统计学计算题

合集下载

[统计学原理计算题答案]统计学计算题及答案

[统计学原理计算题答案]统计学计算题及答案

[统计学原理计算题答案]统计学计算题及答案【试卷考卷】统计学计算题及答案篇(一):统计学试题及答案一、填空题(每空1分,共10分)1.从标志与统计指标的对应关系来看,标志通常与( )相同。

2.某连续变量数列,其首组为开口组,上限为80,又知其邻组的组中值为95,则首组的组中值为( )。

3.国民收入中消费额和积累额的比例为1:0.4,这是( )相对指标。

4.在+A的公式中,A称为( )。

5.峰度是指次数分布曲线项峰的( ),是次数分布的一个重要特征。

6.用水平法求平均发展速度本质上是求( )平均数。

7.按习惯做法,采用加权调和平均形式编制的物量指标指数,其计算公式实际上是( )综合指数公式的变形。

8.对一个确定的总体,抽选的样本可能个数与( )和( )有关。

9.用来反映回归直线代表性大小和因变量估计值准确程度的指标称( )。

二、是非题(每小题1分,共10分)1.统计史上,将国势学派和图表学派统称为社会经济统计学派。

2.统计总体与总体单位在任何条件下都存在变换关系统计学原理试题及答案统计学原理试题及答案。

3.学生按身高分组,适宜采用等距分组。

4.根据组距数列计算求得的算术平均数是一个近似值。

5.基尼系数的基本公式可转化为2(S1+S2+S3)。

6.对连续时点数列求序时平均数,应采用加权算术平均方法。

7.分段平均法的数学依据是Σ(Y-YC)2=最小值。

8.平均数、指数都有静态与动态之分。

9.在不重复抽样下,从总体N中抽取容量为n的样本,则所有可能的样本个数为Nn个10.根据每对x和y的等级计算结果ΣD2=0,说明x与y 之间存在完全正相关。

三、单项选择题(每小题2分,共10分)1.在综合统计指标分析的基础上,对社会总体的数量特征作出归纳、推断和预测的方法是A.大量观察法B.统计分组法C.综合指标法D.模型推断法2.对同一总体选择两个或两个以上的标志分别进行简单分组,形成A.复合分组B.层叠分组C.平行分组体系D.复合分组体系3.交替标志方差的最大值为A.1B.0.5C.0.25D.04.如果采用三项移动平均修匀时间数列,那么所得修匀数列比原数列首尾各少A.一项数值B.二项数值C.三项数值D.四项数值5.可变权数是指在一个指数数列中,各个指数的A.同度量因素是变动的B.基期是变动的C.指数化因数是变动的D.时期是变动的四、多项选择题(每小题2分,共10分)1.反映以经济指标为中心的三位一体的指标总体系包括A.社会统计指标体系B.专题统计指标体系C.基层统计指标体系D.经济统计指标体系E.科技统计指标体系2.典型调查A.是一次性调查B.是专门组织的调查C.是一种深入细致的调查D.调查单位是有意识地选取的E.可用采访法取得资料3.下列指标中属于总量指标的有A.月末商品库存额B.劳动生产率C.历年产值增加额D.年末固定资金额E.某市人口净增加数4.重复抽样的特点是A.各次抽选互不影响B.各次抽选相互影响C.每次抽选时,总体单位数逐渐减少D.每次抽选时,总体单位数始终不变E.各单位被抽中的机会在各次抽选中相等5.下列关系中,相关系数小于0的现象有A.产品产量与耗电量的关系B.单位成本与产品产量的关系C.商品价格与销售量的关系D.纳税额与收入的关系E.商品流通费用率与商品销售额的关系五、计算题(每小题10分,共60分)要求:(1)写出必要的计算公式和计算过程,否则,酌情扣分。

