 1、分析两立体的 空间关系,确定相 贯线的已知投影。
2、从已知投影出发,确定相贯 线上的贯穿点。
3、先判断可见性,再连接贯穿点。
2 4
例2:已知三棱锥上穿有三棱柱孔洞,求作相贯线。
(41’) 4’
11
(41) 31
1
3
2 (4)
11” 1” (31”) (3”)
平面与平面立体相交

何培英
平面与平面立体相交
概述 平面立体的截交线 作图举例
平面与平面立体相交
概述
当平面截切立体时,由截交线围成的平面图形——截断面 平面与立体表面相交产生的交线——截交线
截断面
截断面
截平面
截平面
截交线
截交线
平面与平面立体相交
平面立体的截交线
1.截交线的特点
平面多边形
平面与平面立体相交产生的截交 线是一个封闭的平面多边形。
作图举例
平面与平面立体相交
例3:作出两平面立体交线的三面投影 。
由图可以看出,这是一 个正垂的三棱柱与一个铅垂 的六棱柱相交,三棱柱由前 穿入六棱柱,不再穿出。
两立体相交可以看成是 六棱柱被三个平面截切所得。
作图举例
平面与平面立体相交
例3:作出两平面立体交线的三面投影 。求水平面与六棱柱 面的交点
作图:
求水平面截切后的
1/
截交线
1//
求正垂面截切后的
2/
2//
截交线
(Ⅰ、Ⅲ、Ⅳ点)
2 1
平面与平面立体相交
作图举例 例2:求三棱锥被截切后的俯视图和左视图。
作图:
求水平面截切后的 截交线
求正垂面截切后的 截交线 (Ⅰ、Ⅲ、Ⅳ点)
1/
1//
2/
3/ (4/) 4//
2// 3//
Y4 Y3
4
2 1
多边形的顶点是截平面与立体棱 线或边线的交点。
截平面与立 体棱线交点 截平面与立
多边形的边是截平面与立体表面的交线。 体表面交线
平面立体的截交线
2.求截交线的方法
平面与平面立体相交
棱线法:求各棱线与截平面的交点。
机械制图课件-6平面与平面立体表面相交

平面与平面立体表面的交线称为截交线;当平面切割立体 时,由截交线围成的平面图形称为断面。
断面
一、平面立体的截交线和断面
平面立体的截交线是一个多边形,它的顶点是平面立体的
棱线或底边与截平面的交点,它的边是截平面与平面立体表
面的交线。
s′
Pv
s″
3′ 2′
3″ 2″
1′
1″
作图过程
a′ b′
c′ c″ a″
b″
c
3 a
1s
2
b
(1)、在棱线SA、SB、SC的正面投影s′a′、 s′b′、 s′c′与截平 面P的有积聚性的迹线PV的相交处,作出它们的交点Ⅰ、Ⅱ、Ⅲ的 正面投影1′、 2′、 3′,与PV相重合的直线1′ 2′3′,即为截交线 △ⅠⅡⅢ的正面投影。
(2) 由1′、 2′、 3′引投影连线,分别与sa、 sb、 sc和 s″a″、 s″b″、 s″c″交出1、2、3和1″、2″、 3″。连接这些点 的同面投影,就作出了截交线△ⅠⅡⅢ的水平投影△123和侧面 投影△ 1″2″ 3″。
例3 已知一个缺口三棱锥的正面投影,补全它的水平投影和 侧面投影。
S
A
B
分析:由正面投影可见三棱锥上的缺口系水平面△ⅠⅡⅢ和正垂 面△ⅡⅢ Ⅳ组成,其中点Ⅰ、Ⅳ为棱线SA上的点,这两点的投 影必在棱线的同面投影上。点Ⅱ、Ⅲ分别为处于一般位置的棱面 △SAB和△SAC内的点,因此作辅助线求出它们的投影。
第二步
第三步 第四步
第五步
例2 试完成五棱柱被两平面P、Q截切后的正面投 影
完成后的投影图
在形状较为负责的机件上,有时会见到由平面和 平面立体相交而形成的具有缺口的平面立体或穿孔的 平面立体,只要逐个作出各个截平面与平面立体的截 交线,并画出截平面之间的交线,就可作出这些平面 立体的投影图。
