一元一次不等式解法教学设计说明
《一元一次不等式组的解法 》 教案精品 2022年数学

9.3 一元一次不等式组第1课时 一元一次不等式组的解法1.理解一元一次不等式组及其解集的概念; 2.掌握一元一次不等式组的解法;(重点)3.会利用数轴表示一元一次不等式组的解集.(难点)一、情境导入你能列出上面的不等式并将其解集在数轴上表示出来吗? 二、合作探究探究点一:在数轴上表示不等式组的解集不等式组⎩⎪⎨⎪⎧x <3,x ≥1的解集在数轴上表示为( )解析:把不等式组中每个不等式的解集在数轴上表示出来,它们的公共局部是1≤x <3.应选C.方法总结:利用数轴确定不等式组的解集,如果不等式组由两个不等式组成,其公共局部在数轴上方应当是有两根横线穿过.探究点二:解一元一次不等式组解以下不等式组,并把它们的解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2x -3≥1,x +2<2x ; (2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,x 4≥x -13.解析:先求出不等式组中每一个不等式的解集,再求它们的公共局部.解:(1)⎩⎪⎨⎪⎧2x -3≥1,①x +2<2x .②解不等式①,得x ≥2,解不等式②,得x >2.所以这个不等式组的解集为x >2.将不等式组的解集在数轴上表示如下:(2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,①x 4≥x -13.②解不等式①,得x >1,解不等式②,得x ≤4. 所以这个不等式组的解集是1<x ≤4. 将不等式组的解集在数轴上表示如下:方法总结:解一元一次不等式组的一般步骤:先分别求出不等式组中每一个不等式的解集,并把它们的解集在数轴上表示出来,然后利用数轴确定这几个不等式解集的公共局部.也可利用口诀确定不等式组的解集:大大取较大,小小取较小,大小小大中间找,大大小小无处找.探究点三:求不等式组的特殊解求不等式组⎩⎪⎨⎪⎧2-x ≥0,x -12-2x -13<13的整数解.解析:分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的整数值即可.解:⎩⎪⎨⎪⎧2-x ≥0,①x -12-2x -13<13.②解不等式①,得x ≤2,解不等式②,得x >-3.故此不等式组的解集为-3<x ≤2,x 的整数解为-2,-1,0,1,2.方法总结:求不等式组的特殊解时,先解每一个不等式,求出不等式组的解集,然后根据题目要求确定特殊解.确定特殊解时也可以借助数轴.探究点四:根据不等式组的解集求字母的取值范围假设不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,那么实数a 的取值范围是( )A .a ≥-1B .a <-1C .a ≤1D .a ≤-1解析:解第一个不等式得x ≥-a ,解第二个不等式得x <1.因为不等式组无解,所以-a ≥1,解得a ≤-1.应选D.方法总结:根据不等式组的解集求字母的取值范围,可按以下步骤进行:①解每一个不等式,把解集用数字或字母表示;②根据条件即不等式组的解集情况,列出新的不等式.这时一定要注意是否包括边界点,可以进行检验,看有无边界点是否满足题意;③解这个不等式,求出字母的取值范围.三、板书设计一元一次不等式组⎩⎪⎨⎪⎧概念解法不等式组的解集⎩⎪⎨⎪⎧利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的根底之上,解不等式组时,先解每一个不等式,再确定各个不等式的解集的公共局部.教学中可以把利用数轴与利用口诀确定不等式组的解集结合起来,互相验证15.1.2 分式的根本性质1.通过类比分数的根本性质,说出分式的根本性质,并能用字母表示.(重点) 2.理解并掌握分式的根本性质和符号法那么.(难点)3.理解分式的约分、通分的意义,明确分式约分、通分的理论依据.(重点) 4.能正确、熟练地运用分式的根本性质,对分式进行约分和通分.(难点)一、情境导入中国古代的数学论著中就有对“约分〞的记载,如?九章算术?中就曾记载“约分术〞,并给出了详细的约分方法,这节课我们就来学习分式化简的相关知识,下面先来探索分式的根本性质.二、合作探究探究点一:分式的根本性质【类型一】 利用分式的根本性质对分式进行变形以下式子从左到右的变形一定正确的选项是( )A.a +3b +3=a b B.a b =acbcC.3a 3b =a bD.a b =a 2b2 解析:A 中在分式的分子与分母上同时加上3不符合分式的根本性质,故A 错误;B 中当c =0时不成立,故B 错误;C 中分式的分子与分母同时除以3,分式的值不变,故C 正确;D 中分式的分子与分母分别乘方,不符合分式的根本性质,故D 错误;应选C.