2010年高考理科数学(四川卷)全解析
2010年四川高考数学 (2)

2010年四川高考数学引言2010年是四川省高考数学考试的一年。
数学作为高考科目之一,对于每一位考生来说都至关重要。
本文将回顾和介绍2010年四川高考数学试卷的情况,包括试题类型、难度以及备受关注的热点题目等。
通过对这些内容的分析,我们可以更好地了解该年度数学考试的特点和趋势。
2010年四川高考数学试卷概述2010年四川高考数学试卷共分为两个部分:选择题和非选择题。
其中,选择题称为“选择题(一)”和“选择题(二)”,非选择题指的是主观题。
接下来,我们将分别介绍这两部分试题的内容和特点。
选择题选择题包括“选择题(一)”和“选择题(二)”两个部分,共计60分。
试卷中的每个选择题都有四个选项,考生需要选择正确答案。
这些选择题主要涵盖了数学的各个分支,如代数、几何、概率与统计等。
非选择题非选择题是试卷的主观题部分,共计40分。
这部分试题需要考生进行证明、计算或解答。
非选择题的难度通常相对较高,需要考生具备扎实的数学基础和解题能力。
热点题目分析在2010年四川高考数学试卷中,有一些题目备受考生关注,成为了当年的热点题目。
下面,我们将针对其中两道热点题目进行分析和讨论。
题目一:概率与统计该题属于非选择题部分,考察了考生在概率与统计方面的知识和能力。
题目要求考生根据一组数据,计算出相应的概率,并进行推断。
这道题目要求考生灵活运用概率与统计的相关概念和方法,考察了考生的分析和推理能力。
题目二:几何这道题目属于选择题部分,考察了考生在几何方面的知识和能力。
题目要求考生判断两个几何图形是否全等,并给出相应的证明过程。
这道题目既考察了考生的几何基本概念和定理的掌握程度,又考察了考生的逻辑思维和推理能力。
试题难度分析2010年四川高考数学试卷整体难度适中。
选择题难度较低,题目类型较为多样,考察了数学各个分支的基本知识点。
非选择题难度适中偏高,涉及的内容较为广泛,需要考生具备扎实的数学基础和解题能力。
总结通过对2010年四川高考数学试卷的回顾和分析,我们可以看出当年的数学考试注重考察考生的基础知识和解题能力。
2010年高考新课标全国卷理科数学试题(附答案)

p2 和 q4 : p1
p 中,真命
题是
2
(A) q1 , q3
(B) q2 , q3
(C) q1 , q4
(D) q , q
2
4
(6)某种种子每粒发芽的概率都为 0.9,现播种了 1000 粒,对于没有发芽的种子,每粒需再
补种 2 粒,补种的种子数记为 X,则 X 的数学期望为
(A)100
(B)200
1,2,…
, N ) 的点数 N1 ,那么由随机模拟方案可得积分
1 f (x)dx 的
0
近似值为
。
(14)正视图为一个三角形的几何体可以是______(写出三种)
(15)过点 A(4,1) 的圆C 与直线 x y 1 0 相切于点 B(2,1) ,则圆C 的方程为____
(16)在△ ABC 中, D 为边 BC 上一点, BD
(C) (10,12)
(D) (20, 24)
(12)已知双曲线 E 的中心为原点, P(3,0) 是 E 的焦点,过 F 的直线 l 与 E 相交于 A , B
两点,且 AB 的中点为 N ( 12, 15),则 E 的方程式为
x2 (A) 3
y2 6
1
x2 (B) 4
y2 5
1
x2 (C) 6
y2 3
(D) y