6 平面与立体相交

连线原则:
1、一个平面完全截断立体时,属于立体同一棱 面上的点才能相连; 2、当几个平面截切立体时,属于立体同一棱面, 又属于同一截平面的两点,方能相连,但截平 面与截平面间的交线除外。
重点、难 点: 掌握平面立体切割体的投
影作图方法。
作业: P26 6-1 P27 6-2
第二节 平面与曲面立体 相交
例6-7 求圆锥切割体的投 影。 投影规律:长对正、高平齐、宽相等
3'(4') 5'(6') ° 7'(8') ° 1' ° Pv
° ° 2'
极限点、转向点 特征点
取一般点 依次光滑连接
2″ 3″ 4″ ° ° 6″ 5″ ° ° 8″ 7″ ° °
° °
1″
°
64 8°
°
1
水平、侧面投影是椭圆 将切割体投影补齐
2 ° ° ° °°
3d动画
75 3
例6-8 求圆锥切割体的水平投影和侧面 投影。 投影规律:长对正、高平齐、宽相等
作图: 形体分析 Qv—正垂面 Pv—水平面 正面投影积聚成两条直线
Qv
° 1' °
1″
°
取特殊点:
极限点、转向点、 特征点、 结合点 取一般点 切口的底面是圆 切口的侧面是抛物线 将切割体投影补齐
Ⅱ
Ⅰ
Ⅲ
二、平面与平面立体相交
1、平面与棱柱相交
Pv—正垂面 正面投影是一 条直线 有积聚性 (定位) 水平投影与 棱面积聚 侧面投影取点连线 将切割体投影补齐
b(e)2
°
作图:
a′
b′
c′
a″(c″)
b″
3′ °
相贯线1-两平面立体-平面与曲面立体相交

与棱面积聚线重合,同时三个
截平面之间还有三条交线。
a
c
(b) d
作图
1、作出截平面之间交线的水平投影。 2、先画出未截切三棱柱的侧面投影, 根据已知投影补画截交线、截平面之间 交线的投影。 3、补全并加深存在的棱线。
例5:补全带孔三棱柱的水平投影,求作侧面投影。
d' a' b'
c'
空间分析
1、三个截平面相交,在三棱 d" 柱体内形成三条交线。
7
(3) 立体相对位置不同,相贯线形状不一样:
两圆柱轴 线斜交
两圆柱轴线 偏交
8
图例:
全贯
互贯
平×曲
柱柱正交
柱柱正交(等径) 孔孔正交
柱柱偏交
柱穿锥
锥穿柱
球柱偏交
球柱正交 9
二、 平面体与平面体 相交
10
相贯及相贯线的概念
相贯:两立体相交。
相贯线:两立体相交,
其表面的交线。
相贯线
11
平面立体相贯种类及 相贯线的特点
解题步骤: 1、分析两立体的空间关
系,根据积聚性பைடு நூலகம்确定
1”(2”)
相贯线的已知投影。
2、求相贯线上的贯穿点。
3、判断可见性,依次连
接贯穿点。
4、补全棱线。
例4:已知三棱锥与三棱柱相交,求作相贯线。
3”(4”)
5” (6”)
解题步骤: 1、分析两立体的空间关
系,根据积聚性,确定
1”(2”)
相贯线的已知投影。
(11’) 1’ 2’ 3’
(31’)
(41’) 4’
11
41 31
1
平面与立体相交

6.2.1 平面与平面立体相交
由于平面立体是由平面围成的,截交线是封闭的平 面多边形,多边形的边是截平面与平面立体表面的交 线。求截交线的问题可以简化为求平面与平面的交线 问题,进而简化为求直线与平面交点的问题。
例1 三棱锥被一正垂面所截切,求截交线的投影。
s’ s
3
2 1
a’ b’
3 1
e’(f’)
g’(h’) b’ b”
RV
RW
h b g
df a
c e
例5
求铅垂圆台与半球的相贯线的投影。
PV2
PV3 PV4
2' 5'
3'
4'
1'
1"
4" 3" 5"
2"
y y
5
3
4
y
2
1
PH1
y
3.