方法总结:考查分式的根本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【类型二】 不改变分式的值,将分式的分子、分母中各项系数化为整数不改变分式0.2x +12+0.5x的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A.2x +12+5xB.x +54+x C.2x +1020+5x D.2x +12+x解析:利用分式的根本性质,把0.2x +12+0.5x 的分子、分母都乘以10得2x +1020+5x .应选C.方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的根本性质让分子和分母同乘以某一个数即可.【类型三】 分式的符号法那么不改变分式的值,使以下分式的分子和分母都不含“-〞号. (1)-3b 2a ;(2)5y -7x 2;(3)-a -2b 2a +b. 解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变.解:(1)原式=-3b 2a ;(2)原式=-5y 7x 2;(3)原式=-a +2b 2a +b.方法总结:这类题目容易出现的错误是把分子的符号,分母的项的符号,特别是首项的符号当成分子或分母的符号.探究点二:最简分式、分式的约分和通分 【类型一】 判定分式是否是最简分式以下分式是最简分式的是( ) A.2a 2+a ab B.6xy 3aC.x 2-1x +1D.x 2+1x +1解析:A 中该分式的分子、分母含有公因式a ,那么它不是最简分式.错误;B 中该分式的分子、分母含有公因数3,那么它不是最简分式.错误;C 中分子为(x +1)(x -1),所以该分式的分子、分母含有公因式(x +1),那么它不是最简分式.错误;D 中该分式符合最简分式的定义.正确.应选D.方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、分母分解因式,并且观察有无公因式.【类型二】 分式的约分约分:(1)-5a 5bc 325a 3bc 4;(2)x 2-2xyx 3-4x 2y +4xy 2. 解析:先找分子、分母的公因式,然后根据分式的根本性质把公因式约去. 解:(1)-5a 5bc 325a 3bc 4=5a 3bc 3〔-a 2〕5a 3bc 3·5c =-a25c; (2)x 2-2xy x 3-4x 2y +4xy 2=x 〔x -2y 〕x 〔x -2y 〕2=1x -2y. 方法总结:约分的步骤:(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.【类型三】 分式的通分通分: (1)b 3a 2c 2,c -2ab ,a5cb 3; (2)1a 2-2a ,a a +2,1a 2-4. 解析:确定最简公分母再通分.解:(1)最简公分母为30a 2b 2c 2,b 3a 2c 2=10b 430a 2b 3c 2,c -2ab =-15ab 3c 330a 2b 3c 2,a 5cb 3=6a 3c30a 2b 3c2;(2)最简公分母为a (a +2)(a -2),1a 2-2a =a 2+2a a 〔a +2〕〔a -2〕,aa +2=a 3-2a 2a 〔a +2〕〔a -2〕,1a 2-4=aa 〔a +2〕〔a -2〕.方法总结:通分的一般步骤:(1)确定分母的最简公分母.(2)用最简公分母分别除以各分母求商.(3)用所得到的商分别乘以分式的分子、分母,化成同分母的分式.三、板书设计分式的根本性质1.分式的根本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法那么:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;假设只改变其中一个的符号或三个全变号,那么分式的值变成原分式值的相反数.本节课的流程比拟顺畅,先探究分式的根本性质,然后顺势探究分式变号法那么.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.。
人教版初中数学一元一次不等式教案范文优秀7篇

