全等三角形教学案例
人教版八年级数学上册12.1《全等三角形》优秀教学案例

2.同伴评价:学生之间进行互相评价,给予同伴在学习全等三角形方面的肯定和建议。例如,学生可以评价同伴在探究全等三角形性质时的表现,如是否积极参与、是否有创新思维等。
2.小组竞赛:设立小组竞赛,激发学生的合作意识和竞争意识。例如,各小组进行全等三角形判定方法的竞赛,看哪个小组能够在最短时间内正确判定两个三角形全等。
3.分享交流:各小组分享自己的讨论成果,教师进行点评和指导。例如,每个小组展示自己的总结,教师针对学生的总结进行点评,纠正错误并补充遗漏的内容。
(四)反思与评价
本节课的教学目标是让学生掌握全等三角形的概念、性质、判定及应用,提高学生的逻辑思维能力和空间想象力。针对八年级学生的知识水平,教师在教学过程中应注重引导学生从实际问题中发现全等三角形的性质,通过观察、操作、推理等方法,让学生在实践中掌握全等三角形的判定方法,培养学生的动手能力和合作意识。同时,教师还需关注学生的个体差异,针对不同学生的学习需求进行有针对性的指导,使他们在课堂上都能得到有效的锻炼和提高。
2.问题导向,培养学生的思维能力
教师在教学过程中通过提出问题,引导学生自主探究全等三角形的性质和判定方法。这种问题导向的教学策略能够培养学生的观察力、思考能力和解决问题的能力,使学生在实践中掌握全等三角形的性质和判定方法。
3.小组合作,培养学生的合作意识
本节课通过分组讨论、小组竞赛等形式,让学生在小组内进行合作交流,共同探究全等三角形的性质和判定方法。这样的教学方式能够培养学生的合作意识和团队精神,提高学生的沟通能力和协作能力。
2.培养学生勇于探究、善于思考的科学精神。
全等三角形教学案例

《12.1 全等三角形》教学设计课题:12.1 全等三角形课型:新授课课时:第一课时【教学过程】一、情境引入同学们,几何中把“一模一样”的图形叫做”全等图形“,如果是三角形呢?又该怎么判断是不是全等三角形呢?今天我们将一起来学习——全等三角形!二、探究把一块三角尺按在纸板上,画下图形,照图形裁下来的纸板和三角尺的形状、大小完全一样吗?重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.对应顶点的字母写在对应的位置上.记作:“△ABC ≌△DEF”,读作:“△ABC 全等于△DEF”能够完全重合的两个三角形叫做全等三角形.三、练习1、若△AOC△△BOD,AC= BD;△A=△B。
2、若△ABD△△ACE,BD=CE,△BDA=△CEA。
3、若△ABC△△CDA,AB= CD,△BAC=△DCA。
四、探究想一想:(1)把△ABC沿直线BC平移,得到△DEF,(2)把△ABC沿直线BC翻折180°,得到△DBC,(3)把△ABC绕点A旋转,得到△ADE.各图中的两个三角形全等吗?平移、翻折、旋转,变换前后的图形全等五、练习已知:如图,△ABC与△DEF是全等三角形,则图中相等的线段的组数是(B )A.3B.4C.5D.6解析:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴BC﹣EC=EF﹣EC,即BE=CF,有四组相等线段,故选B.六、应用提高如图,△ACB△△A′CB′,△ACA′=30°,则△BCB′的度数为(B)A.20°B.30°C.35°D.40°解析:△△ACB△△A′CB′,△△ACB=△A′CB′,△△ACB-△A′CB=△A′CB′-△A′CB,即△BCB′=△ACA′,又△ACA′=30°,△△BCB′=30°,故选:B.七、达标测试1.如图,已知△ABC△△EDF,下列结论正确的是(A)A.△A=△E B.△B=△DFEC.AC=ED D.BF=DF解析:△△ABC△△EDF,△△A=△E,A正确;△B=△FDE,B错误;AC=EF,C错误;BF=DC,D错误;故选:A.2.如图,已知ΔABC△ΔFED, BC=ED, 求证:AB△EF证明:△ΔABC△ΔFED, BC=ED △BC与ED是对应边△△A=△F(全等三角形的对应角相等)△AB△EF八、布置作业教材33页习题12.1第1、2题.。
数学全等三角形教案8篇

数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。
初中数学《全等三角形》教案优秀6篇

教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、
全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
人教版八年级上册12.1全等三角形优秀教学案例