(4)如图,质点 P 在半径为 2 的圆周上逆时针运动,其初始位置为
P0 ( 2, 2) ,角速度为 1,那么点 P 到 x 轴距离 d 关于时间 t
2x 2
的函数图像大致为
d
2
t Oπ
4
A
B
C
D
(5)已知命题
p1 :函数 y
2010四川省高考试卷含解析理论考试试题及答案

1、下列各组词语中,加点字的注音全都正确的一组是A.缜(shèn)密感喟(kuì)紫蔷薇(wēi)暗香盈(yínɡ)袖B.镶(xiānɡ)嵌驰骋(chěnɡ)栀(zhī)子花逸兴遄(chuán)飞C.热忱(chén)别(bié)扭康乃馨(xīn)积微成著(zhù)D.菜肴(yáo)酣(hān)畅蒲(pú)公英春风拂(fó)面2、依次填入下面一段文字横线处的语句,前后衔接最为恰当的一组是中国人民抗日战争的胜利,充分证明了中国共产党是救亡图存、实现民族复兴的核心力量。
今天,我们纪念抗日战争胜利70周年,就是要_________,_________,_________,_________,_________。
铭记这段历史,是因为它的惨烈悲壮与不屈抗争应当成为中华民族的集体记忆,更是希望从中汲取沉痛的历史教训,获得开创未来的精神力量。
①永远铭记参加抗日战争的老战士、抗日将领、爱国人士②永远铭记支援和帮助了中国抗战的外国政府和国际友人③永远铭记惨遭日本侵略者杀戮的死难同胞④永远铭记为抗战胜利建立了功勋的海内外中华儿女⑤永远铭记在抗日战争中英勇战斗、为国捐躯的烈士A.⑤③④②① B.①②④⑤③C.③⑤①④② D.④③②①⑤3、下列语句中,标点符号使用不正确的一项是(3分)A.在远走他乡、辗转天涯时,他才明白为什么那些远离家乡的人们会那么怀念故乡?B.中国传统文化重视人生哲学,儒家坚持以修身为本,追求的是“齐家、治国、平天下”。
C.建立现代科学的三大基石是理论、实验和数学(包括计算、统计与建立在抽象模型基础上的演绎推理)。
D.2012年开始实施的新《标点符号用法》,我们要怎样贯彻:通知各校自行学习?组织骨干教师来培训?4、下列句子中,没有语病的一项是A.今年五一节前夕,发改委发出紧急通知,禁止空调厂商和经销商不得以价格战的手段进行不正当竞争。
2010年高考数学四川卷理科(20)题解法探究

:
+ +—
—
综上,M . : , F LN — F 赢 0即 M_F .
故 以线段 M N为直径 的圆过点
两式相减 。 得
3 x 2 ( - 2 ( l Y ) Y - 2 ( l ) IX )- y + 2 ( lY )=0,
而 , 争
) .
同可蔚(, . 理得 :寻 詈 ) 一
因 赢・ =寻x吾+ 此 南 ( )一) 一 (
堡
.
解法 2 ( 利用待定系数法 )
设双曲 线方程为
,
-
、
2告= 2 1 ~
,
U
U
由题 意 知 + m= 1
,
c +m =2,C =2 一
(I 试 判 断 以线 段 MN 为 直 径 的 圆是 否 过 点 F, 1) 并 说 明理 由.
c =2一 1 三 =2 一 , 口 +6 :c . ,
C Z 0
解 得 a 16 ,-c 2 - ,:3 ,= .
由此可知 , 所求 双 曲线 的 中心在 原 点 、 焦点在 轴
( Y≠0 . )
解法 3 ( 利用 圆锥 曲线 的第二定义 )
由圆 锥曲线 的第二定 义 知 , P的 轨迹是 以 F 2 点 (,
= 3 3)同理可得赢 : 3 3) ( (
,—
.
,
.