人教版初中数学一元一次不等式教案范文优秀7篇一元一次不等式教案篇一一、教学目标:(一)知识与能力目标:(课件第2张)1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法。
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:1.掌握一元一次不等式的`解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。
在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。
在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教具:计算机辅助教学。
五、教学流程:(一)、复习:教学环节教师活动学生活动设计意图一元一次不等式教案篇二师:下面我们先看一下购物金额对选择哪家超市有何影响?请同学们根据老师给出的学习目标和问题,自学课文一三1页至一三2页例1上边的内容,要求独立或者小组合作,完成书上的问题(1)、(2),时间是10分钟。
初中数学_一元一次不等式(1)教学设计学情分析教材分析课后反思

2.4.一元一次不等式(一)教学设计教材分析本节课的教学内容是一元一次不等式的形成及其解集的表示,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论、交流使学生经历知识的形成和巩固过程。
在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。
本课时的学习目标:1.认识一元一次不等式.2.会解一元一次不等式,并会在数轴上表示不等式的解集.3.体会类比、数形结合的数学思想方法。
学习重点难点:一元一次不等式的解法。
教学过程一、温故知新问题一:判断下列各式是不是一元一次方程?并说明依据什么判断的。
(1) 3x-1=0 ( ) (2) 2x -2.5=15(3) 2x 2-x+1=0 ( ) (4) x+y=2 ( )(5) y=3 ( ) (6) 1.5x+12=0.5x+1 (7)32=x ( ) (8)2312x x =+( ) 活动目的:通过问题,让学生回顾一元一次方程的概念,为后面归纳一元一次不等式的概念提供条件。
同时让学生体会等式与不等式之间所蕴含的特殊与一般的关系。
问题二:如果把方程中的等号换成现在学习的不等号,就是我们学习的不等式。
这些不等式有哪些共同的特征?归纳一元一次不等式的定义:不等式的两边都是 ,只含有 未知数,且未知数的最高次数是 ,像这样的不等式,叫做一元一次不等式。
活动目的:引导学生通过对上述不等式的观察、比较,发现其异同,结合一元一次方程的概念类比,学生不难得出一元一次不等式的概念。
让学生意识到不等式也可以像方程那样去研究,培养其化归、转换的意识。
活动的注意事项:学生自行归纳总结,发言讨论,教师在总结学生发言的基础上板书一元一次不等式的定义:“左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1的不等式,叫做一元一次不等式。
并向学生强调一元一次不等式的主要特征。
学习检测1:1.下列不等式中,哪些是一元一次不等式?说说为什么。
一元一次不等式的解法教案设计

一元一次不等式的解法教案设计一、教学目标1. 让学生掌握一元一次不等式的定义及其解法。
2. 培养学生运用不等式解决实际问题的能力。
3. 培养学生合作交流、归纳总结的能力。
二、教学内容1. 一元一次不等式的定义及例题解析。
2. 一元一次不等式的解法及步骤。
3. 应用题练习。
三、教学重点与难点1. 重点:一元一次不等式的解法。
2. 难点:不等式解法的运用。
四、教学方法1. 采用自主学习、合作交流的教学方法,让学生在探究中掌握知识。
2. 利用多媒体课件辅助教学,提高学生的学习兴趣。
3. 结合生活实际,培养学生的应用能力。
五、教学过程1. 导入新课1.1 复习相关知识点:方程的解、解集等。
1.2 提问:不等式与方程有什么关系?如何解不等式?2. 自主学习2.1 学生自主探究一元一次不等式的定义及解法。
2.2 学生展示学习成果,教师点评并总结。
3. 课堂讲解3.1 讲解一元一次不等式的定义及解法。
3.2 举例讲解,让学生明确解不等式的步骤。
4. 课堂练习4.1 学生独立完成练习题,检验学习效果。
4.2 教师点评练习题,纠正错误,巩固知识。
5. 应用题练习5.1 学生分组讨论,分析实际问题。
5.2 学生展示解题过程,教师点评并总结。
6. 课堂小结6.1 学生总结一元一次不等式的解法。
6.2 教师补充讲解,巩固知识点。
