硅酸盐水泥的水化和硬化ppt课件

合集下载

硅酸盐水泥的水化和硬化

硅酸盐水泥的水化和硬化
C3 A 3CS H32 2C3 A 4H 3(C3 A CS H12 ) 若石膏极少,在所有钙矾石转变成单硫型水化硫铝酸钙后, 还有C3A,那就形成
C3 A CS H12 和C4AH13的固溶体。
石膏的存在延缓了C3A的水化
(四)铁相固溶体(C4AF)的水化 水化速率比C3A低。其水化产物与C3A很相似。相当于C3A 中一部分氧化铝被氧化铁所置换,生成水化铝酸钙和水化铁酸 钙的固溶体。
C-S-H(Ⅱ)
定义:水化硅酸钙凝胶体(C-S-H) 组成:不固定,随钙硅比和水硅比变化 结构:微晶,尺寸接近于胶体范畴; 形貌:纤维状,网络状,等大粒子,内部产物; CH:晶体,层状,六方板状,生长在孔洞之间。
C3S水化历程:
五个阶段: 起始期 15min PH=12 急剧 诱导期(静止期)——使硅酸盐水泥保持塑性的原因; 2-4h诱导期结束的时间,即初凝时间。 加速期(4-8h)C-S-H和Ca(OH)2 大量形成,达到终凝。 减速期(12-24h) 稳定期 受扩散控制
C-S-H凝胶的组成与它所处 的溶液中的CaO浓度有关, C-S-H在一定的碱度下才能存 在,如2- 2-3图所示:
下表是对上图的总结:
CaO浓度 g/l
0.06-0.11
0.11-1.12
>1.12
CaO摩尔浓度 mol/l 1-2
2-20
>20
C/S
<1
0.8-1.5
1.5-2
水化产物
水化硅酸钙和硅酸凝胶 C-S-H(Ⅰ)
钙矾石在常温和一般湿度条件下的脱水曲线
四、水泥的凝结、硬化过程
1882年,雷霞特利提出的结晶理论; 1892年,米哈艾利斯又提出了胶体理论; 拜依柯夫将上述两理论加以发展,把水泥的硬化为三个时期: 第一,溶解期;第二,胶化期;第三,结晶期 列宾捷尔提出凝聚-结晶三维网状结构理论; 鲍格提出是巨大表面能的作用引起互相粘结; 洛赫尔提出的三阶段论:

水泥水化硬化机理-课件

水泥水化硬化机理-课件
间接法
影响因素: 影响因素: 1,熟料的矿物组成:28天内各矿物的水化速度 熟料的矿物组成: 熟料的矿物组成 28天内各矿物的水化速度 AF> 为C3A>C4AF>C3S>C2S或C3A> C3S > AF> 含量大,水化快; C4AF>C2S即: C3A含量大,水化快; C3S含 量大,水化慢. 量大,水化慢. 水灰比: 影响水泥浆的结构和孔隙率; 2,水灰比:1)影响水泥浆的结构和孔隙率;2) 影响水化速度. 影响水化速度. 水泥细度: 细度越细, 3,水泥细度:1)细度越细,反应物的表面积 越大,反应速度越快; 磨细的过程中, 越大,反应速度越快;2)磨细的过程中,使 晶格扭曲程度增大,晶格缺陷增加, 晶格扭曲程度增大,晶格缺陷增加,使水化 反应易于进行 养护温度:温度越高,速度越快. 4,养护温度:温度越高,速度越快.温度对水 化速度的影响主要在早期, 化速度的影响主要在早期,对后期影响不 .;温度低于 10℃水泥基本不发生水化 温度低于水泥基本不发生水化. 大.;温度低于-10℃水泥基本不发生水化. 外加剂:促凝剂,早强剂, 5,外加剂:促凝剂,早强剂,缓凝剂
第八章
硅酸盐水泥的水化和硬化
水泥加水以后为什么可以凝结硬化? 水泥加水以后为什么可以凝结硬化?
水化产物 填充空隙 并将水泥 颗粒连接 在一起
已水化的水 泥浆里留下 的孔隙 未水化水 泥颗粒
水泥+ 水泥+水(流体)-可塑性浆体(塑性体)-固体 流体)-可塑性浆体(塑性体)-固体 )-可塑性浆体 )-
水化速度 水化产物
综上所述,水泥的水化反应过程如下: 水泥的水化反应过程如下: 水泥的水化反应过程如下 水泥加水后, C3S ,C3A ,C4AF均很快水化, 同时石膏迅速溶解,形成 Ca(OH)2与 CaSO4 的饱 和溶液,水化产物首先出现六方板状的Ca(OH)2 与针状的AFt相以及无定形的C-S-H.之后,由于 不断生成AFt相,SO42- 不断减少,继而形成AFm AFm 相及C-A-H晶体和C4(AF)晶体.