统计学计算题整理

统计学计算题整理

:典型计算题一1、某地区销售某种商品的价格和销售量资料如下:根据资料计算三种规格商品的平均销售价格。

解:36==∑∑ffxx (元)点评: 第一,此题给出销售单价和销售量资料,即给出了计算平均指标的分母资料,所以需采用算术平均数计算平均价格。

第二,所给资料是组距数列,因此需计算出组中值。

采用加权算术平均数计算平均价格。

第三,此题所给的是比重权数,因此需采用以比重形式表示的加权算术平均数公式计算。

2、某企业1992年产值计划是1991年的105%,1992年实际产值是1991的的116%,问1992年产值计划完成程度是多少解:%110%105%116===计划相对数实际相对数计划完成程度。

即1992年计划完成程度为110%,超额完成计划10%。

点评:此题中的计划任务和实际完成都是“含基数”百分数,所以可以直接代入基本公式计算。

3、某企业1992年单位成本计划是1991年的95%,实际单位成本是1991年的90%,问1992年单位成本计划完成程度是多少解: 计划完成程度%74.94%95%90==计划相对数实际相对数。

即92年单位成本计划完成程度是%,超额完成计划%。

点评:本题是“含基数”的相对数,直接套用公式计算计划完成程度。

4、某企业1992年产值计划比91年增长5%,实际增长16%,问1992年产值计划完成程度是多少解:计划完成程度%110%51%161=++=点评:这是“不含基数”的相对数计算计划完成程度,应先将“不含基数”的相对数还原成“含基数”的相对数,才能进行计算。

5、某企业1992年单位成本计划比1991年降低5%,实际降低10%,问1992年单位成本降低计划完成程度是多少解:计划完成程度%74.94%51%101=--=点评:这是“不含基数”的相对数计算计划完成程度,应先将“不含基数”的相对数还原成“含基数”的相对数,才能进行计算。

6、某企业产值计划完成103%,比上期增长5%,问产值计划规定比上期增加多少 解:103%=105%÷(1+x )x=%即产值计划规定比上期增加%.点评:计划完成程度=103%,实际完成相对数=105%,设产值计划规定比上期增加x,则计划任务相对数=1+x,根据基本关系推算出x.7、某煤矿某月计划任务为5400吨,各旬计划任务是均衡安排的,根据资料分析本月生产情况.=104%),但在节奏性方面把握不解:从资料看,尽管超额完成了全期计划(5400好。

统计学计算题整理

统计学计算题整理

:典型计算题一1、某地区销售某种商品的价格和销售量资料如下:根据资料计算三种规格商品的平均销售价格。

解:36==∑∑ffxx (元)点评: 第一,此题给出销售单价和销售量资料,即给出了计算平均指标的分母资料,所以需采用算术平均数计算平均价格。

第二,所给资料是组距数列,因此需计算出组中值。

采用加权算术平均数计算平均价格。

第三,此题所给的是比重权数,因此需采用以比重形式表示的加权算术平均数公式计算。

2、某企业1992年产值计划是1991年的105%,1992年实际产值是1991的的116%,问1992年产值计划完成程度是多少?解:%110%105%116===计划相对数实际相对数计划完成程度。

即1992年计划完成程度为110%,超额完成计划10%。

点评:此题中的计划任务和实际完成都是“含基数”百分数,所以可以直接代入基本公式计算。

3、某企业1992年单位成本计划是1991年的95%,实际单位成本是1991年的90%,问1992年单位成本计划完成程度是多少?解: 计划完成程度%74.94%95%90==计划相对数实际相对数。

即92年单位成本计划完成程度是94.74%,超额完成计划5.26%。

点评:本题是“含基数”的相对数,直接套用公式计算计划完成程度。

4、某企业1992年产值计划比91年增长5%,实际增长16%,问1992年产值计划完成程度是多少?解:计划完成程度%110%51%161=++=点评:这是“不含基数”的相对数计算计划完成程度,应先将“不含基数”的相对数还原成“含基数”的相对数,才能进行计算。

