水泥的水化与硬化
混凝土的工作原理

混凝土的工作原理
混凝土的工作原理是指在一定条件下,水泥、砂、石料等材料按一定比例混合后,加水搅拌形成均匀的浆状物,经过水化反应后逐渐硬化,在一定程度上得到一种坚实的工程材料的过程。
具体工作原理如下:
1. 水泥水化:水泥与水反应生成水化产物,最主要的是钙硅酸盐水化产物,它们在水的存在下迅速产生水化热,使混凝土浆体升温,达到一定水化程度后逐渐形成硬化结构。
2. 水化产物填充:水化产物填充了砂、石料等颗粒之间的间隙,并与其表面发生反应,形成胶凝体。
胶凝体可填充空隙,增加混凝土的致密性和强度。
3. 凝结硬化:随着水化反应的进行,混凝土中的水分逐渐减少,水与胶凝体反应生成硬化胶凝体。
硬化胶凝体的强度逐渐增加,使整个混凝土逐渐达到设计强度。
4. 干燥收缩:混凝土在硬化过程中会发生干燥收缩,因为水分逐渐蒸发,使混凝土体积变小。
这可能会导致混凝土出现裂缝,因此需要采取措施来控制干燥收缩。
5. 添加剂作用:混凝土中的添加剂可以改善混凝土的工作性能、提高强度、改变硬化过程等,进一步优化混凝土的工作原理。
总的来说,混凝土的工作原理是通过水泥的水化反应和硬化过程,以及砂、石料等颗粒与水化产物的填充与反应,形成一种坚实的工程材料,具有一定的强度和耐久性。
硅酸盐水泥的水化和硬化

C3 A CS H12 和C4AH13的固溶体。
石膏的存在延缓了C3A的水化
(四)铁相固溶体(C4AF)的水化 水化速率比C3A低。其水化产物与C3A很相似。相当于C3A 中一部分氧化铝被氧化铁所置换,生成水化铝酸钙和水化铁酸 钙的固溶体。
C-S-H(Ⅱ)
定义:水化硅酸钙凝胶体(C-S-H) 组成:不固定,随钙硅比和水硅比变化 结构:微晶,尺寸接近于胶体范畴; 形貌:纤维状,网络状,等大粒子,内部产物; CH:晶体,层状,六方板状,生长在孔洞之间。
C3S水化历程:
五个阶段: 起始期 15min PH=12 急剧 诱导期(静止期)——使硅酸盐水泥保持塑性的原因; 2-4h诱导期结束的时间,即初凝时间。 加速期(4-8h)C-S-H和Ca(OH)2 大量形成,达到终凝。 减速期(12-24h) 稳定期 受扩散控制
C-S-H凝胶的组成与它所处 的溶液中的CaO浓度有关, C-S-H在一定的碱度下才能存 在,如2- 2-3图所示:
下表是对上图的总结:
CaO浓度 g/l
0.06-0.11
0.11-1.12
>1.12
CaO摩尔浓度 mol/l 1-2
2-20
>20
C/S
<1
0.8-1.5
1.5-2
水化产物
水化硅酸钙和硅酸凝胶 C-S-H(Ⅰ)
钙矾石在常温和一般湿度条件下的脱水曲线
四、水泥的凝结、硬化过程
1882年,雷霞特利提出的结晶理论; 1892年,米哈艾利斯又提出了胶体理论; 拜依柯夫将上述两理论加以发展,把水泥的硬化为三个时期: 第一,溶解期;第二,胶化期;第三,结晶期 列宾捷尔提出凝聚-结晶三维网状结构理论; 鲍格提出是巨大表面能的作用引起互相粘结; 洛赫尔提出的三阶段论:
混凝土的硬化原理

混凝土的硬化原理混凝土是建筑工程中最常用的材料之一。
它的硬化过程是一种复杂的化学反应过程。
混凝土的硬化原理主要涉及水泥的水化反应、骨料、水的作用以及空气中二氧化碳的影响等方面。