0 为焦点、 ) 定直线z = : ÷为相应准线的双曲线, 从而此
因此 ・ : 一3 x一3 + 一 ) :0 肃 ( ) ( ) ( ×3: , 因此 ・ : 一 ) ( ) ( × 删 ( x 一 + 一3)
2010年全国统一高考数学试卷(理科)(新课标)及解析

2010年全国统一高考数学试卷(理科)(新课标)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}2.(5分)已知复数,是z的共轭复数,则=()A.B.C.1 D.23.(5分)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣24.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P 0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.5.(5分)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R为减函数,则在命题q:p1∨p2,q2:p1∧p2,q3:(¬p1)∨1p2和q4:p1∧(¬p2)中,真命题是()A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q46.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X 的数学期望为()A.100 B.200 C.300 D.4007.(5分)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.8.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|x<﹣2或x>2}9.(5分)若,α是第三象限的角,则=()A.B.C.2 D.﹣210.(5分)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B. C.D.5πa211.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)12.(5分)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A. B. C. D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N 1,那么由随机模拟方案可得积分的近似值为.14.(5分)正视图为一个三角形的几何体可以是(写出三种)15.(5分)过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C的方程为.16.(5分)在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.三、解答题(共8小题,满分90分)17.(12分)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.18.(12分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(1)证明:PE⊥BC(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.19.(12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:20.(12分)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.21.(12分)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.2010年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•宁夏)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【分析】先化简集合A和B,注意集合B中的元素是整数,再根据两个集合的交集的意义求解.【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},故A∩B={0,1,2}.应选D.2.(5分)(2010•宁夏)已知复数,是z的共轭复数,则=()A.B.C.1 D.2【分析】因为,所以先求|z|再求的值.【解答】解:由可得.另解:故选A.3.(5分)(2010•宁夏)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣2【分析】欲求在点(﹣1,﹣1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=﹣1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=,∴y′=,所以k=y′|x=﹣1=2,得切线的斜率为2,所以k=2;所以曲线y=f(x)在点(﹣1,﹣1)处的切线方程为:y+1=2×(x+1),即y=2x+1.故选A.4.(5分)(2010•新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P 0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故应选C.5.(5分)(2010•宁夏)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是()A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q4【分析】先判断命题p1是真命题,P2是假命题,故p1∨p2为真命题,(﹣p2)为真命题,p1∧(﹣p2)为真命题.