模拟退火算法原理及的应用共52页

合集下载

模拟退火算法及应用

模拟退火算法及应用

一、概论1.1 问题概述在自然科学以及大多数科学当中和社会生活里经常出现最大或最小的问题,我们从小学开始学习大小比较,一直到高中大学时的最优解问题,都是一种名为最优化问题.最优化问题在大多是领域中都有重要的地位,例如管理科学、计算机科学、图像处理等等需要大量数据的学科中都存在着需要解决的组合优化问题。

用我们比较容易理解的说法就是已知一组固定的函数,令这组函数所对应的函数到达最大或最小值.而我们所想到的最简单的方法便是穷举法,然而这种方式存在这大量的数据计算穷举的缺点。

优化组合问题中的NP问题是一个很麻烦的问题,它解得规模会随着问题的规模增大而增大,求解所需的时间也会随问题的规模增大而成指数级增长,而当规模过大时就会因为时间的限制而失去了可行性。

旅行商问题(TSP)是优化组合问题中最为著名的一个问题,它的特点是容易描述却难于求解.这是一个经典的图论问题,假设有n个城市,用表示.城市之间距离为,i,j=1,2,3,···,n,假设所有城市之间两两连通,要求从一个城市出发,把所有城市都走一遍,而TSP问题就是恰好所有城市都走一遍,而所走路径形成回路且路径最短.将这个问题对应在一个n个顶点的完全图上,假设图为对称图,则要从个可能的解当中找到最小的解,需要的对比则要进行次,当的数值增大时,那么需要的次数也会随之以几何数倍增长,例如每秒运算一亿次的计算机,当需要的时间也只是0.0018秒,当需要的时间却是17年,可当时所需的时间却猛增到年,这个结果是我们所不想看到的。

优化组合问题的目标函数是从组合优化问题的可行解集当中求出最优解。

组合优化问题有三个基本要素:变量,约束和目标函数,在求解过程中选定的基本参数成为标量,对于变量的取值的所有限制称之为约束,表示可行的方案的标准的函数称之为目标函数。

随着问题种类的不同以及问题规模的扩大,要找到一种能够已有限代价来求解最优化问题的通用方法一直都是一个难题,建立用最大的可能性求解全局解一直是一个重要问题。

模拟退火算法基本原理介绍(可编辑修改word版)

模拟退火算法基本原理介绍(可编辑修改word版)

模拟退火算法一、模拟退火算法概念模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。

根据Metropolis 准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E 为温度T 时的内能,ΔE 为其改变量,k 为Boltzmann 常数。

用固体退火模拟组合优化问题,将内能E 模拟为目标函数值f,温度T 演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i 和控制参数初值t 开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t 值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。

退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t 及其衰减因子Δt、每个t 值时的迭代次数L 和停止条件S。

二、模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。

模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T 值的迭代次数L(2) 对k=1,……,L 做第(3)至第6 步:(3)产生新解S′(4)计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5)若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6)如果满足终止条件则输出当前解作为最优解,结束程序。

终止条件通常取为连续若干个新解都没有被接受时终止算法。

(7)T 逐渐减少,且T->0,然后转第2 步。

算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。

模拟退火法

模拟退火法

模拟退火法
模拟退火法(Simulated Annealing,SA)是一种常用的局部搜索优
化算法,是近几年来被广泛应用于特定问题的有效解法之一。

它模拟一种
由室温变低到固定温度的淬火过程,源自热力学中,被认为可以找到系统
能量最小值的演化算法。

模拟退火法根据物理中的概念设计,优点是能够
找到一个比较好的(比直接定值法要佳)最优解,可以解决一些概率问题,并能够使一个比较好的解脱离局部最优解,模拟退火法以当前温度作为搜
索的启动点,并以迭代的方式慢慢降低温度,从而让解的搜索收敛到全局
最优解,经过对相关因素的综合评价,模拟退火法以较少的时间,比较快
的收敛速度找到最优的局部最优解。