1. 水泥的水化反应水泥是混凝土中最为关键的组成部分。
它通过水化反应使混凝土逐渐硬化。
水泥的主要成分是氧化钙(CaO)、二氧化硅(SiO2)、三氧化二铝(Al2O3)和四氧化三铁(Fe2O3)。
其中,氧化钙是水泥水化反应的主要成分。
当水泥与水混合时,水和氧化钙会发生反应,形成氢氧化钙(Ca(OH)2)。
这个过程是一个放热反应,释放出大量的热量。
随着反应的进行,水泥中的其他成分也会逐渐水化反应。
2. 骨料的作用骨料是混凝土中的另一个重要组成部分。
它的主要作用是提供混凝土的强度和硬度。
骨料通常由石子、沙子等颗粒状物质组成。
当水泥水化反应后,它会与骨料中的颗粒状物质结合在一起,形成一个坚硬的石料骨架。
这个骨架可以防止混凝土变形,增加混凝土的强度和硬度。
3. 水的作用水是混凝土中必不可少的组成部分。
它的作用是使水泥与骨料混合在一起,并促进水泥的水化反应。
水的用量和质量对混凝土的质量有着至关重要的影响。
如果水的用量过多,混凝土会失去强度和硬度。
如果水的质量不好,混凝土会出现裂缝和变形。
4. 空气中二氧化碳的影响空气中的二氧化碳可以影响混凝土的硬化过程。
当混凝土表面暴露在空气中时,二氧化碳会与混凝土表面的氢氧化钙反应,形成碳酸钙(CaCO3)。
这个反应会使混凝土表面变得更加硬和坚固,但同时也会降低混凝土的强度和硬度。
总之,混凝土的硬化过程是一个复杂的化学反应过程。
它涉及到水泥的水化反应、骨料、水的作用以及空气中二氧化碳的影响等方面。
要使混凝土达到预期的强度和硬度,需要在混凝土的制备过程中控制好水泥、骨料和水的用量和质量,同时避免混凝土暴露在空气中,以免受到二氧化碳的影响。
混凝土硬化原理

混凝土硬化原理
混凝土硬化是由于水泥与水发生化学反应,形成水化产物并填充空隙,使混凝土逐渐变得坚固的过程。
混凝土硬化的原理主要是由以下几个方面组成:
1. 水化反应:混凝土中的水泥与水发生水化反应,产生硅酸钙胶凝体和水化产物,形成了坚固的胶体结构。
水化反应通常需要一段时间才能完全完成,此过程中混凝土逐渐变得更耐久和强度更高。
2. 混凝土内部结构:水化反应导致水泥颗粒间的胶凝体连接起来形成一个网络,这个网络填充了混凝土中的空隙和孔隙。
这些填充物在硬化过程中逐渐凝结和增强,最终形成一个坚固的整体结构。
3. 脱水和碳化:硬化过程中,混凝土中的水逐渐脱去,使其变得更加致密和坚硬。
同时,混凝土中的碳酸盐也会与大气中的二氧化碳反应,形成碳酸盐胶凝体,进一步增强混凝土的硬度。
4. 温度和湿度:温度和湿度对混凝土硬化的速度和质量具有重要影响。
适宜的温度和湿度有利于水泥水化反应的进行,促进混凝土的早期强度发展和整体硬化。
总之,混凝土硬化是通过水泥的水化反应形成胶凝体并填充空隙,经过脱水和碳化过程,最终形成一个坚固的整体结构。
温度和湿度的控制可以影响混凝土硬化质量和速度。
水泥凝结硬化的四个阶段

水泥凝结硬化的四个阶段
1、水泥加入水后,水泥颗粒外表会发生剧烈的水化反应,开始生成水化物。
2、随着水泥水化反应的不断进行,水泥颗粒表层会形成一层半透明的膜层,减少了外部水的渗入,降低水化反应速度,这一过程被称为休止期。
