第二章鸽巢原理习题课
组合数学第二章鸽巢原理课件PPT

THANKS
感谢观看
在多重鸽巢原理中,存在多个相互独立的鸽 巢,每个鸽巢都有自己的限制条件。这些限 制条件可以是数量限制、性质限制等。当每 个鸽巢都满足鸽巢原理的条件时,多重鸽巢 原理成立。多重鸽巢原理的应用范围很广,
可以解决许多组合计数问题。
鸽巢原理的变体
总结词
鸽巢原理的变体是指在满足鸽巢原理的条件基础上, 对鸽巢和物品的数量或性质进行一些调整或变化。
鸽巢原理的数学表达形式是:如果 n 个物体放入 m 个容器中 (n > m),则至少有一个容器包含两个或两个以上的物体。
鸽巢原理的应用场景
鸽巢原理在组合数学、概率论、统计学等领域有广泛的应用。例如,在解决一些 计数问题、概率分布问题以及组合优化问题时,可以利用鸽巢原理来寻找解决方 案。
在实际生活中,鸽巢原理也常被用于解决各种问题,如资源分配、工作安排、时 间规划等。
详细描述
首先假设鸽巢原理不成立,即存在n个鸽子无法平均分配到m个鸽巢中。然后,我们尝 试将这n个鸽子重新分配到m个鸽巢中,由于每个鸽巢至少有一个鸽子,所以至少有一 个鸽巢有超过一个鸽子。这与我们的假设矛盾,因此我们的假设是错误的,鸽巢原理成
立。
证明方法二:数理归纳法
总结词
数理归纳法是一种基于数学归纳法的证 明方法,通过逐步推导和归纳来证明结 论。
详细描述
有限制的鸽巢原理是指在某些特定条件下,鸽巢原理依 然成立。这些特定条件可能包括鸽巢和物品的数量限制 、物品的性质限制等。例如,当鸽巢的数量小于物品的 数量时,即使物品可以相互替代,鸽巢原理也不成立。
多重鸽巢原理
总结词
多重鸽巢原理是指存在多个相互独立的鸽巢 ,每个鸽巢都满足鸽巢原理的条件。
详细描述
组合数学(第四版)课后习题答案

第2章 鸽巢原理2.4 练习题1、关于本节中的应用4,证明对于每一个=k 1,2,…,21存在连续若干天,在此期间国际象棋大师将恰好下完k 局棋(情形=k 21是在应用4中处理的情况)。
能否判断:存在连续若干天,在此期间国际象棋大师将恰好下完22局棋?证明:设i a 表示在前i 天下棋的总数若正好有i a =k ,则命题得证。
若不然,如下:∵共有11周,每天至少一盘棋,每周下棋不能超过12盘∴有 771≤≤i ,且13217721≤<<<≤a a a {}21,,2,1 ∈∀k 有kk a k a k a k +≤+<<+<+≤+13217721 观察以下154个整数:ka k a k a a a a +++77217721,,,,,,, 每一个数是1到k +132之间的整数,其中153132≤+k 由鸽巢原理,这154个数中至少存在两个相等的数∵7721,,,a a a 都不相等,k a k a k a +++7721,,, 都不相等∴j i ,∃,使i a =ka j +即这位国际象棋大师在第1+j ,2+j ,…,i 天总共下了k 盘棋。
综上所述,对于每一个=k 1,2,…,21存在连续若干天,在此期间国际象棋大师将恰好下完k 局棋。
□当k =22时,132+k =154,那么以下154个整数22,,22,22,,,,77217721+++a a a a a a在1到154之间。
ⅰ)若这154个数都不相同则它们能取到1到154的所有整数,必然有一个数是22∵2222>+i a ,771≤≤i ∴等于22的数必然是某个i a ,771≤≤i则在前i 天,这位国际象棋大师总共下了22盘棋。
ⅱ)若这154个数中存在相同的两个数∵7721,,,a a a 都不相等,k a k a k a +++7721,,, 都不相等∴j i ,∃,使i a =ka j +即这位国际象棋大师在第1+j ,2+j ,…,i 天总共下了k 盘棋。
