电磁感应
电磁感应现象

电磁感应现象电磁感应是物理学中的一个重要概念,它描述了磁场变化所引起的电流产生的现象。
电磁感应现象是通过磁场和电流之间相互作用而产生的,它在许多领域都具有广泛的应用。
一、法拉第电磁感应定律在理解电磁感应现象之前,我们首先需要了解法拉第电磁感应定律。
法拉第电磁感应定律是关于电磁感应现象的基本定律,由英国物理学家迈克尔·法拉第在19世纪提出。
法拉第电磁感应定律可以简要地概括为:当磁通量穿过一个闭合线圈时,该线圈中产生的感应电动势的大小与磁通量的变化率成正比。
数学表达式可以表示为:ε = -dΦ/dt其中,ε代表感应电动势,Φ代表磁通量,t代表时间。
负号表示感应电动势的方向与磁通量的变化方向相反。
二、电磁感应的应用电磁感应现象在日常生活和工业生产中有着广泛的应用。
1. 电动发电机电动发电机就是利用电磁感应现象来将机械能转化为电能的装置。
当导体在磁场中运动时,会产生感应电动势,通过外部电路连通导体,电流就会被产生。
这样,机械能就被转化为了电能。
2. 电磁铁电磁铁是一种可以通过控制电流从而改变其磁性的装置。
当通过电磁铁中的线圈通电时,会产生磁场,将铁磁材料吸附住。
这主要利用了电磁感应现象。
3. 变压器变压器是利用电磁感应现象来改变交流电压大小的装置。
变压器由两组线圈组成,一组称为主线圈,另一组称为副线圈。
当主线圈中通入交流电时,会产生变化的磁场,从而感应出副线圈中的电动势,从而改变电压大小。
4. 基本电子元件的工作原理电磁感应现象是许多电子元件工作的基础,如电感、感应电动机等。
这些元件利用电流和磁场之间的相互作用来实现特定的功能。
三、电磁感应的实验1. 弗莱明右手定则弗莱明右手定则是用于描述电磁感应过程中磁场、电流和力的关系的一个规则。
它可以用来确定感应电动势和电流的方向。
它规定:将右手伸直并握紧,让大拇指、食指和中指呈互相垂直、互相垂直的形状,这样当磁场方向指向大拇指时,感应电流和力的方向乘积方向为食指的方向。
什么是电磁感应

什么是电磁感应电磁感应是一种基本的物理现象,是指当导体处于磁场中,或者导体相对于磁场有相对运动时,会产生感应电流或感应电动势。
这一现象的发现和研究对于电磁学和电动力学的发展具有重要意义,为电力和电子技术的应用提供了基础。
1. 法拉第电磁感应定律在1831年,英国科学家迈克尔·法拉第发现了电磁感应现象,并总结出了法拉第电磁感应定律。
该定律的主要内容是:当导体线圈中的磁通量发生变化时,线圈中会产生感应电动势。
感应电动势的大小与磁通量变化率成正比,方向则遵循左手定则。
这一定律为后续的电磁学研究奠定了基础。
2. 电磁感应的应用电磁感应现象在现代科技和生活中有广泛的应用。
2.1 发电机发电机是利用电磁感应原理将机械能转化为电能的装置。
它通过转动的磁场感应线圈中的导体,产生感应电动势,从而产生了电流。
这种电流可以用于供电,满足人们对电力的需求。
2.2 变压器变压器是利用电磁感应现象实现电能的升降压的装置。
当变压器的一侧线圈接通交流电时,通过变压器的铁芯产生的交变磁场,感应到了另一侧的线圈,从而在其上产生了感应电动势。
通过变压器的设计,可以实现对电能的有效传输和调节。
2.3 感应炉感应炉是利用电磁感应现象将电能转化为热能的装置。
感应炉将交流电流通过线圈产生交变磁场,感应到了内部的導体,激发了導体内部的涡流,从而产生了高温。
这一技术在工业生产中被广泛应用,如金属熔炼和表面淬火等。
2.4 增强现实技术增强现实技术是将虚拟信息与现实场景相结合的技术。
感应装置在增强现实设备中起到关键作用,通过感应和测量场景中的电磁信号,根据设定的算法计算出物体的位置、方向等信息,并实时展示在使用者的视野中。
2.5 传感器传感器是一种能够感知和测量特定环境参数的装置。
许多传感器利用电磁感应原理工作,如温度传感器、光敏传感器和磁场传感器等。
总结电磁感应是指导体处于磁场中或与磁场有相对运动时,产生感应电流或感应电动势的现象。
法拉第电磁感应定律为这一现象提供了科学解释,并为电磁学的发展奠定了基础。
什么是电磁感应电磁感应的原理是什么