5、某企业1992年单位成本计划比1991年降低5%,实际降低10%,问1992年单位成本降低计划完成程度是多少?解:计划完成程度%74.94%51%101=--=点评:这是“不含基数”的相对数计算计划完成程度,应先将“不含基数”的相对数还原成“含基数”的相对数,才能进行计算。

6、某企业产值计划完成103%,比上期增长5%,问产值计划规定比上期增加多少? 解:103%=105%÷(1+x ) x=1.9%即产值计划规定比上期增加1.9%.点评:计划完成程度=103%,实际完成相对数=105%,设产值计划规定比上期增加x ,则计划任务相对数=1+x ,根据基本关系推算出x.7、某煤矿某月计划任务为5400吨,各旬计划任务是均衡安排的,根据资料分析本月生产情况.解:从资料看,尽管超额完成了全期计划(5400=104%),但在节奏 性方面把握不好。

统计学计算题

统计学计算题

第三章统计整理例 1、某厂工人日产量资料如下:(单位:公斤)162 158 158 163 156 157 160 162 168 160164 152 159 159 168 159 154 157 160 159163 160 158 154 156 156 156 169 163 167试根据上述资料,编制组距式变量数列,并计算出频率。

解:将原始资料按其数值大小重新排列。

152158 159154 154 156 156 156 156 157 157 158 158 159 159 159 159 160 160 160 162 162 163 163 163 164 167168 168 169最大数=169,最小数=152,全距=169-152=17n=30, 分为 6 组例 2、某企业 50 个职工的月工资资料如下:113 125 78 115 84 135 97 105 110 130105 85 88 102 101 103 107 118 103 87116 67 106 63 115 85 121 97 117 10794 115 105 145 103 97 120 130 125 127122 88 98 131 112 94 96 115 145 143试根据上述资料,将50 个职工的工资编制成等距数列,列出累计频数和累计频率。

解:将原始资料按其数值大小重新排列。

63 97 117 118工人按日产量分组(公斤)152-154155-157158-160161-163164-166 工人数(人)361151比率(频率)(%)10.0020.0036.6016.7067 78 84 85 85 87 88 88 94 94 96 97 97 98 101 102 103 103 103 105 105 105 107 110 112 113 115 115 115 115 116 118 120 121 122 125 125 127 130 130 131 135 143 145 145按工资额分组(元)60-70 70-80 80-90频数216工人数频率( %)4212频数239向上累计频率( %)4618频数504847向下累计频率(%)1009694例 3、有 27 个工人看管机器台数如下:5 4 2 4 3 4 3 4 4 2 4 3 4 3 26 4 4 2 2 3 4 5 3 2 4 3试编制分布数列。

统计学计算题51625

统计学计算题51625
8.对成年组和幼儿组共500人身高资料分组,分组资料列表如下:
成年组
幼儿组
按身高分组(cm)
人数(人)
按身高分组(cm)
人数(人)
150—155
155—160
160—165
165—170
170以上
30
120
90
40
20
70—75
75—80
80—85
85—90
90以上
20
80
40
30
30
合计
300
合计
196
48
40
719
456
要求:(1)分别计算各类高校招生人数的动态相对数;
(2)计算普通高校与成人高校招生人数比;
(3)计算成人高校在校生数量占所有高校在校生数量的重。
3.我国2000年和2001年进出口贸易总额资料如下:
时间
出口总额(亿元)
进口总额(亿元)
2000年
2001年
2492
2662
2251
3.三道工序的平均合格率=95.47%
平均计划完成程度=101.77%
5.(1)各买一斤时的平均价格=3元
(2)各买一元时的平均价格=2.77元6.先列表计算有关资料如下:
按体重分组(公斤)
组中值(x)
学生人数(人)(f)
(xf)
向上累计次数
52以下
52—55
55—58
58—61
61以上
50.5
53.5
6.某高校某系学生的体重资料如下:
按体重分组(公斤)
学生人数(人)
52以下
52—55
55—58
58——61

统计学计算题例题(含答案)

统计学计算题例题(含答案)