3、水化反应不断增加,膜层厚度也不断增加,水泥颗粒之间相互年节,形成了网状结构的混凝土,浆体的可塑性也降低,逐渐失去了流动性并且开始凝结,但是没有强度,这一过程被称为凝结期。
4、在整个胶凝体和晶体发展过程中,水化反应促使网状结构中的细孔不断被填充,结构逐渐紧缩,当具有了一定的强度,也就是水泥凝结开始,知道完全收缩,凝结终了,这一过程被称为硬化期。
扩展资料
混凝土在凝结硬化过程中龄期与强度的关系
在正常养护的条件下,砼强度将随龄期的增长而不断发展,最初7~14d内强度发展较快,以后逐渐缓慢,28d达到设计强度,并根据28d抗压强度确定砼的强度等级。
28d后强度仍在发展,其增长过程可延续数十年之久。
普通水泥制成的砼,在标准养护条件下,砼强度的发展大致与其龄期的常用对数成正比关系(龄期不少于3d)。
由所测砼早期强度,估算其28d龄期的强度。
由砼的28d强度,推算28d前后砼达到某一强度需要的天数,如确定砼拆模、构件起吊、放松预应力钢筋、制品养护、出厂日期。
一般情况下,普通砼在35d后的强度增长极小。
水泥的硬化原理

水泥的硬化原理
水泥的硬化原理是由于水泥中的胶凝材料与水发生化学反应,形成水化产物在水泥中逐渐凝固和硬化的过程。
具体的硬化原理可分为以下几个步骤:
1. 水化反应:水泥中的胶凝材料主要是硅酸盐矿物质,如硅酸二钙(C2S)、硅酸三钙(C3S)等。
当水与胶凝材料接触时,水中的H+离子会与水泥中的几个主要离子(如钙离子)发生反应,产生草酸钙(C-S-H)胶凝物和氢氧化钙(Ca(OH)2)。
2. 凝聚硬化:水化反应引起的反应产物逐渐凝聚成网状结构,形成一种胶凝物质,即C-S-H胶凝物。
这种胶凝物质是水泥硬化强度的主要来源,具有较好的粘结性和强度。
3. 温度效应:水泥的硬化过程受温度影响较大。
水泥在适宜的温度下硬化会加快,而过高或过低的温度则会影响硬化过程。
通常,较高的温度有助于加快水化反应速度,但过高的温度可能导致蒸发和孔隙产生,从而降低了强度。
4. 干燥过程:水泥在硬化过程中还需要进行一定的干燥,以便去除多余的水分。
干燥过程可能会引起收缩现象,因此需要控制干燥速度,以避免产生裂缝。
综上所述,水泥的硬化是一个复杂的过程,涉及水化反应、胶凝物质形成、温度效应和干燥等因素。
这些因素相互作用,最终使水泥达到一定的强度和硬度,形成坚固的建筑材料。
水泥的水化与凝结硬化原理

水泥的水化与凝结硬化原理一、水泥的定义和组成1.1 水泥的定义水泥是一种由石灰、硅酸盐和其他材料经过煅烧和磨碎等工艺制成的粉状物质,可与水形成浆状液体,并在空气中逐渐硬化。
1.2 水泥的组成水泥主要由熟料和掺合料组成。
熟料是水泥的主要组成部分,包括石灰石、黏土等原料,经过煅烧后形成的熟料粉。
掺合料是指在生产过程中,加入水泥中的其他材料,如矿渣、矿物掺合料等。
二、水泥的水化反应2.1 水泥的水化反应定义水泥与水发生反应,生成水化产物,同时释放出大量的热量,这个过程称为水泥的水化反应。
2.2 水泥的水化反应过程水泥与水发生水化反应的过程可以分为几个阶段:1.水化初期:–水泥颗粒与水形成浆状液体。
–水泥中的硅酸盐、硫酸盐和铝酸盐与水中的氢氧根离子(OH-)结合,生成水化硅酸钙、水化硫酸钙和水化铝酸钙等产物。
