硅酸盐水泥的水化和硬化

合集下载

硅酸盐水泥的水化硬化概述

硅酸盐水泥的水化硬化概述

硅酸盐水泥的水化硬化概述硅酸盐水泥是一种常见的建筑材料,广泛用于混凝土制作和结构修复。

水泥的水化硬化是指水泥与水反应形成胶凝体,并使混凝土逐渐硬化和强度增加的过程。

水泥的水化硬化过程可以分为三个阶段:溶解阶段、胶凝阶段和结晶阶段。

在溶解阶段,水分与水泥中的化学物质发生作用,形成水化产物。

其中最主要的是硅酸钙水化产物及其水化过渡产物。

这个过程伴随着水泥的溶解和离子交换,同时释放热量。

在胶凝阶段,水化产物开始形成胶凝体,由于产物的粘结作用,使硅酸盐水泥与骨料颗粒和其他成分紧密结合。

这个阶段是水泥的强度急剧增加的阶段。

在结晶阶段,水化产物继续结晶生长,形成更稳定的晶体结构。

这个阶段通常需要较长的时间来完成,并且能使混凝土的性能逐渐稳定。

水泥水化硬化的过程受到多种因素的影响,包括水泥的成分、水化环境的温度和湿度、所用水分质量等。

适当的水泥成分和良好的水化环境有助于水泥的硬化过程。

水泥水化硬化是一个复杂的过程,需要一定的时间来完成。

因此,在施工中要合理控制混凝土的浇筑时间和养护时间,以确保水泥的充分水化硬化,从而提高混凝土的强度和耐久性。

总之,硅酸盐水泥的水化硬化是一个多阶段的过程,经过溶解、胶凝和结晶,最终形成硬化的胶凝体。

合理地控制水泥的成分和水化环境,能够有效地提高混凝土的性能。

水泥的水化硬化是一项复杂的化学物理过程,涉及多个组分和反应。

了解水泥的水化硬化过程对于我们了解硅酸盐水泥混凝土的性能和使用特性都非常重要。

水泥的基本成分是石灰和硅酸盐矿物,这些矿物在加入水后会发生化学反应,产生水化产物。

最主要的水化产物是硅酸钙几何多聚体C-S-H和钙水化硅石(C-S-H)以及钙羟基石灰(CH)。

这些水化产物的生成是水泥硬化的核心过程。

在溶解阶段,水与水泥中的化合物发生反应,其中最重要的是硅酸钙和水的反应。

在水中,硅酸盐矿物发生溶解和饱和的过程,释放出的离子与水中的离子发生化学作用。

这些离子的重组形成了水泥颗粒的表面电荷,并开启了水化反应。

硅酸盐水泥凝结硬化的四个阶段

硅酸盐水泥凝结硬化的四个阶段

硅酸盐水泥凝结硬化的四个阶段硅酸盐水泥,这个名字听起来有点高大上,但别担心,我们来聊聊它凝结硬化的过程。

其实,这就像是一个人从懵懂少年逐渐成长为成熟稳重的成年人的故事,曲折而又充满趣味。

今天就让我们轻松地揭开硅酸盐水泥的四个凝结硬化阶段,顺便打打比方,聊聊生活中的趣事。

1. 开始阶段:搅拌与浇筑1.1 准备工作首先呢,当你把水泥、砂子和水搅拌在一起的时候,就像是做菜,得把所有材料准备齐全。

这个阶段充满了期待和兴奋,大家伙儿围着混合物,真像在围着锅里煮的热汤。

水泥和水结合,形成了一个“泥浆”,这就好比小朋友们在游乐场的沙坑里玩耍,初见生机。

1.2 浇筑时刻接下来就是浇筑了。

想象一下,那种把浆料倒进模具的感觉,就像是把一个个梦想都倾注在一个漂亮的蛋糕模具里。

水泥在这里开始接受考验,期待着成型。

哎,这个阶段可是关键!不然的话,等到硬化后,蛋糕可能就变成了“黑暗料理”了。

2. 凝结阶段:初凝与终凝2.1 初凝随着时间的推移,水泥开始凝结。

这就像小朋友们开始玩得有点累,慢慢停下了。

不过,初凝的感觉有点像水面上的涟漪,不是马上就平静,而是慢慢地过渡。

这个时候,水泥的工作可没结束,依旧在努力“长大”。

大家可能会觉得“哎呀,这么快就凝固了?”其实,它在默默为之后的硬化做准备。

2.2 终凝接着进入终凝阶段,水泥这小家伙终于慢慢稳住了。

就像一位年轻人,经过一番折腾后终于找到了自己的方向,站稳了脚跟。

此时的水泥,已经不再是那团稀泥,而是有了形状和个性。

这时候,大家也许会感叹:“嘿,没想到水泥也能有这样的蜕变!”3. 硬化阶段:水化与强度提升3.1 水化过程水泥的硬化,最神奇的部分来了!它开始水化,像是喝了特效药,迅速充满了活力。