7. 作业布置7.1 布置练习题,巩固所学知识。
7.2 布置应用题,培养学生的实际应用能力。
8. 课后反思8.1 教师总结课堂教学,反思教学方法。
8.2 学生反馈学习情况,提出疑问。
六、教学评价1. 课堂练习的完成情况:评价学生对一元一次不等式解法的掌握程度。
2. 应用题的解答:评价学生将所学知识应用于实际问题的能力。
3. 课堂参与度:评价学生在课堂讨论、提问等方面的积极性。
4. 课后作业:评价学生对课堂知识的巩固程度。
七、教学拓展1. 组织学生进行不等式知识竞答,激发学生的学习热情。
2. 让学生收集生活中的不等式实例,并进行分享交流。
数学《一元一次不等式》教学设计(通用6篇)

数学《一元一次不等式》教学设计数学《一元一次不等式》教学设计(通用6篇)作为一名教师,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
一份好的教学设计是什么样子的呢?下面是小编精心整理的数学《一元一次不等式》教学设计,仅供参考,欢迎大家阅读。
数学《一元一次不等式》教学设计篇1【教学目标】:1、知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题。
2、能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型3、情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。
【重点难点】:重点:一元一次不等式在实际问题中的应用。
难点:在实际问题中建立一元一次不等式的数量关系。
关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。
注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。
【教学过程】:创设情境,研究新知这个周末我们要去杜氏旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。
在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。
问题1:中国旅行社的原价是每人100元,可以给我们打7.7折;蓝天旅行社的原价和他们相同,但可以三人免费,并且其他人费用打8折;根据我们的实际情况,要选择哪一家比较省钱?(从生活中的问题入手,激发学生探究问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。
本题通过问题设置,培养学生分析题意的能力,分析题中相关条件,找到不等关系。
《一元一次不等式组》教学设计及反思.doc

《一元一次不等式组》教学设计及反思如东县岔河中学季卫东一、目标及目标解析1.目标(1)理解一•元一次不等式组、一元一次不等式组的解集等概念.(2)会解一元一次不等式组,并会用数轴或者口诀确定解集.2.目标解析达到目标(1)的标志是:学生能说出一无一次不等式组的特征.达到目标(2)的标志是:学生能解一•元一次不等式组,能在数轴上确定不等式组的解集,并获得解一元一次不等式组的步骤.三、教学重、难点:在数轴上找公共部分,确定不等式组的解集.四、教学过程设计1 .回顾交流上一节课我们学习了一元一次不等式,知道了一元一次不等式的有关概念,现在一起来交流-T2X-3<—的解题步骤及注意事项。
32 .提出问题形成概念【问题】用每分钟可抽30吨水的抽水机来抽污水管道里的积存污水,估计积存的污水超过1200吨而不足1500吨,那么将污水抽完所用的时间的范围是什么?设问(1):依据题意,你能得出儿个不等关系?设问(2):设抽完污水所用的时间还是范围?学生根据所设未知数,列出所用的不等式.追问(1):类比方程组的概念,把这两个不等式合起来,叫做什么呢?怎样表示?学生自学概念,说出表示方法。
强调:概念中“儿个”、“同一未知数”的含义。
练习:牛刀小试【思考】追问(2):类比方程组的解怎样确定不等式组中x的值?(学生小组讨论)追问(3):通过数轴,怎样得出不等式组的解集呢?学生练习,师点评:不等式组中各个不等式解集的公共部分就是不等式组的解集. 追问(4):什么是一元一次不等式组的解集?什么是解一元一次不等式组?当止白当碗今不等式组的解集有规律吗?」3.探究规律:求下列不等式组的解集(在同一•数轴上表示出两个不等式的解集,并写出不等式组的解集):数轴解集归纳口诀\>3,/ >7.(2)-v<3, x<7.2x + 3> x+ \ 1 2x+5 | c 1 < 2 - A :.3 飞>3,#<7.x< 3,x>7.要求:(1)请利用数轴确定不等式组的解集,标出公共部分;(2)请认真观察这四个不等式组的解集,小组交流,找出规律;(3)总结一元一次不等式组的解集的几种情况。