【解答】解:易知p1是真命题,而对p2:y′=2x ln2﹣ln2=ln2(),当x∈[0,+∞)时,,又ln2>0,所以y′≥0,函数单调递增;同理得当x∈(﹣∞,0)时,函数单调递减,故p2是假命题.由此可知,q1真,q2假,q3假,q4真.故选C.6.(5分)(2010•宁夏)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.400【分析】首先分析题目已知某种种子每粒发芽的概率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).又没发芽的补种2个,故补种的种子数记为X=2ξ,根据二项分布的期望公式即可求出结果.【解答】解:由题意可知播种了1000粒,没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).而每粒需再补种2粒,补种的种子数记为X故X=2ξ,则EX=2Eξ=2×1000×0.1=200.故选B.7.(5分)(2010•新课标)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选D.8.(5分)(2010•新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4} C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f (|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x ﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.9.(5分)(2010•宁夏)若,α是第三象限的角,则=()A.B.C.2 D.﹣2【分析】将欲求式中的正切化成正余弦,还要注意条件中的角α与待求式中角的差别,注意消除它们之间的不同.【解答】解:由,α是第三象限的角,∴可得,则,应选A.10.(5分)(2010•宁夏)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B. C.D.5πa2【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.【解答】解:根据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选B.11.(5分)(2010•新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选C.12.(5分)(2010•宁夏)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A. B. C. D.【分析】已知条件易得直线l的斜率为1,设双曲线方程,及A,B 点坐标代入方程联立相减得x1+x2=﹣24,根据=,可求得a 和b的关系,再根据c=3,求得a和b,进而可得答案.【解答】解:由已知条件易得直线l的斜率为k=k PN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选B.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•宁夏)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为.【分析】要求∫f(x)dx的近似值,利用几何概型求概率,结合点数比即可得.【解答】解:由题意可知得,故积分的近似值为.故答案为:.14.(5分)(2010•宁夏)正视图为一个三角形的几何体可以是三棱锥、三棱柱、圆锥(其他正确答案同样给分)(写出三种)【分析】三棱锥一个侧面的在正视图为一条线段的情形;圆锥;四棱锥有两个侧面在正视图为线段的情形,即可回答本题.【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等.故答案为:三棱锥、圆锥、三棱柱.15.(5分)(2010•宁夏)过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C的方程为(x﹣3)2+y2=2.【分析】设圆的标准方程,再用过点A(4,1),过B,两点坐标适合方程,圆和直线相切,圆心到直线的距离等于半径,求得圆的方程.【解答】解:设圆的方程为(x﹣a)2+(y﹣b)2=r2,则,解得,故所求圆的方程为(x﹣3)2+y2=2.故答案为:(x﹣3)2+y2=2.16.(5分)(2010•宁夏)在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=60°.【分析】先根据三角形的面积公式利用△ADC的面积求得DC,进而根据三角形ABC的面积求得BD和BC,进而根据余弦定理求得AB.最后在三角形ABC中利用余弦定理求得cos∠BAC,求得∠BAC的值.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°=,,则=.故∠BAC=60°.三、解答题(共8小题,满分90分)17.(12分)(2010•宁夏)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.【分析】(Ⅰ)由题意得a n+1=[(a n+1﹣a n)+(a n﹣a n﹣1)+…+(a2﹣a1)]+a1=3(22n﹣1+22n﹣3+…+2)+2=22(n+1)﹣1.由此可知数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25++n•22n﹣1,由此入手可知答案.【解答】解:(Ⅰ)由已知,当n≥1时,a n+1=[(a n+1﹣a n)+(a n﹣a n)+…+(a2﹣a1)]+a1﹣1=3(22n﹣1+22n﹣3+…+2)+2=3×+2=22(n+1)﹣1.