这时候,水泥中的化学反应像火山爆发一样,剧烈而又精彩。

你可以想象一下,就像是你在健身房里锻炼,肌肉在不断生长,越练越强。

这个阶段,水泥不仅仅是变得硬邦邦的,更是开始逐步提升自己的“战斗力”。

3.2 强度提升最后,经过一段时间的“锤炼”,水泥的强度达到了巅峰。

硅酸盐水泥的水化和硬化

硅酸盐水泥的水化和硬化
C3 A 3CS H32 2C3 A 4H 3(C3 A CS H12 ) 若石膏极少,在所有钙矾石转变成单硫型水化硫铝酸钙后, 还有C3A,那就形成
C3 A CS H12 和C4AH13的固溶体。
石膏的存在延缓了C3A的水化
(四)铁相固溶体(C4AF)的水化 水化速率比C3A低。其水化产物与C3A很相似。相当于C3A 中一部分氧化铝被氧化铁所置换,生成水化铝酸钙和水化铁酸 钙的固溶体。
C-S-H(Ⅱ)
定义:水化硅酸钙凝胶体(C-S-H) 组成:不固定,随钙硅比和水硅比变化 结构:微晶,尺寸接近于胶体范畴; 形貌:纤维状,网络状,等大粒子,内部产物; CH:晶体,层状,六方板状,生长在孔洞之间。
C3S水化历程:
五个阶段: 起始期 15min PH=12 急剧 诱导期(静止期)——使硅酸盐水泥保持塑性的原因; 2-4h诱导期结束的时间,即初凝时间。 加速期(4-8h)C-S-H和Ca(OH)2 大量形成,达到终凝。 减速期(12-24h) 稳定期 受扩散控制
C-S-H凝胶的组成与它所处 的溶液中的CaO浓度有关, C-S-H在一定的碱度下才能存 在,如2- 2-3图所示:
下表是对上图的总结:
CaO浓度 g/l
0.06-0.11
0.11-1.12
>1.12
CaO摩尔浓度 mol/l 1-2
2-20
>20
C/S
<1
0.8-1.5
1.5-2
水化产物
水化硅酸钙和硅酸凝胶 C-S-H(Ⅰ)
钙矾石在常温和一般湿度条件下的脱水曲线
四、水泥的凝结、硬化过程
1882年,雷霞特利提出的结晶理论; 1892年,米哈艾利斯又提出了胶体理论; 拜依柯夫将上述两理论加以发展,把水泥的硬化为三个时期: 第一,溶解期;第二,胶化期;第三,结晶期 列宾捷尔提出凝聚-结晶三维网状结构理论; 鲍格提出是巨大表面能的作用引起互相粘结; 洛赫尔提出的三阶段论:

简述硅酸盐水泥的主要水化产物和硬化水泥石的结构。

简述硅酸盐水泥的主要水化产物和硬化水泥石的结构。

硅酸盐水泥的主要水化产物是:水化硅酸钙和水化铁酸钙凝胶,氢氧化钙,水化铝酸钙和水化硫铝酸钙晶体。

硬化水泥石的结构是由水泥水化产物(主要是水化硅酸钙凝胶)、未水化水泥颗粒、毛细孔(毛细孔水)等组成的不均质的结构体。

硅酸盐水泥的主要化学成分:氧化钙CaO,二氧化硅SiO2,三氧化二铁Fe2O3,三氧化二铝Al2O3.硅酸盐水泥的主要矿物:硅酸三钙(3CaO·SiO2,简式C3S),硅酸二钙(2CaO·SiO2,简式C2S),铝酸三钙(3CaO·Al2O3,简式C3A),铁铝酸四钙(4CaO·Al2O3·Fe2O3,简式C4AF).水泥的凝结和硬化:1)、3CaO·SiO2+H2O→CaO·SiO2·YH2O(凝胶)+Ca(OH)2;2)、2CaO·SiO2+H2O→CaO·SiO2·YH2O(凝胶)+Ca(OH)2;3)、3CaO·Al2O3+6H2O→3CaO·Al2O3·6H2O(水化铝酸钙,不稳定);3CaO·Al2O3+3CaSO4·2 H2O+26H2O→3CaO·Al2O3·3CaSO4·32H2O(钙矾石,三硫型水化铝酸钙);3CaO·Al2O3·3CaSO4·32H2O+2〔3CaO·Al2O3〕+4 H2O→3〔3CaO·Al2O3·CaSO4·12H2O〕(单硫型水化铝酸钙);4)、4CaO·Al2O3·Fe2O3+7H2O→3CaO·Al2O3·6H2O+CaO·Fe2O3·H2O.水泥速凝是指水泥的一种不正常的早期固化或过早变硬现象.高温使得石膏中结晶水脱水,变成浆状体,从而失去调节凝结时间的能力.假凝现象与很多因素有关,一般认为主要是由于水泥粉磨时磨内温度较高,使二水石膏脱水成半水石膏的缘故.当水泥拌水后,半水石膏迅速与水反应为二水石膏,形成针状结晶网状结构,从而引起浆体固化.另外,某些含碱较高的水泥,硫酸钾与二水石膏生成钾石膏迅速长大,也会造成假凝.假凝与快凝不同,前者放热量甚微,且经剧烈搅拌后浆体可恢复塑性,并达到正常凝结,对强度无不利影响.。

硅酸盐水泥的基本组成水化和硬化机理

硅酸盐水泥的基本组成水化和硬化机理

硅酸盐水泥的基本组成水化和硬化机理
硅酸盐水泥(Portland cement)是建筑中常用的一种水泥类型,它由若干种矿物质混合制成。

硅酸盐水泥的基本组成包括硅酸盐、铝酸盐、铁酸盐、钙酸盐等矿物质。

硅酸盐水泥的主要性质是其水化反应及硬化机理,其中水化反应是硬化的基础。

硅酸盐水泥的水化反应
硅酸盐水泥的水化反应分为两个阶段,分别是初始水化反应和二次水化反应。

初始水化反应: 初始水化反应是硅酸盐水泥与水开始反应产生物质的重要阶段。

该反应主要是由硅酸盐矿物质和水中的氢氧根离子(OH-)形成硅酸钙凝胶(C-S-H),同时还生成小量结晶状的钙矾土(Ca(OH)2)。

硬化反应: 当硅酸钙凝胶形成后,硬化反应就开始了。

硬化反应是指钙矾土与硅酸钙凝胶再次反应,产生附着在硅酸钙凝胶上的二次水化产物(例:钙硅酸盐、铝酸钙、铁酸钙等),从而导致硬化的过程。

硅酸盐水泥水化反应和硬化机理导致水泥成品逐渐硬化并得到强度的增加。

硅酸盐水泥的硬化机理包括两个阶段。

初始硬化阶段: 在初始硬化阶段中,主要发生的是水泥粉末与水反应生成硅酸钙溶胶,这个阶段是水泥松散质地逐渐变硬的转折点,经历了3-5小时左右时材料开始渐渐变硬,表现出初始硬度。

二次硬化阶段: 在这个阶段中,水泥产物进一步硬化,矿物质之间的结合变得更加紧密。

此时,水泥得到的韧性、强度等性能逐渐增强。

因此,硅酸盐水泥的水化和硬化反应是建筑中非常关键的部分。

这些反应可以向我们展示水泥是如何在混凝土中发挥作用的。

了解这些机制可以帮助建筑师、设计师、土木工程师、建筑工人或其他与建筑相关的人员掌握常用的建筑材料的工作机制并做出相应的设计和施工。

硅酸盐水泥的水化和硬化

硅酸盐水泥的水化和硬化

C3A+3CaSO4·2H2O+26H2O=C3A·3CaSO4·32H2O 当C3A尚未完全水化,而石膏已经耗尽时: C3A·3CaSO4·32H2O +2C3A+4H2O= 3(C3A·CaSO4·12H2O) 当石膏掺量极少,所有的钙矾石都转化为单硫型水化硫铝酸 单硫型水化硫铝酸 钙后,可能有C3A剩余,会发生下述反应: C3A·CaSO4·12H2O +3C3A+Ca(OH)2+12H2O= 2[3CaO·Al2O3(CaSO4、Ca(OH)2)·12H2O]