1、某企业制定了销售额的五年计划,该计划要求计划期的最后一年的年销售额应达到1200万元。

实际执行最后两年情况如下表:请根据上表资料,对该企业五年计划的完成情况进行考核。

1、计划完成相对数=1410/1200*100%=117.5%该计划完成相对数指标为正指标,计划完成相对数又大于100%,所以表示该计划超额完成。

从第四年5月至第五年4月的一年的年销售额之和恰好为1200万元,所以该计划在第五年4月完成,提前8个月完成。

2、某地区制定了一个植树造林的五年计划,计划中设定的目标是五年累计植树造林面积为2000万亩。

实际执行情况如下:请对该长期计划的完成情况进行考核。

2、计划完成程度相对数=2100/2000*100%=105%计划完成相对数指标大于100%,且该指标为正指标,所以该计划超额完成截止第五年第三季度累计完成2000万亩造林面积,所以提前1个季度完成3、某班学生统计学课程考试成绩情况如下表:请根据上述资料计算该班统计学课程的平均成绩、成绩的中位数、众数和成绩的标准差。

4、某学校有5000名学生,现从中按重复抽样方法抽取250名同学,调查其每周观看电视的小时数的情4> 样本平均数X= Sxf/Sf-l250/250-5样 ________ __________二>/刀(好予f/(工f—1)二V 1136/249二2. 14抽样平均误差U二s/ Vn=0.14因为F (t) =95%,所以日.96抽样极限误差△二t U 二 1. 96*0. 14=0. 27 区间下限=5-0. 27=4. 73 区间上限二5+0. 27-5. 27全校学生每周平均收看电视的吋间在(4.73,5.27)小时之间,概率保证程度为95%5、某企业对全自动生产线上的产品随机抽取1000件进行检验,发现有45件是不合格的,设定允许的极限误差为 1.32%。

请对全部产品的合格率进行区间估计。

5、样本合格率p=955/1000=95.5% 抽样平均误差u二V pChp)/n= 0.66%因为△=1.32%,所以t= A/ u =2所以F.(.t)-95. 45%区间下限二95. 5%-l. 32%=94. 18%区间上限二95. 5%+l. 32%二96. 82%所以我们以95. 45%的概率估计全部产品和合格率是在(94.18%, 96. 82%)之间。

统计学计算题8个例题及答案

统计学计算题8个例题及答案

统计学计算题8个例题及答案
1.给定一组数据,X=(13,12,13,13,10,13,11),求它的众数:
答:13(众数是出现次数最多的值)
2.给定一组数据,X=(1,2,3,4,5,6,7),求它的中位数:
答:4(中位数是将一组数据按照大小顺序排列后位于正中间的一个数)
3.给定一组数据,X=(1,2,3,4,5,6,7),求它的样本标准差:
答:(样本标准差S=√ [(∑(Xi−X平均数)2)/ (n−1)],其中,Xi代表样本的每一项,X平均数是样本的平均值,n是样本的总观测值数量)
4.给定一组数据,X=(1,2,3,4,5,6,7,8,9),求它的方差:
答:(方差σ^2=∑(Xi−X平均数)^2/n,其中,Xi代表样本的每一项,X平均数是样本的平均值,n是样本的总观测值数量)
5.给定一组数据,X=(21, 25, 28, 31, 34, 37, 40),求它的算术平均数:
答:31(算术平均数是将样本中数据求和,再除以样本的个数得到的数)
6.给定一组数据,X=(1,2,3,4,5,6,7,8,9),求它的期望:
答:5(期望是一组数据根据概率分布定义出的一种数学期望)
7.给定一组数据,X=(3,4,5,7,12,15,18),求它的方差:
答:(方差σ^2=∑(Xi−X平均数)^2/n,其中,Xi代表样本的每一项,X平均数是样本的平均值,n是样本的总观测值数量)
8.给定一组数据,X=(7,7,7,7,8,8,9),求它的众数:
答:7(众数是出现次数最多的值)。