人教版六年级下册数学鸽巢原理(二)

鸽巢问题(二)教学目标:1.通过观察、猜测、实验、推理等活动,寻找隐藏在实际问题背后的“鸽巢问题”的一般模型。
体会如何对一些简单的实际问题“模型化”,并运用鸽巢原理加以解决。
2.在经历将具体问题“数学化”的过程中,发展数学思维能力和解决问题的能力,感受数学的魅力。
同时积累数学活动的经验与方法,在灵活应用中,进一步理解鸽巢原理。
3.在解决问题的过程中,感受鸽巢原理在日常生活中的各种应用,体会数学知识与日常生活的紧密联系。
教学重点:运用鸽巢原理进行逆向思维。
教学难点:将日常生活中的实际问题和鸽巢问题建立起联系,运用鸽巢原理解决问题。
教学过程:一、复习1、把15个球放进4个箱子里,至少有()个球要放进同一个箱子里。
2、把红、黄两种颜色的球个6个放到一个袋子里,任意取出5个,至少有()个同色。
课件一一出示上述两道复习题。
要求:(1)学生口答,并说出思路;(2)找出题中的“物体数”“抽屉数”和“至少数”。
3、小结:已知“物体数”和“抽屉数”求“至少数”课件出示:物体数÷抽屉数+1=至少数二、谈话导入师:前面我们已经初步了解了鸽巢原理,今天这节课我们继续来探究这个问题。
师板书课题:鸽巢原理(二)三、互动新授1.教学例3课件出示例3:盒子里有同样大小的红球和篮球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?师:今天我们首先通过摸球游戏来解决这个问题。
请同学们拿出桌子里的盒子,根据以下的要求来进行游戏。
课件出示:活动(一)摸球游戏摸出两个球,会有哪几种情况,摸出的球()是2个同色的(填“可能”和“一定”)学生分组动手摸球,展示摸出的球的几种不同情况,然后在填空。
思考:摸出2个球时,我们摸出的球可能有2个同色的,那么为了确保我们一定要摸出2个同色球,对于这三种情况,我们应该怎么办?又应该着重考虑哪种情况?为什么?(让学生口答)师:刚才这位同学的回答非常精彩,前面两种情况是非常幸运的,所以我们将它称为“最幸运的情况”;第三种情况是最倒霉、最不好的情况,因此我们将它称为“最不利的情况”。
《鸽巢问题》课件

在计算机科学中,鸽巢原理被用于算法设 计和分析,如排序算法、查找算法等。
物理学和化学
经济学和金融学
在物理学和化学中,鸽巢原理被用于解释 一些自然现象和实验结果,如热力学第二 定律、化学反应中的物质分配等。
在经济学和金融学中,鸽巢原理被用于分 析市场行为和金融投资策略,如股票交易 、风险管理等。
02
鸽巢问题数学模型
基本模型建立
鸽巢原理
如果 n 个鸽子要放进 m 个鸽巢 ,且 n > m,则至少有一个鸽巢 里有多于一个鸽子。
数学模型表示
设有 n 个元素和 m 个集合,若 n > m,则至少有一个集合包含两 个或两个以上的元素。
模型参数解释
n
表示元素的数量,即鸽子的数量 。
m
表示集合的数量,即鸽巢的数量。
06
总结与展望
研究成果总结
鸽巢原理的深入解析
通过对鸽巢原理的详细阐述,课件帮助学生深入理解了该原理的 内涵和应用场景。
多种证明方法的掌握
课件介绍了多种证明鸽巢原理的方法,如反证法、构造法等,使学 生能够从多个角度理解和掌握该原理。
典型例题的解析
通过解析一系列典型例题,课件帮助学生掌握了运用鸽巢原理解决 实际问题的思路和方法。
立;
通过数学归纳法,证明对于任 意正整数 n,鸽巢问题都成立
。
04
鸽巢问题典型案例分析
案例分析一:信鸽归巢问题
01
问题描述
有n个鸽巢和n+1只信鸽,每只信鸽都要飞回一个鸽巢。证明至少有一
个鸽巢中有两只或以上的信鸽。
02 03
解题思路