而a1=2,所以数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25+…+n•22n﹣1①从而22S n=1•23+2•25+…+n•22n+1②①﹣②得(1﹣22)•S n=2+23+25+…+22n﹣1﹣n•22n+1.即.18.(12分)(2010•宁夏)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(1)证明:PE⊥BC(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.【分析】以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系.(1)表示,,计算,就证明PE⊥BC.(2)∠APB=∠ADB=60°,求出C,P的坐标,再求平面PEH的法向量,求向量,然后求与面PEH的法向量的数量积,可求直线PA与平面PEH所成角的正弦值.【解答】解:以H为原点,HA,HB,HP分别为x,y,z轴,线段HA 的长为单位长,建立空间直角坐标系如图,则A(1,0,0),B(0,1,0)(Ⅰ)设C(m,0,0),P(0,0,n)(m<0,n>0)则.可得.因为所以PE⊥BC.(Ⅱ)由已知条件可得m=,n=1,故C(﹣),设=(x,y,z)为平面PEH的法向量则即因此可以取,由,可得所以直线PA与平面PEH所成角的正弦值为.19.(12分)(2010•新课标)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:【分析】(1)由列联表可知调查的500位老年人中有40+30=70位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值.(2)根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关.(3)从样本数据老年人中需要帮助的比例有明显差异,调查时,可以先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.【解答】解:(1)∵调查的500位老年人中有40+30=70位需要志愿者提供帮助,∴该地区老年人中需要帮助的老年人的比例的估算值为.(2)根据列联表所给的数据,代入随机变量的观测值公式,.∵9.967>6.635,∴有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.20.(12分)(2010•宁夏)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.【分析】(I)根据椭圆的定义可知|AF2|+|BF2|+|AB|=4a,进而根据|AF2|,|AB|,|BF2|成等差数表示出|AB|,进而可知直线l的方程,设A(x1,y1),B(x2,y2),代入直线和椭圆方程,联立消去y,根据韦达定理表示出x1+x2和x1x2进而根据,求得a和b的关系,进而求得a和c的关系,离心率可得.(II)设AB的中点为N(x0,y0),根据(1)则可分别表示出x0和y0,根据|PA|=|PB|,推知直线PN的斜率,根据求得c,进而求得a和b,椭圆的方程可得.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则因为直线AB斜率为1,|AB|=|x 1﹣x2|=,得,故a2=2b2所以E的离心率(II)设AB的中点为N(x0,y0),由(I)知,.由|PA|=|PB|,得k PN=﹣1,即得c=3,从而故椭圆E的方程为.21.(12分)(2010•宁夏)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.【分析】(1)先对函数f(x)求导,导函数大于0时原函数单调递增,导函数小于0时原函数单调递减.(2)根据e x≥1+x可得不等式f′(x)≥x﹣2ax=(1﹣2a)x,从而可知当1﹣2a≥0,即时,f′(x)≥0判断出函数f(x)的单调性,得到答案.【解答】解:(1)a=0时,f(x)=e x﹣1﹣x,f′(x)=e x﹣1.当x∈(﹣∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.故f(x)在(﹣∞,0)单调减少,在(0,+∞)单调增加(II)f′(x)=e x﹣1﹣2ax由(I)知e x≥1+x,当且仅当x=0时等号成立.故f′(x)≥x﹣2ax=(1﹣2a)x,从而当1﹣2a≥0,即时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0时,f(x)≥0.由e x>1+x(x≠0)可得e﹣x>1﹣x(x≠0).从而当时,f′(x)<e x﹣1+2a(e﹣x﹣1)=e﹣x(e x﹣1)(e x﹣2a),故当x∈(0,ln2a)时,f'(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0.综合得a的取值范围为.22.(10分)(2010•新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC 是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)23.(10分)(2010•新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.24.(10分)(2010•新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).。
2010年高考理科数学(四川卷)全解析