辅助球面法
常用的辅助球面法为同心球面法,要使辅助球面与两立 体表面交线的投影为直线或圆。
例6
3 求出若干个一般点 Ⅴ、Ⅵ、 Ⅶ、Ⅷ;
3" 7" 2"
4 光滑且顺次地连接各点,作 出截交线,并且判别可见性; 5 整理轮廓线。
8"
Ⅵ
4
6 1
Ⅰ
Ⅳ Ⅷ
Ⅴ
Ⅲ Ⅶ
7 3
5
Ⅱ
作图步骤: (1)根据截平面位置与曲面立体表面的性质、判别 截交线的形状和性质。 (2)求出截交线上的特殊点。 (3)根据需要求出若干个一般点。 (4)光滑且顺次地连接各点,作出截交线,并且判 别可见性。 (5)最后,补全可见与不可见部分的轮廓线或转向 轮廓素线,并擦除被切割掉的轮廓线或转向轮廓素线。 特殊点:是指绘制曲线时有影响的各种点。 极限位置点 曲线的最高、最低、最前、最后、最左和最右点。 转向轮廓点 曲线上处于曲面投影转向轮廓线上的点,它们是区 分曲线可见与不可见部分的分界点。 特征点 曲线本身具有特征的点,如椭圆长短轴上四个端点。 结合点 截交线由几部分不同线段组成时结合处的点。
平面体与平面体相贯

两平面立体相贯线的性质
• (1)两平面立体相交称相贯体,两平面立体 表面的交线称相贯线,相贯线是两平面立体表 面的共有线,相贯线上的点是两平面立体表面 上的共有点。 • (2)平面立体的相贯线通常是封闭的空间折 线;有时也可能是一个平面多边形,即封闭的 平面多边形;在特殊情况下,还可能是不封闭 的。每段折线是两个平面立体上有关表面的交 线,折点则是一个立体的轮廓线与另一立体的 贯穿点。
平面体与平面体相贯
相贯
• 平平相贯
• 平曲贯
(A)互贯
(B)全贯
全贯
• 有贯入有贯出 • 有贯入无贯出 • 如图:
相贯线是两条互相独立的闭合线
相贯线是一条闭合线
互贯
• 有贯入有贯出 • 有贯入无贯出 如图:
相贯线是一闭合线
相贯线是一不闭合线
平平相贯求相贯线的方法
• 交点法 • 交线法 如图:
求作两平面立体的相贯线采用两种方法: (1)分别作出立体的诸棱线与另一立体的贯点, 然后将既位于一个立体的同一表面上、又位于另一 立体的同一表面上的两点依次连成相贯线。 (2)顺次求作两立体有关的交线。 有时,也将这两种方法联合使用。 当立体表面的投影有积聚性时,则利用投影的积 聚性求作相贯性。 可见性的判断 判断原则:只有位于两形体都可见的侧面上的交 线才是可见的。只要有一个侧面不可见,面上的交 线就不可见。
8 平面与立体相交-截交线

截切立体
二、截交线的性质: 截交线的性质: 1、截交线是截平面与立体表面的共有 线,线上的任意一点都是截平面与立 体表面的共有点。 2、截交线是一个封闭的平面多边形。 3、截交线的形状取决于立体表面形状, 以及截平面与立体的相对位置。
截交线
三、截交线的求法: 截交线的求法: 画截切立体的投影时,为了清楚地表达该立体的 形状,既要画出截切立体表面上截交线的投影,又要 画出立体轮廓线的投影。
[例题 例题1] 求圆锥截交线。 例题
1.分析 1.分析 截平面为正垂面 截交线为椭圆; ,截交线为椭圆;截交线 的水平投影和侧面投影均 为椭圆; 为椭圆;
3'
2.求出截交线上的特殊点 2.求出截交线上的特殊点 Ⅰ、 Ⅱ、Ⅳ; 3.求出一般点 3.求出一般点Ⅲ、 Ⅴ; 4.光滑顺次连接各点, 4.光滑顺次连接各点,作 光滑顺次连接各点 出截交线,判别可见性; 出截交线,判别可见性; 5.整理轮廓线
五、平面与组合回转体相交
[例题1] 已知顶尖截切后的正面、侧面投影,求作水平投影。 例题1]
分析:
a' g'h' d'e' • f '• • • • b' (c') a" • e" d" c"• • • • • b" h" f " g"
e