通过反证法,假设每个鸽巢中最多只有一只信鸽,则最多只能有n只信 鸽归巢,与题目中的n+1只信鸽矛盾。因此,至少有一个鸽巢中有两只 或以上的信鸽。
【备课】人教版六年级下册数学《鸽巢原理》精品习题

鸽巢原理(2)【夯实基础】1.填空。
(1)10只鸽子飞回9个鸽舍,至少有()只鸽子要飞进同一个鸽舍里。
(2)10只鸽子飞回3个鸽舍,至少有()只鸽子要飞进同一个鸽舍里。
(3)121只鸽子飞回20个鸽舍,至少有()只鸽子要飞进同一个鸽舍里。
2.有红、黄、蓝、白珠子各10粒,装在一个袋子里,为了保证摸出的珠子有两粒颜色相同,应至少摸出()粒。
A.3B.4C.5D.63.有一副去掉大、小王的扑克牌,至少抽出()张牌才能保证至少6张牌的花色相同。
A.21B.22C.23D.244.把25个苹果最多放进()个抽屉中才能保证至少有一个抽屉中放进7个苹果。
A.1B.2C.3D.45.有4个运动员练习投篮,一共投进了30个球,一定有1个运动员至少投进几个球?6.红、黄、黑、白、绿五种颜色大小相同的球各4个放到一个袋子里,若要保证取到的两个球颜色相同,至少要取多少个球?【思维拓展】7.在一次竞赛中有10道题,评分标准为:基础分10分,答对1题得3分,答错1题扣1分,不答不得分,要保证至少有4人得分相同,至少要几人参赛?【参考答案】1.(1)2(2)4(3)72.C3.A4.D5.30÷4=7……27+1=8(个)6.6个7.最高得分:10+3×10=40(分),最低得分:10-10×1=0(分),共有40+1=41(种)不同分数,而39分,38分,35分这三个分数是不可能得到的,所以只有41-3=38(种)不同分数。
38×3+1=115(人)答:至少要115人参赛。
集合论-第一二章习题课

例3设A,B是两个集合,B≠¢,试证:若A×B=B×B,则A=B。 例4设A,B为集合,试证:A×B=B×A的充要条件是下列 三个条件至少有一个成立: (1)A=¢;(2)B=¢;(3)A=B。
(4)有多少个不同的从X到Y的单射? 例2 设f:X→Y,A,B⊆X,证明:
(1)f(A⋃B)=f(A)⋃f(B); (2)f(A∩B)⊆f(A)∩f(B); (3)f(A)\f(B)⊆f(A\B);(4)f(A)f(B)⊆f(AB)。
例3设X是一个有限集合,从X到X的部分映射有 多少? 例4 设u1,u2,…,umn+1是一个两两不相同的整数构 成的数列,则必有长至少为n+1的递增子序列 或有长至少为m+1的递减子序列。 例5设N={1,2,3,…},试构造两个映射f,g:NN, 使得fg=IN,但gfIN。 例 6 设 N={1,2,3,…}, 试构造两个映射 f,g:NN , 使得gf=IN,但fgIN。
例4 坐标上有五个整数点,则存在有两个点的连线 的中点一定是整数点。 例5 证明:在52个正整数中,必有两个整数,使得 这两个整数之和或差能被100整除。 抽屉原理也称为鸽巢原理、重叠原理。这个原 理十分简单,但若用得好却会得到意想不到的有趣 结论。 但也应当注意,抽屉原理并未告诉我们怎样实 际地去寻找含有两个或更多个物体的那个抽屉,而 只是肯定了确有这样的抽屉。
例3 某校学生数学、物理、英语三科竞赛,某班 30人, 学生中有15人参加了数学竞赛,8人参加了物理竞赛, 6人参加了英语竞赛,并且其中3人三科竞赛都参加了, 问至少有多少人一科竞赛都没有参加。 (7人)
例4 甲每5秒放一个爆竹,乙每6秒放一个,丙每7秒 放一个,每人都放21个爆竹,共能听见多少声响。 (54响)
鸽巢原理的应用课后题答案

鸽巢原理的应用课后题答案问题一:什么是鸽巢原理?鸽巢原理(Pigeonhole Principle)也被称为抽屉原理或鸽笼原理,是组合数学中的基本原理之一。