2010年普通高等学校招生全国统一考试(四川卷)数学(理工农医类)第Ⅰ卷一、选择题:(1)i 是虚数单位,计算23i i i ++=(A )-1 (B )1 (C )i - (D )i 解:原式11i i =--=-故选A(2)下列四个图像所表示的函数,在点0x =处连续的是(A ) (B ) (C ) (D ) 解:由图显然选D(8)已知数列{}n a 的首项10a ≠,其前n 项的和为n S ,且112n n S S a +=+,则limnn na S →∞=(A )0 (B )12(C ) 1 (D )2 解:由已知可得1{}n s a +是以12a 为首项,2为公比的等比数列,1111112222n n n n n s a a a s a a -∴+=⋅=⇒=-1112n n n n a s s a --∴=-=⋅,11111211lim lim 12222n n n n n nn a a s a a -→∞→∞-===--,故选B(9)椭圆22221()x y a b a b+=>>0的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是解:连接BM 、BN ,则,BM AC BN AD ⊥⊥,由三角形的面积相等,得,AB BC AB BD BM BN AC AD ⋅==,得到5BM R =,222165AM R AN ==,2229cos 210AC AD CD CAD AC AD +-∠==⋅,222162cos 25MN AM AN AM AN MAN =+-⋅∠=22217cos 225OM ON MN MON OM ON +-∠==⋅,那么M 、N 两点间的球面距离是17arccos 25R(12)设0a b c >>>,则221121025()a ac c ab a a b ++-+-的最小值是 (A )2 (B )4 (C ) 5 (D )5解:原式22121025()a ac cb a b =+-+-,22()()24b a b a b a b +--≤=(当且仅当b a b =-)∴原式222222244210252510244a ac c a a c ac a a=+-+=+++-≥=(当且仅当222425a c a ==)∴选B 第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)63(2x的展开式中的第四项是 . (17)(本小题满分12分)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为16.甲、乙、丙三位同学每人购买了一瓶该饮料。
2010年四川高考数学 (2)

2010年四川高考数学引言2010年的四川高考数学考试是考生们备受关注的一场考试。
数学作为高考的一门核心科目,在考生的综合素质评价中占据着重要的地位。
本文将回顾2010年四川高考数学考试的一些重要内容和难点,以帮助考生更好地复习和应对未来的考试。
考试概况2010年四川高考数学考试于6月7日上午进行,总分为150分,考试时间为120分钟。
试卷分为选择题和非选择题两个部分,其中选择题占60%,非选择题占40%。
考试内容覆盖了高中数学的各个知识点和技巧,包括代数、几何、概率与统计等。
选择题解析选择题是数学考试中的重要组成部分,它考察了考生对基础知识的掌握和运用能力。
下面是2010年四川高考数学选择题的解析:1.题目:(x2+2x+1)3=?解析:这是一个求立方的题目,应用了(a+b)3的公式。
根据公式,(x2+2x+1)3=(x+1)6。
因此,答案是(x+1)6。
2.题目:已知函数$f(x) = \\frac{1}{2}x^2 - 3$,则f(4)=?解析:题目要求求函数f(x)在x=4处的值,即代入x=4到函数中进行计算。
计算过程为$f(4) = \\frac{1}{2}(4^2) - 3 = 8 - 3 = 5$。
因此,答案是5。
非选择题解析非选择题是数学考试中的应用题部分,它要求考生对所学知识的应用能力和解决实际问题的能力。
下面是2010年四川高考数学非选择题的解析:1.题目:已知直线l过点A(1,2),与直线y=−x+3垂直,求直线l的方程。
解析:由题目可知,直线l的斜率与直线y=−x+3的斜率相乘等于-1。
因此,直线l的斜率为1。
根据点斜式的公式y−y1=m(x−x1),代入已知信息A(1,2)和斜率m=1,可以得到直线l的方程为y−2=1(x−1)。
整理得到y=x+1。
因此,直线l的方程为y=x+1。
2.题目:已知直线l过点A(1,2)和点B(3,4),求直线l的斜率和截距。
解析:直线的斜率可以通过两点间的坐标差来计算。
普通高等学校招生全国统一考试数学(四川卷)解析之欧阳家百创编

2010年普通高等学校招生全国统一考试(四川卷)欧阳家百(2021.03.07) 数学(理工农医类)解析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至10页.满分150分。
考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第1卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试卷上.3。
本试卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么球的表面积公式 P (A +B ) =P (A )+P (B ) 24s R π=如果事件A 、B 相互独立,那么其中R 表示球的半径 P (A ·B )=P (A )·P (B ) 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么243v R π= 在n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径一、选择题:(1)i 是虚数单位,计算i +i 2+i 3=(A )-1 (B )1 (C )i - (D )i 解析:由复数性质知:i 2=-1故i +i 2+i 3=i +(-1)+(-i )=-1 答案:A(2)下列四个图像所表示的函数,在点0x =处连续的是(A ) (B ) (C ) (D ) 解析:由图象及函数连续的性质知,D 正确. 