h • • f • g • • c •a • • d b
顶尖头是由圆锥和圆柱相 连,被两个平面截切而成,轴线 为侧垂线,截平面分别为侧平 面和水平面。 侧平面与圆柱轴线垂直,与 圆柱的截交线为圆弧,正面投 影积聚为直线,侧面投影为圆 弧的实形。 水平面平行于回转轴,与 圆柱的截交线为开口矩形,与 圆锥的截交线为双曲线,其正 面和侧面投影均为直线 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4-2 平面与平面立体表面相交平面与立体表面的交线,称为截交线;当平面切割立体时,由截交线围成的平面图形,称为截面。
一、平面立体的截交线和断面如图4-16a所示,平面立体的截交线是截平面上的一个多边形,它的顶点是平面立体的棱线或底边与截平面的交点,它的边是截平面与平面立体表面的交线,图中截平面P与三棱锥的截交线是一个三角形ⅠⅡⅢ。
如图4-16b中的黑色图形所示,已知三棱锥SABC和正垂的截平面P,求作截交线的三面投影。
作图过程如图4-16b中的红色图形所示:(1)在棱线SA、SB、SC的正面投影s'a'、s'b'、s'c'与截平面P的有积聚性的迹线P v的相交处,作出它们的交点Ⅰ、Ⅱ、Ⅲ的正面投影1'、2'、3',与P v相重合的直线1'2'3',即为截交线△ⅠⅡⅢ的正面投影。
(2)由1'、2'、3'引投影连线,分别与sa、sb、sc和s″a″、s″b″、s″c″交出1、2、3和1″、2″、3″。
连接这些点的同面投影,就作出了截交线△ⅠⅡⅢ的水平投影△123和侧面投影△1″2″3″。
由于三个棱面的水平投影和棱面SAB、SCA的侧面投影都可见,在其上的截交线的同面投影12、23、31和1″2″、3″1″也都可见,画粗实线;棱面SBC的侧面投影不可见,在其上的截交线的侧面投影2″3″也不可见,画细虚线。
如图4-17a中的黑色图形所示,已知五棱柱的正面投影和水平投影,并用正垂面P切割掉左上方的一块,被切割掉的部分用细双点划线表示,求作截交线以及五棱柱被切割后的三面投影。
因为截交线的各边是正垂面P与五棱柱的棱面和顶面的交线,它们的正面投影都重合在P v上,因为截交线的正面投影已知,五棱柱被切割后的正面投影也已知,只要作出截交线的水平投影,就可以作出五棱柱被切割后的水平投影。
根据五棱柱的正面投影和水平投影,可以作出它的侧面投影;同理,由已作出的截交线的正面投影和水平投影,也可以作出截交线的侧面投影,从而作出五棱柱被切割后的侧面投影。
从已知的正面投影可以直观地看出,断面的水平投影和侧面投影都是可见的。
作图过程如图4-17a中的红色图形所示:(1)在五棱柱正面投影右侧的适当地位画表示后棱面有积聚性的侧面投影的竖直线,用水平投影中从后棱面向前的距离y和y1,按侧面投影与水平投影宽相等和前后对应,以及五棱柱顶面、底面的正面投影和侧面投影应分别在同一水平线上的原则,就可由已知的正面投影和水平投影作出完整的五棱柱的侧面投影。
(2)在截交线已知的正面投影上,标注出棱线AA0、BB0、EE0与截平面P的交点F、G、J的正面投影f'、g'、j',标注截平面P与顶面的交线HI的正面投影h'i',HI是正垂线,它的正面投影积聚成一点,这就标明了截交线五边形FGHIJ的正面投影f'g'h'i'j'。
在aa0、bb0、ee0上分别标出f、g、j,由h'i'作出hi,于是就画出了截交线五边形FGHIJ的水平投影fghij,也就补全了五棱柱被切割后的水平投影。
由f'、g'、j'分别在a″a0″、b″b0″、e″e0″上作出f″、g″、j″;由于点I在顶边边侧垂线ED上,所以可直接在积聚成一点的e″d″上标注出i″;在顶面的侧面投影上,从i″向前量取水平投影中h在i前的距离y2,就可作出h″。