当石膏耗尽时,为 AFm C4 AF + H 2O → 水化铝酸钙+ 水化铁酸钙
23
24
25
26
1、钙矾石形成期 C3A率先水化。在石膏存在的条件下,迅速形成钙 矾石,这是导致第一放热峰的主要因素。 2、C3S水化期 C3S开始迅速水化,大量放热,形成第二个放热峰 。有时会有第三放热峰或在第二放热峰上出现一个“峰 肩”,一般认为是由于钙矾石转化成单硫型水化硫铝( 铁)酸钙而引起的。同时,C2S和铁相亦以不同程度参与 了这两个阶段的反应,生成相应的水化产物。 3、结构形成和发展期 放热速率很低并趋于稳定,随着各种水化产物的 增多,填入原先由水所占据的空间,再逐渐连接并相互 交织,发展成硬化的浆体结构。
14
C3S凝结时间正常,水化较快,粒径40一50um的颗 粒28d可水化70%左右。放热较多,早期强度高 且后期强度增进率较大.28d强度可达一年强度 的70%一80%,其28d强度和一年强度在四种矿 物中均最高。
15
硅酸二钙的水化
• 在常温下,C2S水化式: 2CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(2-x)Ca(OH)2 简写为: C2S+nH=C-S-H+(2-x)CH