《模拟退火算》课件

《模拟退火算》课件

模拟退火算法的优缺点分析
1 优点
能够全局搜索,不容易陷入局部最优解。
2 缺点
运行时间较长,需要合理选择参数和策略。
模拟退火算法的改进
1 多种调节参数方法
通过改变各个参数的值来优化算法的性能。
2 算法复杂度分析
对模拟退火算法的复杂度进行分析,提出改进措施。
结语
算法总结
通过学习模拟退火算法,我们可以更好地应对各种优化问题。
《模拟退火算法》PPT课 件
欢迎大家参加今天的课程!本课程将介绍模拟退火算法的概念、原理、应用 以及优缺点分析。让我们一起探索这个优秀的优化算法吧!
概述
模拟退火算法(SA)是一种优化算法,其灵感来源于固体退火原理。通过模 拟固体物质的退火过程,以一定的概率接受差解,从而在搜索空间中寻找到 全局最优解。
模拟退火算法的实现步骤
1
初始化
设置初始状态和温度。
2
生成新解
通过随机移动改变当前解。
3
判断新解是否接受
根据能量差和概率判断是否接受新解。
4
更新状态
根据降温策略和接受准则更新状态,循环迭代直到满足停止条件。
模拟退火算法的优化
1 降温策略
选择合适的降温方式,平 衡全局搜索和局部搜索的 能力。
2 解的表示方法
3 种子的选择
选择适当的解的表示方法, 提高搜索效率。
合理选择初始化的种子解, 减少搜索空间。
模拟退火算法的应用
旅行商问题
通过模拟退火算法解决旅行 商问题,寻找最短路径。
图像匹配问题
利用模拟退火算法进行图像 匹配,实现图像识别和辨识。
近似最优化问题
应用于一些实际生活中的近 似最优化问题,如资源分配 等。

模拟退火算法详解

模拟退火算法详解

车间调度问题求解
总结词
模拟退火算法在车间调度问题求解中具有较好的应用 效果,能够提高生产效率。
详细描述
车间调度问题是一个复杂的优化问题,旨在合理安排生 产任务和资源分配,以提高生产效率。模拟退火算法通 过随机搜索和接受不良解的概率,能够找到较为满意的 调度方案。在车间调度问题中,模拟退火算法可以与其 他启发式方法结合使用,以获得更好的性能。此外,模 拟退火算法还可以应用于其他生产调度问题,如作业车 间调度、装配线平衡等。
旅行商问题求解
总结词
模拟退火算法在旅行商问题求解中具有较好的性能, 能够找到高质量的解。
详细描述
旅行商问题是一个NP难问题,旨在寻找一条旅行路线 ,使得一个旅行商能够访问一系列城市并返回到起始 城市,且总旅行距离最短,同时满足每个城市恰好经 过一次。模拟退火算法通过随机搜索和接受不良解的 概率,能够探索更广阔的解空间,从而找到高质量的 解。在旅行商问题中,模拟退火算法可以与其他启发 式方法结合使用,以获得更好的性能。
迭代更新
重复产生新解、计算能量差和降低温度的 过程,直到满足终止条件。
终止条件
达到最大迭代次数
当达到预设的最大迭代次数时,算法终止。
温度低于阈值
当温度低于一个预设的阈值时,算法终止。
解的质量满足要求
当当前解的质量满足预设的要求或与最优解 的差距在可接受范围内时,算法终止。
03
模拟退火算法参数设置
温度衰减率
总结词
温度衰减率是模拟退火算法中温度变化的速率,它决定了算法的收敛速度和全局搜索能 力。
详细描述
温度衰减率决定了算法在迭代过程中温度下降的速度。较小的衰减率可以使算法在迭代 过程中有更多的时间来探索解空间,但可能会导致算法收敛速度较慢;而较大的衰减率 则可以使算法更快地收敛到最优解,但可能会牺牲一些全局搜索能力。因此,选择合适