它基于鸽巢和鸽子的类比,以描述一种基本现象:当将更多的物体放入较少的容器中时,至少会有一个容器放入多个物体。
在数学中,该原理指出,如果有n+1个物体放入n个容器中,那么至少会有一个容器中放入超过一个物体。
问题二:鸽巢原理的应用有哪些?鸽巢原理在计算机科学和信息技术领域中有许多重要的应用。
以下是一些常见的应用:1.密码学:在密码学中,鸽巢原理可用于处理碰撞问题。
当使用一个较小的空间存储大量信息时,碰撞(collision)是不可避免的。
利用鸽巢原理,我们可以预测到在一定数量的数据中,存在相同的hash值,这在密码学中是重要的。
2.计算机网络:在计算机网络中,鸽巢原理有助于理解和解释数据包丢失的问题。
当数据包发送的数量超过网络容量或处理速度时,就会发生数据丢失。
鸽巢原理可以帮助我们理解这种现象。
3.调度算法:在资源调度和任务分配的问题中,鸽巢原理也有重要应用。
当有更多的任务需要分配给较少的资源时,鸽巢原理表明必然会出现资源冲突或负载不均衡的情况。
4.数据压缩和信息编码:在数据压缩和信息编码中,鸽巢原理可以用来证明,对于一组不同的编码,存在至少一个编码结果长度相同的情况。
这可以用于压缩和编码算法的优化。
5.数据库和搜索算法:在数据库和搜索算法中,鸽巢原理可用于解决数据重复和冗余问题。
通过鸽巢原理,我们可以检测到在一组数据中存在重复的记录,并进行合适的处理和优化。
6.逻辑和证明:在数理逻辑和证明中,鸽巢原理可以用来证明存在性。
通过构造合适的鸽巢和鸽子的类比,我们可以证明某个条件必定存在。
问题三:请举例说明鸽巢原理的应用。
例子一:选课冲突假设学校有15门选修课程,但是每个学生只能选修10门课。
根据鸽巢原理,即使每个学生选修10门不同的课程,仍然会有至少一个课程有多个学生选修。
《鸽巢问题》课件

鸽巢原理的推广
鸽巢原理的推广ຫໍສະໝຸດ 容斥原理在鸽巢原理的基础上,可以推导出许 多组合数学中的定理和公式,如抽屉 原理、容斥原理等。
在集合论中,容斥原理是用来计算集 合数量的一个重要原理,其基本思想 就是利用鸽巢原理来解决问题。
抽屉原理
如果 n+1 个物体放入 n 个抽屉中, 则至少有一个抽屉中放有两个或两个 以上的物体。
鸽巢原理的数学表达形式
如果 N 个物体放入 M 个鸽巢,且 N > M,则至少有一个鸽巢包含两个或两个 以上的物体。
鸽巢原理的证明
反证法证明
假设所有鸽巢中最多只放一个物 体,但总共有 N 个物体,而只有 M 个鸽巢,因此至少有一个鸽巢 需要放两个或更多的物体。
实例证明
例如有 10 只鸽子要飞进 3 个鸽 巢,那么至少有一个鸽巢里至少 有 4 只鸽子。
鸽巢问题在数学领域的应用
在概率论中的应用
在概率论中,鸽巢原理常被用来解释 和推导一些随机事件的概率,如伯努 利试验和二项分布的性质。
在几何学中的应用
在几何学中,鸽巢原理可以用来研究 空间的填充方式和几何体的排列问题 ,如在计算凸多面体的内角和时可以 用到鸽巢原理。
CHAPTER 05
练习和思考题
不同场景下的应用
鸽巢原理不仅适用于整数和抽屉的场 景,还可以应用于其他领域,如概率 论、统计学和计算机算法等。
鸽巢问题与其他数学概念的联系
与集合论的联系
鸽巢原理与集合论有密切的联系,尤其是在处理子集和集合 关系时,鸽巢原理提供了一种有效的思考方式。
与组合数学的联系
组合数学是研究计数、排列和组合问题的数学分支,鸽巢原 理在解决这类问题时常常被用到,如组合恒等式和计数原理 等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合(i)和(ii),即知题设结论成立.