统计学计算题

统计学计算题

统计学计算题1. 某企业生产的A、B两种产品的产量及产值资料如下:产品总产值(万元)产量的环比发展速度(%)基期报告期A B 400600580760110100★标准答案:产品名称产量单位产品成本基期报告期基期报告期甲1000 1200 10 8乙5000 5000 4 4.5丙1500 2000 8 7要求:计算三种产品的成本总指数以及由于单位产品成本变动使总成本使总成本变动的绝★标准答案:产品成本指数=由于单位产品成本变动使总成本使总成本变动的绝对额;(-)=461000-48000=-1900(万元)3. 某企业本月分三批购进某种原材料,已知每批购进的价格及总金额如下:购进批次价格(元/吨)总金额(元)一二三200190205160001900028700★标准答案:4. 某厂三个车间一季度生产情况如下:第一车间实际产量为200件,完成计划95%;第二车间实际产量280件,完成计划100%;第三车间实际产量650件,完成计划105%,请★标准答案:平均计划完成程度☆考生答案:解:三个车间总的计划产量=200/95%+280/100%+650/105%=1110(件)三个车间总的实际产量=200+280+650=1130(件)三个车间产品产量的平均计划完成程度=1130/1110*100%=101.8%商品销售额(万元)报告期价格比基期增(+)或减(-)的%基期报告期甲乙丙5070809010060+10+8-4合计200 250 —试计算价格总指数和销售量总指数。

★标准答案:企业计划产量(件)计划完成(%)实际一级品率(%)甲乙丙50034025010310198969895根据资料计算:(1)产量计划平均完成百分比;★标准答案:☆考生答案:解:(1)计划平均完成百分比=(500*1.03+340*1.01+250*0.98)/(500+340+250)*100%=101.2%(2)平均一级品率=(500*1.03*0.96+340*1.01*0.98+250*0.98*0.95)/(500*1.03+340*1.01+250*0.98)*100%=96.4%7. 某商店主要商品价格和销售额资料如下:商品计量单位价格本月销售额(万元)上月本月甲乙丙件台套100506011048631102437.8★标准答案:8. 某市场上某种蔬菜早市每斤0.25元,中午每斤0.2元,晚市每斤0.1元,现在早、中、★标准答案:.平均价格H==0.158(元)☆考生答案:解:购买的总斤数=1/0.25+1/0.2+1/0.1=19(斤)平均价格=(1+1+1)/19=0.16(元/斤)9. 某商店出售某种商品第一季度价格为6.5元,第二季度价格为6.25元,第三季度为6元,第四季度为6.2元,已知第一季度销售额3150元,第二季度销售额3000元,第三季度销★标准答案:☆考生答案:解:平均价格=(3150+3000+5400+4650)/(3150/6.5+3000/6.25+5400/6+4650/6.2)=6.20(元)10. 某厂生产某种机床配件,要经过三道工序,各加工工序的合格率分别为95.74%,★标准答案:=0.9474=94.74%企业名称2006年职工人数2005年工业总产值(万元)2006年工业总产值2006年全员劳动生产率(元/人)2006年工业总产值为2005年的(%)各企业和全公司劳动生产率为乙企业的倍数人数(人)比重(%)计划(万元)实际(万元)完成计划(%)(甲)(1)(2) (3)(4)(5)(6)(7)(8)(9)甲300 900 1500 1800乙3000 3000 130.0 260.0丙450 12.0 1200 1800 300.0合计3750 100.0试根据上表已知数据计算空格中的数字(保留一位小数并分别说明⑵、⑹、⑻、⑼栏是何★标准答案:季度2000 2001 2002 2003 20041 580 610 660 700 8502 190 200 220 230 3203 230 250 260 290 3104 620 670 710 730 780★标准答案:销售量(万斤)价格(元)2002年2003年2002年2003年甲乙丙30140100361601001.801.901.502.02.201.60试计算:(1)三种商品的销售额总指数(2)三种商品的价格综合指数和销售量综合指数★标准答案:月份 1 2 3 4 5 6产量(件)单位成本(元) 200073300072400071300073400069500068★标准答案:按农户年收入分组(元)行政村数(个)各组农户占农户总数(%)2000以下2000~4000 4000~6000 6000~8000 8000~10000 10000以上23669481015302512合计30 100 ★标准答案:☆考生答案:解:平均收入=(8%*1000+10%*3000+15%*5000+30%*7000+25%*9000+12%*11000)/100%=4910(元)16. 甲乙两企业生产同种产品,1月份各批产量和单位产品成本资料如下:甲企业乙企业单位产品成本(元)产量比重(%)单位产品成本(元)产量比重(%)第一批第二批1.0 10 1.2 301.1 20 1.1 30第三批 1.2 70 1.0 40★标准答案:☆考生答案:解:甲企业的平均单位成本=(1.0*10%+1.1*20%+1.2*70%)/100%=1.16(元)乙企业的平均单位成本=(1.2*30%+1.1*30%+1.0*40%)/100%=1.09(元)因为1.16>1.09所以甲企业的单位成本更高日期9月30日10月31日11月30日12月31日在业人口(万人)a 劳动力资源人口(万人)b280680 285685280684270686★标准答案:18. 某自行车车库4月1日有自行车320辆,4月6日调出70辆,4月18日进货120辆,4月26日调出80辆,直至月末再未发生变动,问该库4月份平均库存自行车多少辆?★标准答案:因为数据取得的资料是连续时点数列,但资料间隔不等,故采取加权平均法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章、综合指标
六、计算题
1、某地区抽样调查职工月奖金资料如下:
试计算平均月奖金.
3、某企业工人工资水平分组资料如下:
试计算该企业工人的平均工资。