模拟退火算法基本原理介绍

模拟退火算法基本原理介绍

模拟退火算法一、模拟退火算法概念模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。

根据Metropolis准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann 常数。

用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。

退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。

二、模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。

模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L(2) 对k=1,……,L做第(3)至第6步:(3) 产生新解S′(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6) 如果满足终止条件则输出当前解作为最优解,结束程序。

终止条件通常取为连续若干个新解都没有被接受时终止算法。

(7) T逐渐减少,且T->0,然后转第2步。

算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。

模拟退火算法详解

模拟退火算法详解

模拟退⽕算法详解博客⾷⽤更佳模拟退⽕算法(Simulate Anneal ,SA )是⼀种通⽤概率演算法,⽤来在⼀个⼤的搜寻空间内找寻命题的最优解。

模拟退⽕是由S .Kirkpatrick ,C .D .Gelatt 和M .P .Vecchi 在1983年所发明的。

V .Cern 和yacute 在1985年也独⽴发明此演算法。

模拟退⽕算法是解决TSP 问题的有效⽅法之⼀。

TSP 是啥我们等会再解释(就是⼀道例题,给个link:,有兴趣的童鞋可以先看着)模拟退⽕的出发点是基于物理中固体物质的退⽕过程与⼀般组合优化问题之间的相似性。

模拟退⽕算法是⼀种通⽤的优化算法,其物理退⽕过程由加温过程、等温过程、冷却过程这三部分组成。

---引⾃《百度百科》关于物理呢,本蒟蒻就不做过多的解释了.算法原理就是⼀个物体,在降温的过程中,根据热⼒学规律并结合计算机对离散数据的处理,在温度为T 时,出现能量差为ΔE 的降温的概率为P (ΔE )这个P 函数我们在下⼀个部分给⼤家解释.算法解析(现在我们要求这个函数图像的最⼩值)附图:要开始写这个算法,我们就要引⼊⼀个叫做Metropolis 接受准则的玩意⼉了.(英语⼤佬们不要把它当成那个⼤都会了...)P =1(ΔE >0)P =exp (−ΔEkT )(ΔE <0)显然如果 ΔE 为正的话转移是⼀定会成功的, 但是对于 ΔE <0 我们则以上式中计算得到的概率接受这个新解.然后我们维护温度 T 即可. 这⾥我们有三个参数: 初温 T b , 降温系数 D , 终温 T e⼀般 T b 是个⽐较⼤的数,取1000000, D 是个接近 1 但是⼩于 1 的值,⼀般取0.97, T e 是个接近 0 的正值, ⼀般取1−14即1e −14.⾸先让温度 T =T b , 然后进⾏⼀次转移尝试, 然后让 T ∗=D .当 T <T e 时模拟退⽕过程结束, 当前解作为最优解.转移转移是整个模拟退⽕算法的重头戏.它通过当前温度进⾏⼀定程度的扰动,产⽣新解.其实扰动也并不复杂,当时学习这种算法时就不懂扰动是什么.它其实就是当前温度T 0,乘以⼀个随机数R 加在原解上得到新解.很多同学可能看不懂.现在我们假设估价函数为f (x ),x 为原解,我们要让函数值最⼩.那么新解就是x 1=x +T 0∗R (R ∈[−1,0)∪(0,1])那么ΔE =f (x )−f (x 1)此处千万不要把x 和x 1记反了,要不然这样使⽤Metrospolis 准则就会出错.我们在⼀次模拟退⽕完成后,可以再多来⼏次怎么⽣成R 呢,有些同学可能会有问题,具体我们可以⽤记得要⽤初始化例题现在,你应该已经了解了模拟退⽕算法了这⾥有⼏道例题TSP 问题没错,就是⽂章开头提到的那个TSP 问题具体请百度平衡点具体⾃⼰可以在洛⾕上看附带代码(double)(rand()-rand())/RAND_MAXsrand(time(NULL))#include<bits/stdc++.h>#define LD long doubleusing namespace std;/***** 模拟退⽕控制 *****/const LD D=0.97,EPS=1e-14;int times=10;/***** ============ *****/int n;int w[1010],x[1010],y[1010];LD bx=0,by=0;LD cur_ans,new_ans,best;inline LD Rand(){ //产⽣-1到1闭区间(除去0)的随机数return (LD)(rand()-rand())/((LD)RAND_MAX);}LD calc(LD cx,LD cy){ //估价函数LD ret=0;for(int i=1;i<=n;i++){LD dx=cx-x[i],dy=cy-y[i];ret+=sqrt(dx*dx+dy*dy)*w[i];}return ret;}int main(){srand(time(NULL)); cin>>n;Processing math: 100%cin>>n;for(int i=1;i<=n;i++){cin>>x[i]>>y[i]>>w[i];bx+=x[i];by+=y[i];}bx/=n;by/=n; //初始解best=cur_ans=calc(bx,by);while(times--){ //控制多次退⽕cur_ans=best;LD cx=bx,cy=by;for(LD T=1000000;T>EPS;T*=D){ //模拟退⽕LD nx=cx+T*Rand(),ny=cy+T*Rand();new_ans=calc(nx,ny);if(best>new_ans){ //更新最优解best=new_ans;bx=nx,by=ny;}if(cur_ans>new_ans||exp((cur_ans-new_ans)/T)>(LD)rand()/RAND_MAX){ //更新当前解并转移 cur_ans=new_ans;nx=cx,ny=cy;}}}cout<<fixed<<setprecision(3)<<bx<<" "<<by<<endl;return 0;}。