硅酸盐水泥的水化与硬化

硅酸盐水泥的水化与硬化

硅酸盐水泥的水化与硬化硅酸盐水泥是一种常用的水泥材料,具有较好的水化和硬化性能,广泛应用于建筑和工程领域。

本文将对硅酸盐水泥的水化和硬化进行详细的介绍,包括水泥的成分、水化反应过程、硬化机理以及影响水化和硬化的因素等内容。

硅酸盐水泥是以矿渣、石灰石和黏土为原料,经过磨碎、燃烧和砂浆等工艺加工而成。

一般情况下,硅酸盐水泥的主要成分包括三种物质:硅酸盐矿物、石灰和无定形物质。

硅酸盐矿物是硅酸盐水泥的主要成分,其含有的SiO2和CaO可以发生水化反应,形成具有胶凝性的凝胶体。

石灰则是硅酸盐水泥中的辅助胶凝材料,其主要作用是加速水化反应的进行。

无定形物质是水泥中的杂质,一般情况下不参与水化和硬化过程。

水化反应是硅酸盐水泥的重要特性之一。

当硅酸盐水泥与水接触后,水分子与硅酸盐矿物中的CaO和SiO2发生反应,导致硅酸盐矿物发生水化并形成胶体物质。

水化反应的过程可以分为两个阶段:低水化率的溶解和高水化率的凝胶化。

在溶解阶段,水分子侵入硅酸盐矿物的晶体结构中,使其结构发生破坏并释放出Ca2+和OH-离子。

随着时间的推移,硅酸盐矿物的溶解率逐渐降低,凝胶化过程逐渐主导。

硬化是硅酸盐水泥水化反应的结果,也是水泥材料使用的关键性质。

在硬化过程中,水泥和水反应生成的胶凝体逐渐结晶并与无定形物质相结合,形成稳定的硬质凝胶,从而增强了水泥材料的强度和硬度。

硬化的机理主要涉及胶凝凝胶的形成、晶体生长和无定形物质的变化等过程。

胶凝凝胶的形成使水泥材料具有粘结性,晶体生长则使水泥材料具有硬度和强度。

无定形物质的变化则会影响水泥材料的性能,如开裂、收缩和腐蚀等。

水化和硬化过程受到各种因素的影响,包括水泥成分、水化温度、水化时间、水泥颗粒大小和水泥与水的质量比等因素。

水泥成分的不同会影响水化反应的速率和产物的特性。

水化温度越高,水化反应的速率越快,而水化时间越长,水泥材料的强度和硬度越高。

水泥颗粒的大小和分布会影响水泥的填充效果和反应程度,从而影响水化和硬化的速率和特性。

硅酸盐水泥的水化和硬化

硅酸盐水泥的水化和硬化
硅酸盐水泥的水化和硬化
第一节硅酸盐水泥熟料的形成 一、硅酸盐水泥熟料的形成 水泥熟料矿物为什么能与水发生反应?主要原因是: 1、硅 酸 盐 水 泥 熟 料 矿 物 结 构 的 不 稳 定 性 ,可 以 通 过 与 水 反 应 , 形 成 水 化 产 物 而 达 到 稳 定 性 。造 成 熟 料 矿 物 结 构 不 稳 定 的 原 因 是 : ( 1) 熟 料 烧 成 后 的 快 速 冷 却 , 使 其 保 留 了 介 稳 状 态 的 高 温 型 晶体结构; ( 2) 工 业 熟 料 中 的 矿 物 不 是 纯 的 C 3 S, C 2 S 等 , 而 是 Alite 和 Belite 等 有 限 固 溶 体 ; ( 3) 微 量 元 素 的 掺 杂 使 晶 格 排 列 的 规 律 性 受 到 某 种 程 度 的 影 响。 2、 熟 料 矿 物 中 钙 离 子 的 氧 离 子 配 位 不 规 则 , 晶 体 结 构 有 “ 空 洞 ”,因 而 易 于 起 水 化 反 应 。例 如 ,C 3 S 的 结 构 中 钙 离 子 的 配 位 数 为 6,但 配 位 不 规 则 ,有 5 个 氧 离 子 集 中 在 一 侧 而 另 一 侧 只 有 1 个 氧离子,在氧离子少的一侧形成“空洞”,使水容易进入与它反 应 。β -C 2 S 中 钙 离 子 的 配 位 数 有 一 半 是 6,一 半 是 8,其 中 每 个 氧 离子与钙离子的距离不等,配位不规则,因而也不稳定,可以水 化 , 但 速 度 较 慢 。 C 3 A 的 晶 体 结 构 中 , 铝 的 配 位 数 为 4 与 6, 而 钙 离 子 的 配 位 数 为 6 与 9, 配位数为 9 的钙离子周围的氧离子排列极 不 规 则 , 距 离 不 等 , 结 构 有 巨 大 的 “ 空 洞 ” , 故 水 化 很 快 。 C 4 AF 中 钙 的 配 位 数 为 10 与 6, 结 构 也 有 “ 空 洞 ” , 故 也 易 水 化 。 有 些
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、硅酸二钙
2CaO SiO2 mH2O=xCaO SiO2 yH2O 2-x CH
四、铝酸三钙
铝酸三钙与水反应迅速,其水化产物的组成与 结构受溶液中氧化钙、氧化铝离子浓度和温度 的影响很大。在常温下,铝酸三钙依下式水化:
熟料矿物的水化程度(%)
矿 物 C3S C2S C3A C4AF 水 化 时 间
3天
33.2 6.7 78.1 64.3
7天
42.3 9.6 76.4 66.0
28天
65.5 10.3 79.7 68.8
3月
92.2 27.0 88.3 86.5
当生长到相当尺寸,且数量又足够多时,液相 中的Ca2+和OH-就迅速沉析出Ca(OH)2晶体,促使 C3S加快溶解,水化重又加速。由图8-1所示液 相中Ca2+浓度的最大值出现在诱导期末,可以 作为上述假说的一个论证。同时,Ca(OH)2还会 和硅酸根离子相结合,因而也可作为C-S-H的 晶核。较近的一些研究表明,诱导期更可能是 由于C-S-H的成核和生长受到延缓的缘故。
4、水化程度与水化深度的关系
dm 3 h= 1 1 a 2