连j″与f″、f″与g″、g″与h″,h″i″、i″j″分别积聚在顶面、后棱面的侧面投影上,便画出截交线五边形FGHIJ的侧面投影f″g″h″i″k″。
因为棱线AA0在点F之上的一段已被切割掉,而棱线CC0仍是全部存在的,所以在侧面投影中应将f″以上的粗实线改为细虚线,仅表示侧面投影不可见的棱线CC0的上部的一段;同时还应将h″以前和g″以上的五棱柱被被切割掉的侧面投影的轮廓线擦去或改为细双点划线,也就作出了五棱柱被切割后的侧面投影。
二、平面立体的缺口在形状较为复杂的机件上,有时会见到由平面与平面立体相交而形成的具有缺口的平面立体,只要逐个作出各个截平面与平面立体的交线,并画出截平面之间的交线,就可作出具有缺口的平面立体的投影图。
如4-18a中的黑色图形所示,已知一个缺口三棱锥的正面投影,要补全它的水平投影和侧面投影。
从正面投影中可见:缺口是由一个水平面和一个正垂面切割三棱锥而形成的,左棱线SA有一段被切割掉,在正面投影中画成细双点划线,而在水平投影和侧面投影中,则于未经作图确定SA被切割掉的一段棱线的投影之前,暂时先将sa和s″a″都画成细双点画线。
可以想象:因为水平截平面平行于底面,所以它与前、后棱面的交线DE、DF分别平行于底边AB、AC,正垂截平面分别与前、后棱面交于直线GE、GF。
由于两个截平面都垂直于正面,所以它们的交线EF一定是正垂线。
想象的结果如图4-18a右下角的立体图所示。
画出这些交线的投影,也就画出了这个缺口的投影。
作图过程如图4-18a中的红色图形所示:(1)因为这两个截平面都垂直于正面,所以d'e'、d'f'和g'e'、g'f'都分别重合在它们的有积聚性的正面投影上,e'f'则位于它们的有积聚性的正面投影的交点处。
于是在正面投影中标注出这些交线的投影。
(2)由d'在sa上作出d。
由d作de∥ab、df∥ac,再分别由e'、f'在de、df上作出e、f。
由d'e'、de作出d″e″,由d'f'、df作出d″f″,它们都重合在水平截平面的积聚成直线的侧面投影上。
(3)由g'分别在sa、s″a″上作出g、g″,并分别与e、f和e″、f″连成ge、gf和g″e″、g″f″。
(4)连e和f,由于ef被三个棱面SAB、SBC、SCA的水平投影所遮而不可见,画成细虚线;e″f″则重合在水平截平面的有积聚性的侧面投影上。
(5)用粗实线加深在棱线SA上实际存在的SG、DA段的水平投影sg、da和侧面投影s″g″、d″a″;原来用细双点划线表示的GD段的三面投影g'd'、gd、g″d″实际上是不存在的,不应画出。
由此就补全了缺口三棱锥的水平投影和侧面投影,作图结果如图4-18b所示。
三、两平面立体相贯两个或多个立体相交(也称为两个或多个立体相贯)形成的形状,称为相贯体,立体表面的交线,称为相贯线。
相贯体是一个整体,将相贯体看作两个或多个立体相交,仅是在对相贯体各部分的形状和相对位置进行分析时的一种假设。
两立体相贯有两平面立体相贯、平面立体与曲面立体相贯、两曲面立体相贯三种情况。
由于在§4-1中已述及本书对曲面立体只着重讲述常见的回转体,所以后两种情况将分别在§4-3、§4-4中讲述。
下面将通过两平面立体相贯的一个例图讲述相贯线、相贯体的投影及其画法。
两平面立体的相贯线通常是一组或两组闭合的空间折线,在特殊情况下可能是不闭合的(例如当两立体具有连在一起的公共的平面表面时),也可能是平面上的闭合折线,即平面多边形(例如一个立体只在另一立体的一个棱面上全部穿进或穿出时);折线的每一折线段都是两立体各一个平面表面的交线,每一个折点都是一个立体的棱线或底边与另一个立体的交点。
因此,只要分别作出一个立体的诸平面表面与另一个立体的平面表面的交线,就可连接成两立体的相贯线。