(二)问题导向
1.设计具有层次性的问题,引导学生从简单到复杂、从具体到抽象地进行思考,如“两个三角形的边长分别相等,它们一定是全等的吗?”等。
2.通过提问引导学生思考全等三角形的性质和判定方法,培养学生的问题解决能力和逻辑思维能力。
(四)反思与评价
1.引导学生进行自我反思,总结自己在学习全等三角形过程中的收获和不足,提高学生的自我认知能力。
2.设计评价量表,让学生对自己的学习过程和成果进行评价,培养学生的评价能力和自我改进能力。
3.教师对学生的学习过程和成果进行及时的反馈和评价,鼓励学生的优点,指出学生的不足,促进学生的全面发展。
(二)讲授新知
1.教师通过讲解和示例,详细介绍全等三角形的定义、性质和判定方法。
2.利用图形和实物模型,直观地展示全等三角形的特征,帮助学生理解和记忆。
3.通过例题和练习,让学生亲自操作和计算,巩固全等三角形的判定方法。
(三)学生小组讨论
1.教师给出一个开放性问题:“你能设计一个方法来判断两个三角形是否全等吗?”引导学生进行小组讨论和交流。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一些实际生活中的例子,如建筑施工、道路设计等,引导学生观察和思考其中的三角形全等问题,激发学生的学习兴趣。
2.提出问题:“你们之前学过的三角形知识能解决这些问题吗?”引发学生的思考,为新课的导入做好铺垫。
3.教师简要介绍全等三角形的概念和重要性,引出本节课的主题,激发学生的好奇心和求知欲。
五、案例亮点
1.生活情境的引入:通过实际生活中的例子,如建筑施工、道路设计等,让学生感受到全等三角形在生活中的应用,激发学生的学习兴趣,增强学生对数学知识的现实意义。
全等三角形教案6篇

全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。
全等三角形教案(精选3篇)