答案:D(3)2log 510+log 50.25=(A )0 (B )1 (C ) 2 (D )4解析:2log 510+log 50.25=log 5100+log 50.25 =log 525 =2 答案:C(4)函数f (x )=x 2+mx +1的图像关于直线x =1对称的充要条件是(A )2m =- (B )2m = (C )1m =- (D )1m = 解析:函数f (x )=x 2+mx +1的对称轴为x =-2m 于是-2m =1m =-2答案:A(5)设点M 是线段BC 的中点,点A 在直线BC 外,216,BC AB AC AB AC =∣+∣=∣-∣,则AM ∣∣=(A )8 (B )4 (C ) 2 (D )1解析:由2BC =16,得|BC |=4AB AC AB AC BC ∣+∣=∣-∣=||=4 而AB AC AM ∣+∣=2∣∣ 故AM ∣∣=2 答案:C(6)将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是(A )sin(2)10y x π=- (B )sin(2)5y x π=-(C )1sin()210y x π=- (D )1sin()220y x π=-解析:将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,所得函数图象的解析式为y =sin (x -10π) 再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是1sin()210y x π=-.答案:C(7)某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B 产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克A 产品获利40元,乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为(A )甲车间加工原料10箱,乙车间加工原料60箱 (B )甲车间加工原料15箱,乙车间加工原料55箱 (C )甲车间加工原料18箱,乙车间加工原料50箱 (D )甲车间加工原料40箱,乙车间加工原料30箱 解析:设甲车间加工原料x 箱,乙车间加工原料y 箱则70106480,x y x y x y N +≤⎧⎪+≤⎨⎪∈⎩目标函数z =280x +300y结合图象可得:当x =15,y =55时z 最大 本题也可以将答案逐项代入检验. 答案:B(8)已知数列{}n a 的首项10a ≠,其前n 项的和为n S ,且112n n S S a +=+,则limnn na S →∞=(A )0 (B )12(C ) 1 (D )2解析:由112n n S S a +=+,且2112n n S S a ++=+作差得a n +2=2a n +1又S 2=2S 1+a 1,即a 2+a 1=2a 1+a 1a 2=2a 故{a n }是公比为2的等比数列S n =a 1+2a 1+22a 1+……+2n -1a 1=(2n -1)a 1则11121lim lim (21)2n n n n n n a a S a -→∞→∞==-答案:B(9)椭圆22221()x y a b a b+=>>0的右焦点F,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是(A )20,⎛⎤ ⎥ ⎝⎦(B )10,2⎛⎤ ⎥⎝⎦(C ) )21,1⎡-⎣ (D )1,12⎡⎫⎪⎢⎣⎭解析:由题意,椭圆上存在点P ,使得线段AP 的垂直平分线过点F ,即F 点到P 点与A 点的距离相等而|FA |=22a b c c c-=|PF |∈[a -c ,a +c ]于是2b c∈[a -c ,a +c ]即ac -c 2≤b 2≤ac +c 2∴222222ac c a c a c ac c ⎧-≤-⎪⎨-≤+⎪⎩ 1112c ac c aa ⎧≤⎪⎪⎨⎪≤-≥⎪⎩或 又e ∈(0,1)故e ∈1,12⎡⎫⎪⎢⎣⎭答案:D(10)由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是(A )72 (B )96 (C ) 108 (D )144 解析:先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个算上个位偶数字的排法,共计3(24+12)答案:C(11)半径为R 的球O 的直径AB 垂直于平面α,垂足为B , BCD 是平面α内边长为R 的正三角形,线段AC 、AD 分别 与球面交于点M ,N ,那么M 、N 两点间的球面距离是 (A )17arccos25R (B )18arccos 25R (C )13R π (D )415R π 解析:由已知,AB =2R ,BC =R ,故tan ∠BAC =12cos ∠BAC =255连结OM ,则△OAM 为等腰三角形 AM =2AOcos ∠BAC =45R ,同理AN =45R ,且MN ∥CD而AC =5R ,CD =R 故MN :CD =AN :AC MN =45R ,连结OM 、ON ,有OM =ON =R 于是cos ∠MON =22217225OM ON MN OM ON +-=所以M 、N 两点间的球面距离是17arccos 25R 答案:A(12)设0a b c >>>,则221121025()a ac c ab a a b ++-+-的最小值是(A )2 (B )4 (C ) 25(D )5 解析:221121025()a ac c ab a a b ++-+- =2211(5)()a c a ab ab ab a a b -+-+++-=211(5)()()a c ab a a b ab a a b -+++-+-≥0+2+2=4当且仅当a -5c =0,ab =1,a (a -b )=1时等号成立 如取a 2b =22,c =25满足条件.