2.4 利用分割区间来构造“鸽巢“
例 一个孩子每天至少看一个小时电视,共看7周,每周看电视从不 超过11小时,证明:在此期间存在连续若干天这个孩子恰好看电视 20个 小时。(设这个孩子每看电视时间为整数个小时) 证明 设这个孩子7周内每天看电视的时间分别为a1,a2,…,a49小时, 现在构造出数列{an}的前n项和的数列 s1=a1, s2=a1+a2,……, s49=a1+a2+…+a49 , 则有:1≤ s1<s2<s3<…<s49≤11×7=77,而序列s1+20,s2+20,…, s49+20也是一个严格的递增序列, 且有 21 ≤s1+20< s2+20<…< s49+20≤77+20=97 , 考虑数列
2.1 利用整数分组构造“鸽巢”
例1 试证明从{1,2,„,kn}中选n+1个数,总存在2个数,它们之间最多 相差k-1。 证明: 把{1,2,…,kn}分为n部分{1,2,3,…,k}, {k+1,k+2,…,2k},…,{(n-1)k+1,(n-1)k+2,…,kn},即做n个鸽巢,从中任 选n+1个数,由鸽巢原理,必有2个数选在同一个鸽巢中,所以它们的 差最大为k-1。
推论3:设m1,m2,…mn均为正整数,且满
少有一个数不小于r。
2 鸽巢的构造及其应用
虽然鸽巢原理十分简单明了,但不是所有的问题都一眼就可 以看出什么是鸽子,什么是鸽巢。在应用它的时候却涉及很多 技巧,这是利用鸽巢原理解题的魅力所在。常用的构造鸽巢的 方法有:利用整数分组、余数分类,划分集合,分割区间、分 割图形,利用染色等。下面给出几类常用的构造鸽巢的方法。
其中,si为整数,ri为奇数. 由于1≤ai≤200,所以ri(1≤i≤101)只能取1,3,5,…,199这100个奇 数,而r1,r2, …,r101共有101项,由鸽巢原理知,存在 1≤i≠j≤101, 使得 r i= r j , 不妨设si<sj,则 即aj能被ai整除.
aj ai 2 j rj 2 ri
例2 在一条笔直的马路上种树,从起点起,每隔1米种一棵数。如果把三 块“爱护 树木”的小牌分别挂在三棵树上,那么不管怎么挂,至少有两棵挂 牌的树它们之间的 距离是偶数(以米为单位)。
解 从起点开始给每课树编号,树上的号码依次为1,2,3,„,n, 把这些号码
分为奇数和偶数两类,当作两个鸽巢, 把三块牌分别挂在三棵树上,那么不管 怎么挂,这三棵挂牌的树至少有两棵树的号码同为奇数或偶数,而这两棵树的差 必为偶数, 所以至少有两棵挂牌的树它们之间的距离是偶数(以米为单位)。
2.一个学生解数学题100天,每天至少解一道题,每10天至多解17道
题,证明:在此期间存在连续若干天他恰好解了29道题.那么是否存 在连续若干天他恰好解了30道题。
3. 在(0,1]区间上任取5个点,则必有两个点它们的距离小于1/4。
4. n+1个实数xi满足0 ≤ xi≤1(i=1,2,……,n+1),求证这n+1个实数中必存在 两个数xi,xj,使得 1
这个问题的一般提法 任意给定n+2个整数,它们之中必有2 个数,其和或差是2n的倍数。
类似这样的例子也有不少。
1.任取n+1个正整数,求证在这n+1 个数中必有两个数它们之差被n整除.
2.任意给出2011个正整数 a1 , a2 ,
, a2011 ,
证明必存在正整数 k , l (0 k l 2011),
鸽巢原理与Ramsey定理习题课
1. 鸽巢原理
1.1 鸽巢原理的简单形式
若有n+1只鸽子飞到n个鸽巢里面,则至少有一个鸽巢里至少 有两只鸽子。
注: n+1为结论成立的最小数。
1.2 鸽巢原理的加强形式
将q1+q2+…+qn-n+1个物品放入n个抽屉中,则至少 存在某个抽屉i(1≤i≤n),使得这个抽屉里至少有qi个物品。 注: q1+q2+…+qn-n+1为结论成立的 最小 数,记为 N(q1,q2,…,qn;1)。 即N(q1,q2,…,qn;1)=q1+q2+…+qn-n+1. 显然,当q1=q2=…=qn=2时,加强形式即为简单形式。
2 . 2
2.3
利用余数分类构造“鸽巢”
例 试证明任意给定52个整数,它们之中必有2个数,其和或差 是100的倍数(即被100整除)。
证明:任意一个整数a除以100产生的余数为0,1,2,…99共100种。用a1, a2, …,a52表示这52个整数,ai除以100产生的余数记为ri( i=1,2,…,52)。 我们现在用0,1,2,„,99这100个余数来构造鸽巢,将它们分为51组, 构造出51个鸽巢: {0},{1,99},{2, 98},„{49,51},{50}, 由鸽巢原理,这52个整数分别除以100产生的52个余数r1,r2,…r52中必 有两个余数落在同一组中, 若这两个余数落在{0}或{50}中,则它们的和及 差都能被100整除。 若这两个余数落在剩下的49组中的一组,当余数相同 时,它们的差被100整除,当余数不同时,它们的和被100整除, 即存在两个数,它们的和或差能被100整除。
使得 2011/ (ak 1 ak 2
al ).