一元一次不等式与一元一次不等式组的解法教案
一元一次不等式与一元一次不等式组的解法一、教学目标:1.知识与技能:理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力;2.过程与方法:经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;3.情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。
二、教学重点与难点:重点:从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法。
难点:理解二次函数、一元二次方程与一元二次不等式解集的关系。
三、教学过程(一)知识梳理1.知识结构图(二)知识点回顾概念基本性质不等式的定义不等式的解一元一次不等式的解法一元一次不等式组不等式 实际应不等式的解集1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a bcc ) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c )说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b ≤0,则a 不大于b ;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab <,则a 、b 异号。
《一元一次不等式》说课稿(精选5篇)
《一元一次不等式》说课稿(精选5篇)《一元一次不等式》说课稿1一、教学内容的分析1、教材的地位和作用(1)本节内容、是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上、把实际问题和一元一次不等式结合在一起、既是对已学知识的运用和深化、又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础、具有在代数学中承上启下的作用;(2)通过本节的学习、学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程、体会不等式和方程一样都是刻画现实世界数量关系的重要模型。
(3)在列不等式解决实际问题的探索过程中、引导学生注意估算意识、体会算式结果所对应的实际意义、渗透建立数学模型、分类讨论等数学思想、对提升学生应用数学意识思考和解决问题的能力起到积极的作用。
2、教学的重点和难点对于用不等式解决实际问题、学生容易出现的认知困难主要有两个方面:①哪类的实际问题需要用一元一次不等式来解决;②如何将实际问题转化为一元一次不等式并加以解决。
根据以上的分析和《数学课程标准》对本课内容的教学要求、本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化、并根据解集和结合实际情况分类讨论得出合理结论。
二、教学目标的确定根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平、我从三个方面确定了以下教学目标:1、能进一步熟练的解一元一次不等式、能从实际问题中抽象出不等关系的数学模型、并结合解集解决简单的实际问题。
2、通过观察、实践、讨论等活动、积累利用一元一次不等式解决实际问题的经验、提高分类考虑、讨论问题的能力、感知方程与不等式的内在联系、体会不等式和方程同样都是刻画现实世界数量关系的重要模型。
3、在积极参与数学学习活动的过程中、体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时、与其他同学交流、相互启发、培养合作精神。
数学人教版七年级下册解一元一次不等式教学设计
解一元一次不等式教学设计一、学情分析●认知基础:本节课是在学生了解不等式的解和解集的意义,了解不等式解集的数轴表示方法,能利用不等式的性质对不等式进行简单变形的基础上,研究什么是一元一次不等式以及会解一元一次不等式。
本节课是本单元的突破点,学好本节内容,对下节课学习不等式的应用以及今后学习一元一次不等式组和它的解法奠定了基础。
●活动经验基础:现在学生已经具备了一定的自主学习的能力,本节的学习中引导学生对比一元一次不等式和一元一次方程的有关内容,尤其是一元一次不等式和一元一次方程解法的比较,有利于对新知识的掌握,同时培养了学生类比的学习方法。