什么是电磁感应电磁感应的原理是什么电磁感应是在磁场的作用下,有导体中的电子受到力的作用而产生电流的现象。
它是电磁学的重要概念之一,也是许多电器和电机的工作原理。
本文将详细介绍电磁感应的原理和相关概念。
一、电磁感应的基本概念电磁感应是法拉第发现的重要实验现象。
当一个导体在磁场中运动或者磁场的大小发生变化时,导体内部就会产生感应电流。
这个被感应出来的电流称为感应电流,而产生感应电流所依靠的原因是电磁感应。
二、法拉第电磁感应定律法拉第电磁感应定律是揭示电磁感应规律的基本定律。
它的表述如下:当一个导体回路与磁场相互运动时,所产生的感应电动势的大小正比于导体的运动速率和磁场的磁感应强度,与导体回路的形状和位置有关。
三、电磁感应的原理电磁感应的原理基于磁场的变化和导体中的电子受力。
当导体在磁场中运动时,导体内的自由电子也会随之运动。
在磁场的影响下,这些电子将受到洛伦兹力的作用。
洛伦兹力的大小与电子速度、磁感应强度和磁场与电子运动方向的夹角有关。
如果导体形成一个回路,那么导体内部的电子将发生聚集和运动,形成感应电流。
四、电磁感应的应用电磁感应的原理在许多实际应用中得以运用。
最典型的应用就是发电机和变压器。
发电机通过转动的磁场和导体线圈的相对运动,产生感应电流,将机械能转换为电能。
而变压器则利用电磁感应的原理,将交流电的电压升高或降低。
此外,电磁感应还广泛应用于感应炉、感应加热、感应电动机等领域。
五、电磁感应的实例为了更加直观地理解电磁感应的原理,这里列举几个具体的实例。
例如,在自行车后轮上装有一个磁铁和线圈,当自行车运动时,磁铁和线圈的相对运动会产生感应电流,从而驱动一个小灯泡点亮。
此外,感应炉中的底部有一个强磁场,当放入一个铁锅时,锅底感应出的感应电流将产生浑身发烫的效果。
六、总结电磁感应是电磁学中重要的概念,它揭示了电流和磁场之间的密切联系。
法拉第电磁感应定律提供了电磁感应规律的基本原理,而导体中的自由电子受力则是电磁感应现象的基础。
高中物理——电磁感应

高中物理——电磁感应一、电磁感应的基本概念1. 电磁感应的定义2. 法拉第电磁感应定律3. 电磁感应的应用练习题:1. 一根长20cm 的导线在磁感应强度为0.1T 的磁场中以60° 角度匀速转动,求导线在6s 内转过的角度。
答案:72°2. 一个长度为10cm,电阻为2Ω 的导线,以速率为3m/s 进入磁感应强度为0.5T 的磁场中,求产生的感应电动势。
答案:1.5V二、电磁感应定律的应用1. 变压器原理2. 感应电流和感应电动势3. 洛伦兹力和感应电动势练习题:1. 一个高压线圈和低压线圈的匝数比为4:1,高压线圈输入电压为200V,求低压线圈的输出电压。
答案:50V2. 一个直径为0.05m,线圈匝数为1000,转动速率为300转/min 的圆形电发生器,求其在磁感应强度为0.1T 的磁场中产生的感应电动势。
答案:47.1V3. 在磁感应强度为0.2T 的磁场中,有一根长度为0.3m,电阻为5Ω 的导线以速率为2m/s 进入磁场中,求导线所受的洛伦兹力和感应电动势。
答案:洛伦兹力为0.6N,感应电动势为1V三、动生电和静生电1. 动生电和动生电的原理2. 静生电和静生电的原理3. 静电感应和静电感应的原理练习题:1. 一根长30cm 的导线在磁感应强度为0.2T 的磁场中以90° 角度匀速转动,导线两端的电压为多少?答案:1.8V2. 在磁场中有一根长度为0.5m,电阻为10Ω 的导线,导线以速率为3m/s 进入磁场,求导线端的电压。
答案:3V3. 一块金属板放置于与水平面成30° 角度的非均匀电场中,电场强度为 3.0×10⁴N/C,板的长度为10cm,宽度为5cm,板两端的电势差为多少?答案:2.6V总结:电磁感应是高中物理中的重要知识点,涉及到电磁感应定律、变压器原理、感应电流和感应电动势、洛伦兹力和感应电动势、动生电和静生电、静电感应等多个方面。
什么是电磁感应电磁感应的现象有哪些