2.任意给出2011个正整数 a1 , a2 ,
使得2011/(ak 1 ak 2
证明 构造部分和序列
al ).
a2011 , 证明必存在正整数
k ,(0 l k l 20 a2 ,
S1 , S2 ,..., S49 , S1 20, S2 20,..., S49 20,
它共有98项,且都在1至97中取值,根据鸽巢原理,必定存在两 项相等。由于前49项和后49项又分别是严格递增的,因此必然存在 一个i和j,使得si=sj +20(i>j),即si-sj= 20,从而这个孩子从 j+1天起到 第i天的时间里恰好看电视20个小时。 类似这样的例子还有不少。 1.一个乒乓球手有37天时间准备一场比赛,他决定每天至少打1场球,37 天至多打60场球,证明:在此期间存在连续若干天他恰好打了21场球。
si s
2
s j si
整数
推论3的应用. 例1 把1至10这十数字随机的排成一个圆圈,证明 必有一个三相邻数字之和大于等于17. 证明 把1至10这十个数字随机排成一个圆圈,从中任取 三个相邻数字的方法有10种,设这10种三个相邻数字之和分 别为m1,m2,…,m10,则有
3 (10 11) . m1+m2+…+m10=3×(1+2+…+10)= 2
m1 m2 ... m10 3 11 16.5 16, 10 2
由推论3, 必存在mi(0≤i ≤10), 使得mi≥17,即问题得证.
有多种说法,其中关于算术平均的说法应用尤广,它 告诉我们,当 m/n> r 时,若把 m 个物体放入 n个盒子, 那么至少有一个盒子有 r+1 个物体。运用它解题的关 键仍然是正确的设置“盒子”。
第2章 小结(3)
本章小结
(3) Ramsey定理,Ramsey数 Ramsey定理的性质可以概述为“任何一个足够大的结构中 必定包含有一个给定大小的规则子结构”。
则有如下两种可能:
, s2011 a1 a2
a2011 ,
(i)存在整数h(1≤h ≤ 2011), 使得
意.
2011/ s .h此时, 取k=0,l=h即满足 题
(ii)对任一整数i,均有 2011 | si (1 i 2011) .令 si ri (mod 2011) ,
在解有关Ramsey定理及其应用的问题时,最重要的是正确 理解定理意义,特别是r=2时定理的几种形象的说法。
在解题时,则要正确地设计一个集合,该集合分成哪几个 部分,正确的确定 a1,a2,…,am 以及 r 分别体现在哪些已知量 或已知事实中。 如果从更高的角度看问题,有关鸽笼原理和Ramsey定理的 应用问题的解法都是模型化归方法。即把实际问题化归到 “鸽子,鸽笼”的模式,化归到“一个集合的 r−子集分类” 的模式的方法。
1 1 1 1 1 h ( h) 2 2 2 2 2
D E G F
h 1 h 1 . 4 8 4 8
图1
所以,结论成立。
例2
在圆内(包刮圆周)有8个点,则其中必有两个点,它们之间的距离小
于圆的半径。 证明 分两种情况考虑。 1. 如果8个点无一个在圆心上,可将圆分成7个相等的扇形,由鸽巢原理, 这8个点至少有两个在同一个扇形内,则这两点之间的距离小于半径。 2. 如果8个点有一个点在圆心,可将圆分成6个相等的扇形,如图, A2 由于圆上相邻两点Ai,Aj间的弦长恰好为圆的半径,所以 A 1 取扇形OA1A2不包含OA2,扇形OA2A3不包含OA3,…,
| xi x j | . n
2.5 利用化分集合来构造“鸽巢”
例 试证明在1到200个自然数中任取101个数,一定存在两个 数,其中的一个数是另一个数的整数倍。 证明: 设a1,a2,…,a101是被选出的101个整数,对任一ai,都可以 唯一地写成 如下的形式:
ai 2si ri
(i 1,2, ,101),
当qi=r时,得:
推论1 n· (r-1)+1只鸽子飞入n个巢里,则至
少有一个鸽巢里至少有r只鸽子。
推论2:m只鸽子飞入n个巢里,则至少有一个 m m m 鸽巢里至少有 n 只鸽子,其中 n 是不小于 的最 n 小整数。