模拟退火算法的研究及其应用

模拟退火算法的研究及其应用

模拟退火算法的研究及其应用一、本文概述本文旨在深入研究和探讨模拟退火算法的理论基础、实现方法以及其在各个领域的实际应用。

模拟退火算法是一种基于概率的随机优化搜索技术,其灵感来源于物理学的退火过程。

通过模拟固体物质在加热和冷却过程中的热力学行为,该算法能够在求解复杂优化问题时有效避免陷入局部最优解,从而提高全局搜索能力。

本文将首先介绍模拟退火算法的基本原理和发展历程,随后详细阐述其实现步骤和关键参数设置。

在此基础上,文章将重点分析模拟退火算法在组合优化、机器学习、神经网络训练、图像处理、生产计划调度等多个领域的应用案例,探讨其在实际问题中的有效性和优越性。

本文还将对模拟退火算法的未来研究方向和应用前景进行展望,以期为相关领域的研究者提供有益的参考和启示。

二、模拟退火算法原理模拟退火算法(Simulated Annealing,SA)是一种基于概率的搜索算法,它源于固体退火过程与组合优化问题的相似性。

在物理学中,固体物质的退火过程是指将物质加热至足够高的温度,使其内部粒子可以自由移动,然后缓慢冷却,以达到低能稳定状态。

模拟退火算法借鉴了这一过程,通过模拟这个过程来寻找大规模组合优化问题的全局最优解。

模拟退火算法的基本原理包括三个关键步骤:初始化、状态转移和接受准则。

算法从一个初始解开始,这个初始解可以是随机产生的,也可以是问题的一个启发式解。

然后,算法通过不断生成新的解来搜索解空间。

新解的生成是通过在当前解的基础上做随机扰动实现的,这种扰动可以是简单的位翻转,也可以是复杂的局部搜索。

在生成新解之后,算法需要决定是否接受这个新解。

这一步是通过一个接受准则来实现的,这个准则通常是一个概率函数,它决定了算法在当前温度下接受新解的可能性。

如果新解的目标函数值比当前解更优,那么新解总是被接受;如果新解的目标函数值比当前解更差,那么新解被接受的概率会随着两者差值的增大而减小,这个概率与当前温度成正比。

随着算法的进行,温度会逐渐降低,这样新解被接受的可能性就会逐渐减小,算法会逐渐趋向于寻找更好的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档