答案:B第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在α•AB •β题中横线上.(13)6(2的展开式中的第四项是. 解析:T 4=33361602(C x=- 答案:-160x(14)直线250x y -+=与圆228x y +=相交于A 、B 两点,则AB ∣∣=.解析:方法一、圆心为(0,0),半径为 圆心到直线250x y -+=的距离为d ==故|AB|222()+=2得|AB |=23 答案:23(15)如图,二面角l αβ--的大小是60°,线段AB α⊂.B l ∈,AB 与l 所成的角为30°.则AB 与平面β所成的角的正弦值是.解析:过点A 作平面β的垂线,垂足为C ,在β内过C 作l 的垂线.垂足为D连结AD ,有三垂线定理可知AD ⊥l ,故∠ADC 为二面角l αβ--的平面角,为60° 又由已知,∠ABD =30° 连结CB ,则∠ABC 为AB 与平面β所成的角设AD =2,则AC ,CD =1 AB =sin 30AD=4∴sin ∠ABC =4AC AB = 答案:4(16)设S 为复数集C 的非空子集.若对任意x,y S ∈,都有x y,x y,xy S +-∈,则称S 为封闭集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年普通高等学校招生全国统一考试(四川卷)
数学(理工农医类)
第Ⅰ卷
一、选择题:
(1)i 是虚数单位,计算2
3
i i i ++=
(A )-1 (B )1 (C )i - (D )i 解:原式11i i =--=-故选A
(2)下列四个图像所表示的函数,在点0x =处连续的是
(A ) (B ) (C ) (D ) 解:由图显然选D
(8)已知数列{}n a 的首项10a ≠,其前n 项的和为n S ,且112n n S S a +=+,则lim
n
n n
a S →∞=
(A )0 (B )
1
2
(C ) 1 (D )2 解:由已知可得1{}
n s a +是以
1
2a 为首项,2为公比的等比数
列
,
1111112222n n n n n s a a a s a a -∴+=⋅=⇒=-1
112n n n n a s s a --∴=-=⋅,
11111211lim lim 12222n n n n n n
n a a s a a -→∞→∞-===--,故选B
(9)椭圆22
221()x y a b a b
+=>>0的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在
点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是
解:连接BM 、BN ,则,BM AC BN AD ⊥⊥,由三角形的面积相等,得
,AB BC AB BD BM BN AC AD ⋅=
=
,得到5
BM R =,22216
5AM R AN ==,2229cos 210AC AD CD CAD AC AD +-∠==⋅,22216
2cos 25MN AM AN AM AN MAN =+-⋅∠=
22217cos 225OM ON MN MON OM ON +-∠==⋅,那么M 、N 两点间的球面距离是17
arccos 25
R
(12)设0a b c >>>,则2
211
21025()
a ac c a
b a a b +
+-+-的最小值是 (A )2 (B )4 (C ) 5 (D )5
解:原式2
21
21025()
a ac c
b a b =+
-+-,2
2()()24
b a b a b a b +--≤=(当且仅当
b a b =-)∴原式22222
2244210252510244a ac c a a c ac a a
=+
-+=+++-≥=(当且仅当2
2
2
4
25a c a ==
)∴选B 第Ⅱ卷
二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.
(13)6
3(2x
的展开式中的第四项是 . (17)(本小题满分12分)
某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为16
.甲、乙、丙三位同学每人购买了一瓶该饮料。
(Ⅰ)求甲中奖且乙、丙都没有中奖的概率; (Ⅱ)求中奖人数ξ的分布列及数学期望E ξ.
解:显然甲、乙、丙三位同学是否中奖独立,所以甲中奖且乙、丙都没有中奖的概率是:
15525
666216
⋅=
(2) ξ 0 1
2 3
P
125216
75
216 15
216 1216
E ξ=01232162162162162
⨯
+⨯+⨯+⨯= (18)(本小题满分12分)
已知正方体ABCD A C D -'B'''的棱长为1,点M 是棱AA '的中点,点O 是对角线BD '的中点.
(Ⅰ)求证:OM 为异面直线AA '和BD '的公垂线; (Ⅱ)求二面角M BC B -'-'的大小; (Ⅲ)求三棱锥M OBC -的体积. (1) 证明:
'ABCD A C D DD ABCD
-'B'''
∴⊥面
连接AC ,'
AC AA ⊥MO//AC ,
•D 'A
B
C
D M O
A '
B '
C '
•
(2,3),(2,3)B C -,而B 、C 所在直线过F 点,所以存在。
(21)(本小题满分12分)
已知数列{}n a 满足1202a ,a ==,且对任意m,n N *∈都有
22121122m n m n a a (m n )+-+-+=+-
(Ⅰ)求35a ,a ;
(Ⅱ)设2121n n n b a a (n N*)+-=- ∈证明:{}n b 是等差数列;
(Ⅲ)设121210n n n n c (a a q (q ,n N*)-
+-=- ) ≠∈,求数列{}n c 的前n 项和n S .
此题是错题
(22)(本小题满分14分)。