4、设有甲、乙班组工人日产量资料如下:
试研究两个品种的平均亩产量,确定哪一品种具有较好的稳定性6、已知甲、乙两乡农业收获量资料如下:
试比较说明哪个乡的生产情况好为什么
试计算该企业平均计划完成百分比。

8、在过去5年中,某国家因受严重通货膨胀的困扰,银行为吸收存款而提高利息率。

5年的年利息率分别是25%、40%、60%、100%、120%,问:
(1)若存入100美元,按算术平均数计算平均利率,第五年末的实际存款额是多少(2)若存入100美元。

按几何平均数计算平均利率,第五年末的实际存款额是多少(3)何种方法最合适为什么
试计算全县2005年粮食平均亩产量。

第四章动态数列
六、计算题
1、已知某企业资料如下:
要求:(1)计算一季度月平均工业总产值:
(2)计算一季度月平均工人数。

(2)计算一季度、二季度月平均商品流动资金占用额。

4、某市某生活区有居民1000户,拥有彩电资料如下:
要求:(1)试计算表中所缺数字;
(2)计算一季度、上半年平均人数。

试计算一季度、二季度月平均商品流通费用率和月平均商品流转次数。

(2)一季度平均劳动生产率。

试计算:(1)第二季度平均实际月产量。

(2)第二季度平均工人数。

(3)第二季度产量平均计划完成%。

12、我国历年彩色电视机产量如下:
(1)逐期增长量、累积增长量、平均增长量。

(2)环比发展速度、定基发展速度。

(3)平均发展速度。

13、某煤矿1990年煤炭产量为25万吨
(1)规定“八五”期间每年平均增长4%,以后每年平均增长5%,问到本世纪末年煤炭产量将达到什么水平
(2)如果规定本世纪末年煤炭产量是1990年产量的4倍,且“八五”期间每年平均增长速度为5%。

问以后需要每年平均增长速度多少才能达到预定的产量水平
14、1982年我国人口数为10亿人,1990年我国人口数为亿人。

试问在这期间我国人口平均增长率为多少如果按这个人口平均增长速度发展,则本世纪我国人口数将达到多少亿
15、某工厂计划工业总产值从1980年的400万元发展到2000年的800万元。