二、目标和目标解析●目标1.使学生了解一元一次不等式的概念;2.使学生掌握一元一次不等式的解法,并能在数轴上表示其解集。
●目标解析达到目标1的标志是:学生能说出一元一次不等式的特征,会解一元一次不等式,并能在数轴上表示出解集。
达到目标2的标志是:学生能通过类比解一元一次方程的过程,获得解一元一次不等式的思路,即依据不等式的性质,将一元一次不等式逐步化简为x>a 或x<a的形式。
学生能借助具体例子,将化归思想具体化,获得解一元一次不等式的步骤。
三、教学重难点●重点一元一次不等式的解法。
●难点不等式性质3在解不等式中的运用是难点。
四、教学关键运用类比的方法,比较解不等式和解方程不同的地方,加强“去分母”和“化系数为1”这两个步骤的训练。
五、教学用具直尺和电脑六、教学方法本节课主要采用自主发现、合作交流、归纳法,引导学生从不等式中,通过归纳其共同特点,得到一元一次不等式的概念;通过让学生类比解一元一次方程和解一元一次不等式发现、归纳出解一元一次不等式的一般步骤,并针对常见错误进行指导,使他们在今后的解题中能引起注意,自觉改正错误。
七、教学过程<一>、问题导入,探索新知1问题1:举出一元一次方程的例子?【设计意图】复习一元一次方程的概念,便于对比探索一元一次不等式概念。
浙教版数学八年级上册3.3《一元一次不等式》教学设计(1)
浙教版数学八年级上册3.3《一元一次不等式》教学设计(1)一. 教材分析《一元一次不等式》是浙教版数学八年级上册3.3节的内容,本节课的主要内容是一元一次不等式的概念、性质和运算。
学生在学习本节课之前已经掌握了实数、方程等基础知识,具备了一定的逻辑思维能力,但对学生来说,一元一次不等式是一个新的概念,需要通过本节课的学习来掌握。
二. 学情分析学生在学习本节课之前已经掌握了实数、方程等基础知识,具备了一定的逻辑思维能力。
但对学生来说,一元一次不等式是一个新的概念,需要通过本节课的学习来掌握。
同时,学生对于抽象的数学概念的理解和运用还需要进一步的培养和提高。
三. 教学目标1.了解一元一次不等式的概念,掌握一元一次不等式的性质。
2.学会解一元一次不等式,能够运用一元一次不等式解决实际问题。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.重难点:一元一次不等式的概念和性质。
2.难点:解一元一次不等式,运用一元一次不等式解决实际问题。
五. 教学方法1.讲授法:通过讲解一元一次不等式的概念、性质和运算方法,使学生掌握一元一次不等式的基本知识。
2.案例分析法:通过分析实际问题,引导学生运用一元一次不等式解决问题,培养学生的实际应用能力。
3.小组讨论法:学生进行小组讨论,促进学生之间的交流与合作,提高学生的团队协作能力。
六. 教学准备1.教学PPT:制作教学PPT,包括一元一次不等式的概念、性质和运算方法的讲解,以及实际问题的案例分析。
2.教学案例:准备一些实际问题,用于引导学生运用一元一次不等式解决问题。
3.练习题:准备一些练习题,用于巩固学生对一元一次不等式的理解和运用。
七. 教学过程1.导入(5分钟)通过复习实数、方程等基础知识,引导学生进入本节课的学习。
2.呈现(10分钟)讲解一元一次不等式的概念、性质和运算方法,使学生掌握一元一次不等式的基本知识。
3.操练(10分钟)让学生练习解一元一次不等式,巩固学生对一元一次不等式的理解和运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式及解法教学设计
教学目标:
1.知识与技能:掌握一元一次不等式的相关概念及其解法,能熟练的解一元一次不等式。
2.过程与方法:学生亲身经历探究一元一次不等式及其解法的过程,学生通过合作、类比等学习方法,加深对化归思想的体会。
3.情感态度与价值观:在增强相互协作的同时,经历成功的体验,激发学习数学的兴趣,培养学生归纳总结知识的能力。
教学重点:掌握解一元一次不等式的步骤.
教学难点:不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.
教学过程
一、问题导入,出示学习目标
请同学们用不等式表示下列关系
(1)x与7的差大于26
(2)x的3倍小于x的2倍与1和
(3)x的 小于50
(4)x的-4倍大于3
师生活动:学生抢答说出答案。
教师由此引出课题,出示学习目标。
设计意图:以抢答的形式说出答案从而激发学生的学习兴趣。
32
二、自学质疑:
自学122页的思考,完成下面的问题
观察思考中的4个不等式,它们有哪些共同特征?