硅酸盐水泥的特性介绍及应用(ppt 91页)

硅酸盐水泥的特性介绍及应用(ppt 91页)

2019/10/20
2
水泥的应用
土木工程
海洋工程
能源电力 水利电力
房屋建筑、道路、桥梁、隧 道、机场。 港口、码头、水下建筑、石 油钻井平台。 石油钻井、热电站、核电站。 大坝、水电站、水工建筑。
2019/10/20
3
输 水 管

径 6.6 m

径 7.5 m
2019/10/20
如砌筑水泥、油井水泥、 道路水泥、大坝水泥等
如白色硅酸盐水泥、快凝 快硬硅酸盐水泥等
13
第二节 硅酸盐水泥
一、硅酸盐水泥生产及其矿物组成 凡由硅酸盐水泥熟料,0~5%的石灰石或
粒化高炉矿渣、适量石膏磨细制成的水硬性胶 凝材料,称为硅酸盐水泥(也称波特兰水泥)。
不掺混合材料的,称为Ⅰ型硅酸盐水泥, 代号P.Ⅰ;掺入不超过水泥质量5%的混合材料 的,称为Ⅱ型硅酸盐水泥,代号P.Ⅱ。
氟铝酸盐水泥等
活性二氧化硅 活性氧化铝
石灰火山灰水泥、石膏矿渣水泥、 低热钢渣矿渣水泥等
2019/10/20
12
按性能和用途分 通用水泥
水泥
2019/10/20
专用水泥 特性水泥
硅酸盐水泥(P.I、P.II) 普通硅酸盐水泥(P.O) 矿渣硅酸盐水泥(P.S) 粉煤灰硅酸盐水泥(P.F) 火山灰质硅酸盐水泥(P.P) 复合硅酸盐水泥(P.C)
CaO·Fe2O3·H2O
与C3A的水化相似,主要水化产物为水化铝酸三 钙C3AH6晶体、水化铁酸一钙。
2019/10/20
27
水泥熟料的主要水化产物有:水化硅酸钙 和水化铁酸钙胶凝、氢氧化钙、水化铝酸 钙和水化硫铝酸钙晶体。在充分水化的水 泥石中,C-S-H约占70%,CH约占20%,钙 矾石和单硫型水化硫铝酸钙约占7%。

硅酸盐水泥的水化和硬化PPT课件

硅酸盐水泥的水化和硬化PPT课件

如图5 所示, 中心黑色部分为未水化的熟料颗粒, 直径约3 um, 外围包 裹的颜色较浅的产物为疏松的早期CSH 凝胶, 厚度约400 nm.大圈为SEM 附带EDX 的测量范围, 小圈为TEM 附带EDX 的测量范围. 可以发现, SEM 附带的EDX 测量不论选取哪个位置, 都会导致大部分元素分析结果来自 未水化的水泥颗粒. 水泥未水化熟料主要是由C3S, C2S, C3A 和C4AF 四 种矿物相组成, 4 种组分未水化前的Ca/Si 比都大于或等于2, 必然造成 SEM中EDX 测量的Ca/Si 比结果远大于CSH 凝胶实际的Ca/Si 比, 并导致 结果的波动增加, 数据方差增大;而TEM 则可以保证测量范围内均为CSH 凝胶, 得到的Ca/Si 比较为真实, 波动也较小.
通过SEM 和TEM 观察水泥浆体样品中的Ca(OH)2 晶体, 结果如图1 所示. 在SEM 图 像中, 能够发现大量的六方板状Ca(OH)2 晶体, 图1(a), 其尺寸为2 um 左右.。 Ca(OH)2 晶体在TEM 中形貌见图1(b), 同样为片状六方晶体. 用电子衍射方法能够 得到规则的衍射花样如图2 所示, 证明水泥浆体早期水化生成的Ca(OH)2 晶体为规 则的单晶结构。
素分析, 结果如图3(c)所示, 大量的元素为Ca 和Si, 从元素构成可以确认产物为CSH 凝胶.
分析结果中还有少量的Al, S, Mg, K 等元素, 这是由于水化早期CSH 凝胶生成量较少, 而
SEM 下EDX 的作用范围约为1μm3, 在这个分辨率下不可避免地有未水化水泥颗粒的干扰, 因此SEM附带的EDX 并不能给出准确的CSH 凝胶的元素分析结果, 只能是一个大概的数值。
使用TEM 研究水化12 h 的水泥样品, 可以观察到与SEM 观察结果类似的 针状产物, 长度约为1~2um, 如图7(b)所示. SEM 观察结果与TEM 观察 结果能够相互印证. 利用TEM 附带的高精度EDX 可以准确分辨AFt 和AFm, 如图7(f)与图7(e)所示, AFt 中的硫元素含量要远高于AFm. 在TEM 中进 一步精细观察水泥浆体中的针状水化产物, 如图7(c)与图7(d).AFt 与 AFm 都呈现定向生长. AFt 呈现较为完整的针状, 产物边缘整齐、棱角 分明; AFm 是由AFt 和C3A二次反应生成的, SEM 观察下也呈针状, 但在 TEM中, 可以发现AFm边缘不平整, 几乎没有棱角, 形貌趋向片层状发展, 有明显的二次反应迹象.