5、影响水泥水化速率的因素
决定水泥水化速率的因素,主要是熟料矿物组 成与结构,而水泥的细度、加水量、养护温度、 混合材以及外加剂的性质等,都会对水化速率 有一定影响。
二、熟料矿物的水化速率
1、测定水化速率的方法 测定水化速率的方法有直接法和间接法两类。 1)直接法是利用岩相分析、 x 射线分析或热分析等方 法,定量地测定已水化和未水化部分的数量。 2)间接法则有测定结合水、水化热或Ca(OH)2 生成量 等方法。 比较:其中以结合水法较为简便,将所测各龄期化学 结合的水量与完全水化时的结合水量相比,即可计算 出不同龄期的水化程度。
斯卡尔内 (J.Skalng )和杨(J. F.Young)
当与水接触后在C3S表面有晶格缺陷的部位即 活化点上很快发生水解, Ca2+和OH-进入溶液, 就在 C3S表面形成一个缺钙的‘富硅层”。接 着, Ca2+吸附到‘富硅层”表面形成双电层, 从而使C3S溶解受阻而出现诱导期。
另一方面,因双电层所形成的ζ电位,即使颗粒在 溶液中保持分散状态,一直到ζ电位下降接近于零 时,才会产生凝聚。由于C3S仍在缓慢水化,待溶 液中 Ca(OH)2浓度达到一定的过饱和度 时,Ca(OH)2析晶,导致诱导期结束。与此同时, 还会有 C-S-H 的沉淀析出;因为硅酸根离子比 Ca2+较难迁移,所以 C-S-H 的生长仅限于表面; Ca(OH)2的晶体开始可能也在 C3S表面生长,但有 些晶体会远离颗粒或在浆体的充水孔隙中形成。
晶核形成延缓理论
另一派的学者则提出“晶核形成延缓理论”, 认为诱导期是由于氢氧化钙或C-S-H或者它们 两者的晶核形成和生长,都需要一定时间,从 而使水化延缓所致。
例如泰卓斯(M.E.Tadros)等认为C3S最初不一 致溶,主要是Ca2+和OH-溶出,液相中的C/S比 远高于3,使C3S表面变为缺钙的“富硅层”。 然后,Ca2+吸附到富硅的表面,使其带上正电 荷,形成双电层,因而C3S溶出Ca2+的速度减慢, 导致诱导期的产生。一直到液相中的Ca2+和OH缓慢增长,达到足够的过饱和度(饱和度的 1.5~2倍),才形成稳定的Ca(OH)2晶核。
(一)水泥熟料矿物的水化原因
内因:熟料单体矿物及熟料颗粒结构不稳定。 外因:加入极性分子,可使熟料中的离子配位 改变重排。
(二)、水泥的水化过程
水泥是一种多矿物组成的集合体,与水的相互 作用很复杂,不仅各矿物的水化过程 互不相 同,而且各矿物的水化又相互影响。 各矿物与水的作用,称为“一次水化作用” 水化物之间的相互作用称“二次水化作用” 在水泥的水化过程中,一次作用、二次作用是 交织在一起进行的。
C4 AH13 3CSH2 14H=C3 A 3CS H32 CH
C3 A 3CS H 32 2C4 AH13 =3 C3 A CS H12 2CH 20H
CSH2 / C3A 1.0
CSH2 / C3A 1.0
C4 ASH12 C3 A CH 12H=2C3 A CS、CH H12
2 3CaO Al2O3 27H2O=4CaO Al2O3 19H2O 2CaO Al2O3 8H2O
2C3 A 27H=C4 AH19 C2 AH8
C4AH19在低于 85 %的相对湿度时,即失去 6 摩尔的结晶水而成为 C4AH13。C4AH19、C4AH13和 C2AH8均为六方片状晶体,在常温下处于介稳状 态,有向 C3AH6等轴晶体转化的趋势:
二、硅酸三钙
1、水化反应 在常温下:
3CaO SiO2 nH2O=xCaO SiO2 yH2O 3-x Ca OH2
C3S nH=xC-S-H 3-x CH
水化产物是水化硅酸钙和氢氧化钙。
2、水化过程
2、水化过程
1)、诱导前期:加水后立即发生急剧反应,但该 阶段时间很短,在15分钟以内结束。
教学内容
第一节 第二节 熟料矿物的水化 硅酸盐水泥的水化
一、水泥熟料矿物的水化过程
水泥的水化:一种物质从无水状态变为含水状 态或从含水少的状态变为含水多的状态。 类型: 1、原物质不含水,与水作用后,变为含水化 合物。 2、原物质本身含一定量的水,与水作用后, 变为含水多的物质。 3、水解反应(加水分解)
中期水化产物