(1)每一个不等式都只含有______个未知数
(2)未知数的次数是_______
(3)这4个不等式叫做_______________
师生活动:学生独立完成这三个问题后小组交流。
从而归纳出一元一次不等式的概念。
教师点拨一元一次不等式满足的三个条件:①含有一个未知数②次数是1③不等式。
设计意图:培养学生的观察、归纳的能力。
三、探究解法:
问题1:解方程(1)2x-2=6(2)5-5x=10
类比解方程的步骤解(1)2x-2<6 (2)5-5x >10
师生活动:学生完成解题过程。
教师让学生对比解方程和解不等式的步骤,找出它们的相同点和不同点?(小组交流展示。
)教师从而引出解一元一次不等式可以类比解一元一次方程的步骤。
设计意图:通过让学生对比解方程和解不等式的步骤,找出它们的相同点和不同点从而获得解一元一次不等式可以类比解一元一次方程的步骤。
合作探究
问题2:你能类比一元一次方程的步骤,解下列不等式吗?并在数轴上表示解集。
(小组讨论交流解题思路并完成解题过程)。
1213x +<()()
师生活动:学生讨论后完成解题过程(黑板展示结果)教师点拨规格式。
设计意图:通过解具体的一元一次不等式,以划化思想为指导从获得解一元一次不等式的步骤。
四、归纳总结
教师问:通过我们的合作探究,你能说出解一元一次不等式的依据和步骤吗?小组交流讨论。
学生回答 依据:不等式的性质 将不等式逐步化成 x>a 或x<a 的形式 步骤:去分母,去括号,移项,合并同类项,系数化为1。
教师点拨:系数化为1的注意事项
设计意图:提高学生的总结归纳能力。
221223x x +-≥()
五、检测提升:
1、抢答 直接说出下面不等式的解集
①x-7>26 ②3x<2x+1
③ x<5 ④—4x>3 2、不等式2x ﹣4≥0的解集在数轴上表示正确的是( )
A 、
B 、
C 、
D 、 D 、
3、解下列不等式
六、畅谈收获:学生谈自己本节课的收获
七、布置作业:习题9.2第1题。
3
235)1(32+<--x x 2
23125+≤-+x x
学生动手解一元一次方程:1-2x =x + 3并说出解一元一次方程的步骤。
2、投影出示学习目标,检验学生预习
(1)能说出一元一次不等式的定义。
(2)会解答一元一次不等式。
二、学生自学,小组合作,激情展示。
(一)、请同学们进行自学书137—139页,自学后完成下列问题。
并在学习小组讨论。
1、观察下列不等式,说一说这些不等式有哪些共同特点?
(1)3x-2.5≥12(2)x≤6.75(3)x<4(4)5-3x>14
什么叫做一元一次不等式。
2、自己举出2或3个一元一次不等式的例子,小组交流。
3、解一元一次不等式 3-x < 2x + 6
4、思考:一元一次不等式与一元一次方程的解法有哪些类似之处?有什么不同?
5、解一元一次不等式的依据和解一元一次不等式的步骤。
(二)、学生展示以上问题(小组pk的形式)
(三)、做一做(学生先独立完成,再请学生展示,师生评价。
)
1、解下列不等式
(1)4(x-1)+2> 3(x+2) -x
(2)(x-2)/ 2≥(7-x)/ 3
2、求下列不等式的正整数解:
(1)-4 >-12;(2)3 -9≤0.
3、某数的一半大于它的相反数的加1,求这个数的围。
三、当堂训练,达标检测
(一)巩固练习题目
1、判断下列不等式是不是一元一次不等式,为什么?
(1)1/x+3<5x–1 (2) 5x+3<0
(3)3x+2>x–1 (4) x(x–1)<2x
2、解下列不等式。
(1)3x+8<7x–12
(2)2(x+2)≥x–4
(3)x/5≥3+(x–3)/ 2
(二)达标检测题目
解下列不等式
(1)2(1+3x)>20–3x (2)(x–3)/7≥x–6
(3)x取何值时,代数式(x+4)/3的值比(3x –1)/2的值大?
四、小结
回顾本节课所学容的基础上,教师应提醒学生注意以下两点: 1.解一元一次不等式的步骤
2.在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.
五、作业
142页A组第一题。