硅酸盐水泥的水化和硬化

硅酸盐水泥的水化和硬化

C3A+3CaSO4·2H2O+26H2O=C3A·3CaSO4·32H2O 当C3A尚未完全水化,而石膏已经耗尽时: C3A·3CaSO4·32H2O +2C3A+4H2O= 3(C3A·CaSO4·12H2O) 当石膏掺量极少,所有的钙矾石都转化为单硫型水化硫铝酸 单硫型水化硫铝酸 钙后,可能有C3A剩余,会发生下述反应: C3A·CaSO4·12H2O +3C3A+Ca(OH)2+12H2O= 2[3CaO·Al2O3(CaSO4、Ca(OH)2)·12H2O]

当石膏耗尽时,为 AFm C4 AF + H 2O → 水化铝酸钙+ 水化铁酸钙
23
24
25
26
1、钙矾石形成期 C3A率先水化。在石膏存在的条件下,迅速形成钙 矾石,这是导致第一放热峰的主要因素。 2、C3S水化期 C3S开始迅速水化,大量放热,形成第二个放热峰 。有时会有第三放热峰或在第二放热峰上出现一个“峰 肩”,一般认为是由于钙矾石转化成单硫型水化硫铝( 铁)酸钙而引起的。同时,C2S和铁相亦以不同程度参与 了这两个阶段的反应,生成相应的水化产物。 3、结构形成和发展期 放热速率很低并趋于稳定,随着各种水化产物的 增多,填入原先由水所占据的空间,再逐渐连接并相互 交织,发展成硬化的浆体结构。
14
C3S凝结时间正常,水化较快,粒径40一50um的颗 粒28d可水化70%左右。放热较多,早期强度高 且后期强度增进率较大.28d强度可达一年强度 的70%一80%,其28d强度和一年强度在四种矿 物中均最高。
15
硅酸二钙的水化
• 在常温下,C2S水化式: 2CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(2-x)Ca(OH)2 简写为: C2S+nH=C-S-H+(2-x)CH

硅酸盐水泥的水化过程课件

硅酸盐水泥的水化过程课件
挑战
随着全球气候变化和环境问题的加剧,硅酸盐水泥行业面临着减少碳排放、提高能源利用效率、降低环境污染等 重大挑战。此外,随着市场竞争的加剧和消费者对产品品质和服务质量的要求提高,硅酸盐水泥行业还需要加强 技术创新和产品升级,提高企业核心竞争力。
THANKS
感谢观看
的目的。
此外,硅酸盐水泥还可以用于制 造涂料、油漆等涂层材料,提高
涂层的硬度和耐候性。
07
CATALOGUE
结论与展望
硅酸盐水泥水化过程的结论
硅酸盐水泥熟料是水化反应的主要来源,其组成和性质对水化过程有重要影响。
硅酸盐水泥熟料中的硅酸三钙和硅酸二钙含量较高,它们的水化反应速度快,对混 凝土的早期强度贡献较大。
硅酸盐水泥的其他应用
在土木工程中的应用
硅酸盐水泥在土木工程中是一 种常用的建筑材料,具有高强 度、耐久性和良好的耐火性。
在桥梁、道路、建筑等土木工 程中,硅酸盐水泥被广泛用于 混凝土的配制,以提高结构的 强度和耐久性。
此外,硅酸盐水泥也常用于砌 筑砂浆的配制,具有良好的保 水性和易操作性。
在化学工业中的应用
水化产物。
水化产物的种类与性质
硅酸钙
硅酸钙是硅酸盐水泥的主要水化产物,它对水泥 石的强度、耐久性和化学稳定性都有重要影响。
氢氧化钙
氢氧化钙是水泥水化的副产物,它的溶解度较高 ,对水泥石的强度和耐久性产生不利影响。
铝酸钙
铝酸钙是水泥水化的中间产物,它对水泥石的强 度和耐久性也有重要影响。
水化过程中的能量变化
硅酸盐水泥是一种重要的无机非 金属材料,在化学工业中有着广
泛的应用。
例如,硅酸盐水泥可以用于生产 硫酸钙、磷酸钙等重要的化工原
料。