最初的产物,大部分生长在颗粒原始周界 以外由水所填充的空间,而后期的生长则 在颗粒原始周界以内的区域进行。这两部 分的 C-S-H ,即分别称为“外部产物”和 “内部产物”。随着内部产物的形成和发 展, C3S的水化即由减速期向稳定期转变, 逐渐进入水化后期。
3)、C3S的后期水化
泰勒(F.H.W Taylor)认为在水化过程中存在一个界面区, 并逐渐推向颗粒内部。水离解所成的 H+在内部产物中从一 个氧原子(或水分子)转移到另一个氧原子,一直到达C3S 并与之作用,其情况与C3S直接接触到水相差无几。而界面 区内部Ca2+和Si4+则通过内部产物向外迁移,转入 Ca(OH)2 和外部C-S-H。因此,在界面区内是得到H+,失去 Ca2+和 Si4+,原子重新组排,从而使C3S转化成内部C-S-H。如此, 随着界面区的向内推进,水化继续进行。由于空间限制及 离子浓度的变化,作为内部产物的C-S-H,在形貌和成分等 方面和外部C-S-H会有所差异,通常是较为密实。
水化中期 5)、稳定期:反应速率很低、基本稳定的阶段,水 化作用完全受扩散速率控制。有的文献上将4期与 5期合称为扩散控制期。 水化后期
1)、C3S的早期水化
硬化浆体的性能很多是在水化早期决定的;诱 导期终止的时间与初凝有着一定的关系,而终 凝则大致发生在加速期的中间阶段。各方面对 此进行了大量的研究,有关诱导期的本质也就 是诱导期的开始及结束的原因,存在着不少看 法。
3、还值得注意的是,水泥既然是多矿物、多 组分的体系,各熟料矿物并不可能单独进行水 化,它们之间的相互作用必然对水化进程有一 定影响。
第三节 水化速率
一、基本知识 1、水化速率 熟料矿物或水泥的水化速率常以单位时间内的水化程 度或水化深度来表示。 2、水化程度h 水化程度是指在一定时间内发生水化作用的量和完全 水化量的比值; 3、水化深度a 水化深度是指已水化层的厚度。
单硫型水化硫铝酸钙, 又称钙矾石(AFm) 。
五、铁相固溶体
水泥熟料中一系列铁相固溶体除用 C4AF 作为其代 表式外,还可以用 Fss 来表示。 C4AF 的水化速率比C3A略慢,水化热较低,即使 单独水化也不会引起瞬凝。铁铝酸钙的水化反应 及其产物与C3A 极为相似。氧化铁基本上起着与氧 化铝相同的作用,也就是在水化产物中铁臵换部 分铝,形成水化硫铝酸钙和水化硫铁酸钙的固溶 体,或者水化铝酸钙和水化铁酸钙的固溶体。
保护膜理论
斯坦因(H.N.Stein)等人认为,诱导期是由于水化产 物形成了保护膜层。当保护膜破坏时,诱导期就结 束,即所谓“保护膜理论”。他们假设C3S在水中是 一致溶,最初生成的第一水化物C3SHn 很快就在C3S 周围形成了致密的保护膜层,从而阻碍了C3S 的进 一步水化,使放热变慢,向液相溶出Ca2+的速率也相 应降低,导致诱导期的开始。当第一水化物转变为 较易使离子通过的第二水化物(C/S≈0.8~1.5)时, 水化重新加速,较多的Ca2+和OH-进入液相达到过饱 和,并加快放热,诱导期即告结束。
常温下
4CaO Al2O3 13H2O 2CaO Al2O3 8H2O=2 3CaO Al2O3 6H2O 9H2O
C4 AH13 C2 AH8 =2C3 AH6 9H
>35℃时
3CaO Al 2O3 6H2O=3CaO Al 2O3 6H2O
第二节 硅酸盐水泥的水化
1、当水泥与水拌合后,就立即发生化学反应, 水泥的各个组分开始溶解。所以经过一极短瞬 间,填充在颗粒之间的液相已不再是纯水,而 是含有各种离子的溶液,主要为:
2、由于C3S 迅速溶出Ca(OH )2 ,所掺的石膏 也很快溶解于水,特别是水泥粉磨时部分二水 石膏可能脱水成半水石膏或可溶性硬石膏,其 溶解速率更大。熟料中所含的碱溶解也快,甚 至70~80 %的 K2SO4可在几分钟内溶出。因此, 水泥的水化作用在开始后,基本上是在含碱的 氢氧化钙、硫酸钙的饱和溶液中进行的。
C3 A 6H=C3 AH6
CH过饱和时
3CaO Al2O3 Ca OH2 12H2O=4CaO Al 2O3 13H2O
C3 A CH 12H=C4 AH13
相关文档
最新文档