图4-19是一个正垂的三棱柱和铅垂的六棱柱相交形成的相贯体、相贯线的三面投影和立体图。
在立体图中,用红色的图形和大写字母表示了这个相贯体上的相贯线。
从图4-19中可见:这个相贯体可假设为正垂三棱柱从前方全部穿入铅垂六棱柱,穿入后就不穿出来了,所以这两个立体的表面有一组相贯线,就是顺次将三棱柱的左棱面与六棱柱的左前棱面、前棱面的交线AB、BC,三棱柱的右棱面与六棱柱的前棱面、右前棱面的交线CD、DE,三棱柱的下棱面与六棱柱的右前、前、左前棱面的交线EF、FG、GA,连接而成闭合的空间折线ABCDEFGA。
相贯体和相贯线投影的画法是:按铅垂六棱柱和正垂三棱柱的投影图画法和它们之间的相对位置(它们有共同的左右对称面,三棱柱下棱面在六棱柱底面之上的距离,三棱柱端面在六棱柱前棱面之前的距离),先用黑色图形画出这两个棱柱的正面投影和水平投影,再用红色图形按正面投影和侧面投影位于水平的投影连线上,且保持前后方向的宽度相等和前后对应,由已作出的正面投影和水平投影画出这两个棱柱的侧面投影。
然后,用红色图形讲述和作出两立体的相贯线。
最后,确定在画相贯体和相贯线过程中,前阶段未能完全确定的暂时先用细双点画线表达的棱线的部分投影,从而完成这个相贯体的投影图。
读者应该注意的是:由于相贯体是一个整体,看作两个立体相交,仅是一种假设,所以不应画出一个立体穿入另一个立体内部的轮廓线,只要想到很多机械零件都是用熔化后的钢铁浇铸成毛坯后,再经机械加工而成的,是一个整体,不是两个立体相交,因而若一立体的轮廓线穿入或穿出另一立体,只能画到穿入或穿出的贯穿点为止,即只能画到相贯线的折点为止,实际上一立体穿入另一立体的轮廓线是不存在的,所以在求作相贯线和相贯体投影前画出的两立体的投影图中,每个立体的轮廓线能确定穿入或穿出另一立体的贯穿点时,就画到贯穿点为止,不画穿进另一立体内部的轮廓线;不能确定时,暂先画成用细双点画线表示的假想投影线,待作出相贯线后,完成相贯体的投影图时,再明确应画出哪些轮廓线的投影,擦去或保留表示实际上不存在的穿入另一立体内部的细双点画线假想投影,于是在图4-19a的侧面投影中,在六棱柱的互相重合的左前、右前棱线于三棱柱的下棱线之上,分别保留了一小段用细双点画线表示的实际上不存在的穿入三棱柱内部的重合的棱线段的假想投影b″g″和d″f″,其他各处的棱线的投影都是按相贯体的实际情况画出的。
如图4-19a所示,当画出了正垂三棱柱和铅垂六棱柱的三面投影后,由于三棱柱的三个棱面的正面投影都有积聚性,六棱柱的左前、前、右前棱面的水平投影也都有积聚性,且按上述对相贯线的分析,相贯线就位于这些棱面上,便可先在正面投影中按分析的顺序,于三棱柱的左、右、下棱面的有积聚性的正面投影上标注出相贯线诸折线段AB和BC、CD和DE、EF和FG和GA的正面投影a'b'和b'c'、c'd'和d'e',e'f'和f'g'和g'a',再按相贯线各折线段的正面投影,在六棱柱的左前、前、右前棱面的有积聚性的水平投影上标出相贯线诸折线段AB和GA、BC和CD和FC、DE和EF的水平投影ab和ga、bc和cd和fg、de和ef,然后由a'b'和ab、b'c'和bc、c'd'和cd、d'e'和de、e'f'和ef,f'g'和fg、g'a'和ga分别按投影关系作出a″b″、b″c″、c″d″、d″e″、e″f″、f″g″、g″a″,由于相贯线和相贯体都左右对称,所以侧面投影可见的a″b″与不可见的e″d″互相重合,b″c″与d″c″、g″a″与f″e″分别积聚于六棱柱前棱面、三棱柱下棱面的有积聚性的、可见的侧面投影上,也都分别互相重合,都画粗实线,又由于三棱柱的下棱面是水平面,六棱柱的前棱面是正平面,它们的交线GF是侧垂线,GF的侧面投影积聚成一点g″f″。