硅酸盐水泥的水化和硬化

硅酸盐水泥的水化和硬化
硅酸盐水泥的水化和硬化
第一节硅酸盐水泥熟料的形成 一、硅酸盐水泥熟料的形成 水泥熟料矿物为什么能与水发生反应?主要原因是: 1、硅 酸 盐 水 泥 熟 料 矿 物 结 构 的 不 稳 定 性 ,可 以 通 过 与 水 反 应 , 形 成 水 化 产 物 而 达 到 稳 定 性 。造 成 熟 料 矿 物 结 构 不 稳 定 的 原 因 是 : ( 1) 熟 料 烧 成 后 的 快 速 冷 却 , 使 其 保 留 了 介 稳 状 态 的 高 温 型 晶体结构; ( 2) 工 业 熟 料 中 的 矿 物 不 是 纯 的 C 3 S, C 2 S 等 , 而 是 Alite 和 Belite 等 有 限 固 溶 体 ; ( 3) 微 量 元 素 的 掺 杂 使 晶 格 排 列 的 规 律 性 受 到 某 种 程 度 的 影 响。 2、 熟 料 矿 物 中 钙 离 子 的 氧 离 子 配 位 不 规 则 , 晶 体 结 构 有 “ 空 洞 ”,因 而 易 于 起 水 化 反 应 。例 如 ,C 3 S 的 结 构 中 钙 离 子 的 配 位 数 为 6,但 配 位 不 规 则 ,有 5 个 氧 离 子 集 中 在 一 侧 而 另 一 侧 只 有 1 个 氧离子,在氧离子少的一侧形成“空洞”,使水容易进入与它反 应 。β -C 2 S 中 钙 离 子 的 配 位 数 有 一 半 是 6,一 半 是 8,其 中 每 个 氧 离子与钙离子的距离不等,配位不规则,因而也不稳定,可以水 化 , 但 速 度 较 慢 。 C 3 A 的 晶 体 结 构 中 , 铝 的 配 位 数 为 4 与 6, 而 钙 离 子 的 配 位 数 为 6 与 9, 配位数为 9 的钙离子周围的氧离子排列极 不 规 则 , 距 离 不 等 , 结 构 有 巨 大 的 “ 空 洞 ” , 故 水 化 很 快 。 C 4 AF 中 钙 的 配 位 数 为 10 与 6, 结 构 也 有 “ 空 洞 ” , 故 也 易 水 化 。 有 些

硅酸盐水泥的水化、凝结与硬化

硅酸盐水泥的水化、凝结与硬化
坚硬的水泥石的过程。 ➢水泥的凝结与硬化过程由以下四个过程组成。
凝结硬化过程
初始反应期 潜伏期 凝结期 硬化期
初始的溶解和水化,约持续5-10分钟。
流动性可塑性好凝胶体膜层围绕水泥颗 粒成长,1h
凝胶膜破裂、长大并连接、水泥颗粒进 一步水化,6h。多孔的空间网络—凝聚 结构,失去可塑性
凝胶体填充毛细管,6h-若干年硬化石状 体密实空间网
3CaO·Al2O3·6H2O+ H2O+CaSO4·2H2O 3CaO·Al2O3·3CaSO4·31H2O
钙矾石
水泥熟料单矿物水化时特征
矿物种类
硅酸三钙
硅酸二钙
铝酸三钙
缩写 含量(%) 水化速度
C3S 37-60
快Leabharlann C2S 15-37慢
C3A 7-15 最快
水化热


最多
反应速度: 强放度 热量:
3CaO·SiO2+H2O CaO·2SiO2·3H2O+Ca(OH)2
硅酸二钙水化生成水化硅酸钙凝胶和氢氧化钙晶 体。
该水化反应的速度慢,对后期龄期混凝土强度的 发展起关键作用。水化热释放缓慢。
产物中氢氧化钙的含量减少时,可以生成更多的 水化产物。
2CaO·SiO2+H2O 3CaO·2SiO2·3H2O+Ca(OH)2
铝酸三钙水化生成水化铝酸钙晶体。 该水化反应速度极快,并且释放出大量的热量。 如果不控制铝酸三钙的反应速度,将产生闪凝现象,水泥将 无法正常使用。 通常通过在水泥中掺有适量石膏,可以避免上述问题的发生。
3CaO·Al2O3+H2O
3CaO·Al2O3·6H2O
铁铝酸四钙水化生成水化铝酸钙晶体和水化铁酸钙凝胶
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档