–这个阶段水泥浆体的流动性较大,逐渐失去液态特性。
2.水化中期:–水泥浆体逐渐凝固,形成胶体凝胶。
–水化产物逐渐增多,填充水泥颗粒之间的空隙。
–水泥的强度开始提高。
3.水化后期:–水化产物继续增多,填充整个水泥浆体。
–水泥浆体逐渐变得坚固和坚硬。
–水泥的强度达到峰值。
三、水泥的凝结硬化过程3.1 水泥的凝结硬化定义水泥在水化反应的过程中,逐渐从液态转变为坚固的凝胶体,这个过程称为水泥的凝结硬化。
3.2 水泥的凝结硬化过程水泥的凝结硬化过程可以分为以下几个阶段:1.凝胶体形成:–随着水泥的水化反应,水化产物逐渐增多,并填充整个系统。
–水化产物形成一种胶状物质,称为水化胶,使水泥成为凝胶体。
2.水泥胶结:–水化胶在水泥浆体中形成凝胶骨架。
–凝胶骨架使水泥浆体具有一定的强度和硬度,但仍然存在一定的孔洞。
3.孔隙结构演变:–在水泥胶结的基础上,水泥内部的孔隙逐渐减小。
–水泥的紧密度增加,强度和耐久性进一步提高。
4.硬化过程:–随着时间的推移,水泥凝胶逐渐硬化。
–水泥的强度不断增加,最终达到相对稳定的状态。
四、总结水泥的水化和凝结硬化过程是一个复杂的化学反应过程,包括水化初期、水化中期和水化后期三个阶段。
混凝土中的化学反应原理

混凝土中的化学反应原理一、引言混凝土是一种常见的建筑材料,它由水泥、沙子、石子和水组成。
在混凝土中,存在着多种化学反应,这些反应会影响混凝土的性能和耐久性。
因此,深入了解混凝土中的化学反应原理对于混凝土的设计、施工和维护都非常重要。
二、混凝土中的化学反应1. 水泥的水化反应水泥是混凝土中最重要的组成部分,它通过水化反应形成水泥胶体,使混凝土变得坚固。
水泥的水化反应可以分为两个阶段:初期水化和硬化水化。
在初期水化阶段,水泥中的矿物质与水发生反应,生成一定量的热量,并形成一定的强度。
这个阶段通常持续几小时到几天。
在硬化水化阶段,水泥继续与水反应并产生热量,水泥胶体逐渐形成,混凝土的强度逐渐提高。
这个阶段通常持续几周到几个月。
2. 混凝土中的碳化反应混凝土中含有的碳酸盐会与水泥中的氢氧化物反应,生成碳酸钙。
当混凝土表面暴露在空气中时,空气中的二氧化碳会与水泥中的碳酸盐反应,生成更多的碳酸钙。
这个过程称为碳化反应。
碳化反应会导致混凝土中的pH值下降,从而使钢筋锈蚀的风险增加。
因此,在设计混凝土结构时,应注意减少碳酸盐的含量,或采取其他措施减少混凝土的碳化。
3. 混凝土中的氯离子侵蚀氯离子是混凝土中最常见的危害物质之一。
当混凝土中的氯离子浓度达到一定程度时,它会侵蚀混凝土中的钢筋,导致钢筋腐蚀。
此外,氯离子还会导致混凝土的开裂和剥落。
混凝土中的氯离子来源于多种途径,包括水源、土壤和空气等。
因此,在混凝土设计和施工中,应采取措施减少氯离子的含量,如使用低氯离子水泥、控制混凝土的水灰比等。
4. 混凝土中的硫酸盐侵蚀混凝土中的硫酸盐可以通过水源、土壤和工业废气等途径进入混凝土中。
硫酸盐会与水泥中的氢氧化物反应,生成硬质的钙矾石。
当硫酸盐浓度超过一定程度时,它会导致混凝土的开裂和剥落。