什么是电磁感应电磁感应的现象有哪些电磁感应是指当一个导体或线圈处于变化的磁场中时,会在导体中产生感应电流或感应电动势的现象。
这个现象主要由法拉第电磁感应定律描述。
本文将介绍电磁感应的基本原理和相关的现象。
一、电磁感应的基本原理电磁感应的基本原理是法拉第电磁感应定律,即磁通量的变化率与感应电动势成正比。
具体表达为:ε = - dΦ/dt式中,ε表示感应电动势,Φ表示磁通量,t表示时间,d/dt表示对时间的导数。
根据电磁感应的基本原理,我们可以进一步分析电磁感应的现象。
二、电磁感应的现象1. 电磁感应产生的感应电流当一个导体或线圈通过一个变化的磁场时,会在导体中产生感应电流。
这是因为磁场的变化导致磁通量的变化,进而产生感应电动势,从而驱动电子在导体中流动形成电流。
这种现象常见于变压器、感应电动机等电器设备中。
2. 电磁感应产生的感应电动势与感应电流类似,变化的磁场也会在导体中产生感应电动势。
感应电动势的存在导致电子在导体中发生偏移,从而产生电场效应。
这种现象常见于发电机、电磁铁等设备中。
3. 电磁感应的自感现象自感是指导体自身产生的感应电动势。
当导体中的电流发生变化时,会产生变化的磁场,进而导致导体中产生感应电动势。
这种现象常见于继电器、电感等设备中。
4. 电磁感应的互感现象互感是指不同的导体之间由于共享磁场而产生的互相感应的现象。
当一个导体中的电流发生变化时,会产生变化的磁场,进而影响到附近的另一个导体,使其中产生感应电动势。
这种现象常见于变压器、互感器等设备中。
需要注意的是,电磁感应的现象主要是在变化的磁场中产生的。
当磁场稳定时,不会产生感应电流或感应电动势。
结论电磁感应是指导体或线圈在变化的磁场中产生感应电流或感应电动势的现象。
通过法拉第电磁感应定律,我们可以了解到磁通量的变化率与感应电动势的关系。
电磁感应的现象包括感应电流、感应电动势、自感和互感等。
这些现象在电子设备、电动机等领域中有广泛的应用。
电磁感应(20张ppt)

生成智慧之果
三、感应电流产生的条件应用
2.如图所示,磁场中有一个闭合的弹簧线圈。先把线圈撑开(图甲), 然后放手,让线圈收缩(图乙)。线圈收缩时,其中是否有感应电流? 为什么?
生成智慧之果
三、感应电流产生的条件应用
3、 如图所示,垂直于纸面的匀强磁场局限在虚线框内, 闭合线圈由位置1穿过虚线框运动到位置2。线圈在什么时候 有感应电流?什么时候没有感应电流?为什么?
孙正林 泰州市第三高级中学
开启智慧之门
一、电磁感应的探索历程 1.奥斯特梦圆“电生磁” 1820年,丹麦物理学家奥斯特发现通电导 线周围的小磁针发生偏转,从而发现电流的磁 效应.
开启智慧之门
2.法拉第发现“磁生电” 1831年,英国物理学家法拉第发现
了电磁感应现象.
电源
G
开启智慧之门
奥斯特梦圆 : “电”生“磁” (机遇总是垂青那些有准备的人)
法拉第心系: “磁”生“电” (成功总是属于那些坚持不懈的人)
探究智慧之源
二、探究感应电流产生的条件
实验1:
如何才能在回路中 产生感应电流?
实验操作 表针是否摆动
导体棒左移 是 导体棒右移 是 导体棒不动 否 导体棒上移 否 导体棒下移 否
结论:闭合回路的部分导体在磁场
中切割磁感线
实验2:向线圈中插入磁铁和把磁铁 从线圈中拔出
实验2:向线圈中插入磁铁和把磁铁从线圈中拔出
磁铁的运 指针是
动
否摆动
N极插入线 圈
是
N极停在线 否 圈中
N极从线圈 中抽出
是
磁铁的运 指针是
动
否摆动
S极插入线 圈
是
S极停在线
电磁感应现象的原理