全等三角形教案(精选3篇)全等三角形教案1课题:三角形全等的判定(三)教学目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。
教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。
教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。
教学用具:直尺,微机教学方法:自学辅导教学过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。
于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。
然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。
(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。
应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)。
(3)、此公理与前面学过的公理区别与联系。
(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。
在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《全等三角形》教学案例
教学目标:1、了解全等形及全等三角形的概念。
知识技能2、理解掌握全等三角形的性质。
3、能够准确辩认全等三角形的对应元素。
情感态度1、在图形变换以用操作的过程中发展空间观念,培养几何直觉。
2、在观察发现生活中的全等形和实际操作中获得全等三角形的体验。
3、在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。
教学重点:探究全等三角形的性质
教学难点:掌握两个全等三角形的对应边、对应角的寻找规律,迅速正确指出两个全等三角形的对应元素。
教学过程:
一、提出问题,创设情境
(出示图片)观察思考:每组的两个图形有什么特点?
(1)(2)(3)
(4)
师:实图操作把每组的两个图形沿同一水平方向平移使每组中的两个图片叠放在一起。
生:1、每组的两个图形形状大小都一样。
2、每组的两个图形都可以重合。
师:同学们的观察力很棒,上面的三组图形,每组中的两个图形都能够完全重合。
那现实生活中能够完全重合的图形的例子?
生:同一张底片洗出的同大小照片是能够完全重合的。
师:总结:那么我们把(板书)能够完全重合的两个图形叫做全等形.
师:观察下面两组图形,它们是不是全等形?并指出它们的相同点与不同点。
(1)(2)
生:它们不是全等形。
在图(1)里的两个图形都是八边形,但是它们的大小不相同。
在图(2)中两个图形都是由三个大小相同的小正方形组合而成的,帮他们大小相同,但形状不相同。
师:同学们他回答的好吗?(好!)那是不是应该掌声鼓励。
(啪啪。
)这位同学不仅观察力很棒,并且语言组织能力也强。
同学们也要像他一样不紧要善于观察更应该要善于总结。
如果上面两组图形不是全等形,那么全等形它有什么样的特征呢?
生:全等形的形状、大小都相同。
师:哦说的很好。
(板书)全等形的特征:全等形的形状和大小都相同
师:(活动)既然只要保证形状大小相同就可以得到全等形,那么请同学们在纸板上动手
做两个全等的三角形,并把它们取下来。
生:(动手制作)先做一个三角形,然后将取下来的三角形按在纸上做第二个三角形。
师:(与学生交流)做好的同学请亮亮你们的杰作。
同学们做的真仔细,有些同学注意了两个人配合节约了不少时间。
试着把你们手中的两个三角形叠放在一起看看,他们会怎么样?
生:完全重合。
师:嗯,对。
那么我们把(板书)能够完全重合的两个三角形叫做全等三角形
二、导入新课
师:(出示图片)
A A’
B C B’C’
实图操作:将△ABC沿直线BC平移得到△A’B’C’
师:我们把(板书)
互相重合的顶点叫做对应顶点.
互相重合的边叫做对应边.
互相重合的顶点角叫做对应角
现在请同学认真观察指出图中的对应顶点、对应边、对应角。
生:交流总结得出:
对应顶点:A和A’、B和B’ 、C和C’
对应边:AB和A’B’、BC和B’C’、AC和A’C’
对应角:∠A和∠A’ 、∠B和∠B’、∠C和∠C’
师:回答的很好。
因为同学们的细心,所以才可以很全面的找出完整的答案。
我们通常会把两个全等三角形(板书)
记作:△ABC ≌△A’B’C’ 符号“ ≌”读作“全等于”
强调:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
师:(出示图片)
A
(1) A D (2)(3)D E
B C A
B C E F B C
D
(实图操作)演示图形变换过程,图形通过平移、翻折、旋转后可以完全重合。
那么每组图中的三角形为全等三解形。
全等三角形的对应边有什么关系呢?对应角呢?
生:师生交流共同得出;
(板书)全等三角形的性质:全等三角形的对应边相等,对应角相等。
师:现在我们要学习利用几何语言来描述其性质(板书)
∵△ABC≌△DEF (已知)
∴AB=DE, BC=EF, AC=DF (全等三角形的对应边相等)
∴∠A=∠D, ∠B= ∠E , ∠C= ∠F (全等三角形的对应角相等)
师:如果知道两三角形全等,那么我们就可以得出以上六个结论,三组对应边分边相等,三组对应角分别相等。
可是在找全等三角形的对应元素时一般有什么规律呢?现在我们就来一共同学习。
(出示图片)
A
A D
B C
C D
D
有公共边的,公共边是对应边.
C A B
E
A F O
D
B C D
有公共角的,公共角是对应角.
有对顶角的,对顶角是对应角.
B C E
C A
A
D F D
B
一对最长的边是对应边,一对最短的边是对应边.
一对最大的角是对应角,一对最小的角是对应角
1如图,已知△ABC≌△ADE,∠C=∠E,BC=DE,其它的对应边有: A E
对应角有:
想一想: ∠BAD= ∠CAE吗?为什么?
答:相等.理由如下:∵△ABC≌△ADE(已知) B D C
∴∠BAC= ∠DAE(全等三角形对应角相等)
∴∠BAC - ∠DAC= ∠DAE - ∠DAC(等式性质)
即∠BAC= ∠DAE
2、找一找:请指出下列全等三角形的对应边和对应角
1、△ABE ≌△ACF
对应角是:∠A和∠A、∠ABE和∠ACF、∠AEB和∠AFC;对应边是AB和AC、AE和AF、BE和CF。
2、△BCE ≌△CBF
对应角是:∠BCE和∠CBF、∠BEC和∠CFB、∠CBE和∠BCF。
对应边是:CB和BC、CE和BF、CF和BE。
3、△BOF ≌△COE
对应角是:∠BOF和COE、∠BFO 和∠CEO、∠FOB和∠EOC。
对应边是:OF和OE、OB和OC、BF和CE。
3、判断题
1)全等三角形的对应边相等,对应角相等。
()
2)全等三角形的周长相等,面积也相等。
()
3)面积相等的三角形是全等三角形。
()
4)周长相等的三角形是全等三角形。
()
4、如图△ABD ≌△CDB,
若AB=4,AD=5,BD=6,
则BC= ,CD=______,
5、如图△ABD≌△EBC,AB=3cm,BC=5cm,求DE的长
解:∵△ABD≌△EBC
∴AB=EB、BD=BC
∵BD=DE+EB
∴DE=BD-EB
=BC-AB
=5-3=2cm
四、小结
师:通过本节课的学习,你有什么收获?
生1:通过这节课的学习,我知道了全等三角形的概念、表示方法及其性质。
图11
生2:通过这节课的学习,我还知道了如何找全等三角形的对应边、对应角的方法。
五、课后作业
课本习题11.1第3题。
教学反思:
这节课根据教学设计,首先,展示一些学生们熟悉的感兴趣的图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。
再让学生找出生活中具有类似特点的图形,激发学生的学习积极性,让学生体会数学来源于生活,生活中存在数学美。
第二,让学生自己动手随意去做或者画出形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。
然后,给出全等形和全等三角形的概念。
第三,演示一个三角形经过平移,翻折,旋转后构成的两个三角形全等。
通过演示让学生体会对应顶点、对应边、对应角的概念,并设计练习题指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。
此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置上,然后再给出用全等符号,表示全等三角形并加以练习,加强对知识的巩固。
通过这节课的学习,学生能找出图形中的全等图形,多数学生对本节课的知识掌握较好,但是个别学生在用符号表示全等三角形时对应点还是有部分学生没有写对,还有的学生把“全等于”的符号写错了,在这方面对学生还要多作指导,以巩固基础知识,为以后的学习做好准备。