在设计混凝土结构时,应注意控制混凝土中的硫酸盐含量,或采取措施减少混凝土的硫酸盐侵蚀,如使用高硫酸盐抵抗水泥、控制混凝土的水灰比等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水泥拌水后:伴随着水化放热、体积变化和强度增长等现象
熟料矿物水化的原因:硅酸盐水泥熟料矿物结构的不稳定性
水泥的水化产物有哪些:氢氧化钙,C-S-H凝胶,水化硫铝酸钙,水化硫铝(铁)酸钙,水化铝酸钙,水化铁酸钙
硅酸三钙的水化:
3CaO · SiO2+nH2O=xCaO · SiO2 · yH2O+(3-x)Ca(OH)2
简写为:C3S+nH=C-S-H+(3-x)CH
其水化产物为C-S-H凝胶和氢氧化钙,C-S-H 有时也被笼统地称之为水化硅酸钙
Ⅰ.诱导前期:加水后急剧反应迅速放热,Ca2+和OH-迅速从C3S表面释放,几分钟内PH上升大于12,溶液具有强碱性,此阶段在15min内结束。
Ⅱ.诱导期:水化反应速率极其缓慢,一般持续2-4h,又称静止期或潜伏期,此时水泥浆保持塑性,初凝时间基本上等于诱导期结束。
Ⅲ.加速期:反应重新加快,反应速率随时间而增长,出现第二个放热峰,到达峰顶时该阶段结束。
时间4-8h,此时终凝已过,开始硬化。
Ⅳ. 减速期:反应速率随时间下降的阶段,持续约12-24h,水化产物CH和C-S-H从溶液中结晶出来,包裹在C3S表面,故水化作用受水通过产物层的扩散速率控制。
Ⅴ. 稳定期:反应速率很低,基本稳定的阶段,水化作用完全受扩散速率控制。
将诱导前期和诱导期合并称为水化早期,加速期和减速期为水化中期,而稳定期则称为水化后期。
硅酸二钙的水化
2CaO·SiO2+nH2O=x CaO·SiO2·y H2O+(2-x)Ca(OH)2
简写为:C2S+mH=C-S-H+(2-x)CH
水化速率很慢,约为C3S的1/20左右。
孔结构
各种尺寸的孔也是硬化水泥浆体的一个重要组成,总孔隙率、孔径及其分布、孔的形态以及孔壁所形成的巨大内表面积,都是硬化水泥浆体的重要结构特征。
孔的形成:在水化过程中,水化产物的体积要大于熟料矿物的体积。
据计算,每1cm3的水泥水化后约需占据2.2cm3的空间。
即约45%的水化产物处于水泥颗粒原来的周界之内,成为内部水化产物;另有55%则为外部水化产物,占据着原先充水的空间。
随着水化过程的进展,原来充水的空间减少,而没有被水化产物填充的空间,则逐渐被分割成形状极不规则的毛细孔。
硅酸盐水泥的水化过程(1)钙矾石形成期(2)C3S水化期(3)结构形成和发展期
影响水泥水化速率的因素(1)水泥熟料矿物组成(2)细度:(3)水灰比:
(4)养护温度:(5)外加剂:
假凝是指水泥的一种不正常的早期固化或过早变硬现象。
在水泥用水拌和的几分钟内,物料就显示凝结。
假凝和快凝是不同的,前者放热量极微,而且经剧烈搅拌后,浆体又可恢复塑性,并达到正常凝结,对强度并无不利影响;而快凝或闪凝往往是由于缓凝不够所引起的,浆体已具有一定强度,重拌并不能使其再具塑性。
水泥硬化的理论:
(1)结晶理论:认为水泥之所以能产生胶凝作用,是由于水化生成的晶体相互交叉穿插,联接成整体的缘故
(2)胶体理论:认为水泥水化以后生成大量胶体物质,再由于干燥或未水化的水泥颗粒继续水化产生“内吸作用”而失水,从而使胶体凝聚变硬。