求:(1)工业总产值计划平均每年递增速度
(2)已知“六五”、“七五”期间平均每年递增5%,问以后应每年递增多少才能达到预期水平
16、我国1979年人均国民生产总值为253美元,要在本世纪末达到人均国民生产总值1000美元,每年应平均递增百分之几才能达到预期的目的
18、某地区国民收入逐年增加,其发展从1995年至2004年可分为三个阶段,1995年至1998年每年以7%的速度增长,1999年至2002年每年以8%的速度增长,2003年至2004年每年以10%的速度增长。

计算该地区1995年至2004年的国民收入平均增长速度。

第五章统计指数
六、计算题
1、某商店三种商品的销售情况资料如下:
(2)从相对数和绝对数两方面简要分析销售量和价格变动对销售额变动的影响。

要求:从相对数和绝对数两方面简要分析工资水平和工人数的变动对工资总额变动的影响。

4、某商店三种商品的销售资料如下:
要求:(1)计算销售量指数。

(2)计算价格指数。

(3)试从相对数和绝对数两方面简要分析销售额变动所受的因素影响。

5、某企业资料如下:
(2)计算总产值指数和产品产量指数。

(3)试从相对数和绝对数两方面简要分析销售额变动所受的因素影响。

5、试根据下列资料计算成本变化程度,以及由于成本降低而节约的生产费用。

并简要分析生产总费用变动所受的因素影响。

6、计算下列诸问题:
(1)某企业今年产量比去年增长8%,生产费用增长%,问今年的单位成本变动情况如何
(2)某商店今年职工的工资水平提高5%,职工人数增长2%,问今年的工资总额变动情况如何
(3)某车间今年职工人数减少2%,总产值增长22。

5%,问劳动生产率应增长多少
(4)价格增长后同样多的人民币少购商品20%,试求物价指数。

(5)报告期粮食播种面积减少2%,单位面积产量增长5%,问粮食总产量的变动如何
第六章抽样调查
六、计算题
1、从仓库中随机抽选了200个零件,经检查有40个零件是一级品,又知道抽样数是仓库零件总数的百分之一,当把握程度%时,试估计该仓库这种零件一级品的区间范围。

2、某洗衣机厂随机抽选100台洗衣机进行质量检验,发现有5台不合格。

要求:(1)试以%的概率保证程度推断这批洗衣机的合格率。

(2)若概率合格保证程度提高到%,则这批洗衣机的合格率将怎样变化
(3)由此例说明误差范围与概率度之间的关系。

3、某高校进行一次英语测验,为了解考试情况,随机抽选1%的学生进行调查,所得
试以%的可靠性估计。

(1)该校学生英语考试的平均成绩。

(2)成绩在80分以上的学生所占的比重。

4、某城市随机抽选100户居民,经调查有36户用有彩色电视机,又知道抽样户是总户数的千分之一,当把握程度为%时,试估计该城市居民有彩色电视机的户数范围。

5、某厂对新试制的一批产品的使用寿命进行测定。

随机抽选100个零件,测得其平均寿命为2000小时,标准差为10小时,要求:
(1)以的概率,推断其平均寿命的范围。

(2)如果抽样极限误差减少一半,概率不变,则应该抽查多少个零件
(3)如果抽样极限减少一半,概率提高到,则又应该抽查多少个零件
(4)通过上述条件变化与计算结果,如何理解样本单位数、抽样极限误差、概率度三者之间的关系
6、其电子元件厂,随机抽选100个元件检验,其中有4个元件为废品,又知抽样数是产品总数的千分之一,若抽样极限误差减少一半,其他条件不变,在重复抽样情况下,需抽多少个元件检验在不重复抽样的情况下又如何
7、某高校随机抽选取千分之一的大学生进行抽样调查,测得他们的身高资料如下:
试以的概率保证估计:;
(1)该校全部大学生的平均身高的范围。

(2)该校全部大学生身高在170厘米以上的人数范围。

相关文档
最新文档