电磁感应现象的原理一、引言电磁感应现象是电磁学的基础,也是现代工业生产和科学研究中不可或缺的一部分。
它的发现和研究,为人类认识自然、改善生活和推动科技进步提供了重要的理论基础和实践支撑。
本文将从电磁感应现象的定义、基本原理、实验表现形式、相关公式及应用等方面进行全面详细的阐述。
二、电磁感应现象的定义电磁感应现象是指导体内部或周围空间中存在变化的磁场时,导体内部会出现感应电动势,并在导体内产生感应电流的物理现象。
简单来说,就是当导体与变化的磁场相互作用时,会产生电流。
三、电磁感应现象的基本原理1.法拉第定律法拉第定律指出:当导体中有变化的磁通量时,在该导体两端就会产生一个感应电动势。
该定律可以用公式表示为:ε=-dΦ/dt,其中ε表示感应电动势,Φ表示磁通量,t表示时间。
根据此公式可以得知:当Φ随时间变化率增大时,感应电动势也会增大。
2.楞次定律楞次定律指出:当导体中有变化的磁通量时,所产生的感应电流方向总是使其本身所产生的磁场与变化的磁场方向相反。
这个定律可以用公式表示为:ε=-dΦ/dt,其中ε表示感应电动势,Φ表示磁通量,t表示时间。
根据此公式可以得知:当Φ随时间变化率增大时,感应电动势也会增大。
3.洛伦兹力洛伦兹力是导体内部产生感应电流时所受到的一种力。
它的大小与导体内部电流、磁场强度和导体长度等因素有关。
当导体内部有感应电流时,该导体就会受到一个方向垂直于磁场和电流方向的力。
这个力可以用公式表示为:F=ILBsinθ,其中F表示洛伦兹力,I表示电流强度,L表示导体长度,B表示磁场强度,θ表示电流与磁场之间的夹角。
四、实验表现形式1.恒定磁场中运动导体实验将一长条金属棒放置在一个恒定磁场中,并使其沿着磁场方向运动。
此时,棒两端会产生感应电动势,并在棒内部产生感应电流。
这个实验可以通过一个示波器来观测到感应电动势和感应电流的变化情况。
2.恒定磁场中静止导体实验将一长条金属棒放置在一个恒定磁场中,并使其保持静止不动。
电磁感应的概念和电磁感应定律

电磁感应的概念和电磁感应定律电磁感应是指在磁场中变化的磁通量产生电场,从而引发电流的现象。
电磁感应定律则进一步阐述了电磁感应的具体规律。
本文将详细介绍电磁感应的概念和电磁感应定律的应用。
一、电磁感应的概念电磁感应是指当导体运动或者磁场发生变化时,导体中会产生感应电流。
这个现象最早由英国科学家迈克尔·法拉第于1831年发现,并被称为法拉第感应定律。
电磁感应的重要性体现在多方面,比如发电机、变压器等电磁设备的工作原理都基于电磁感应。
二、电磁感应定律电磁感应定律主要包括两个方面,即法拉第电磁感应定律和楞次定律。
1. 法拉第电磁感应定律法拉第电磁感应定律描述了变化的磁场对导体中感应电流的影响。
该定律可以用以下公式来表示:ε = -ΔΦ / Δt其中,ε 表示感应电动势,ΔΦ 表示磁通量的变化量,Δt 表示磁通量变化的时间。
负号表示感应电动势的方向与磁通量的变化方向相反。
根据该定律,当磁通量的变化较大且变化速度较快时,感应电动势也会相应增大。
2. 楞次定律楞次定律是描述感应电流对产生它的磁场的影响。
根据楞次定律,感应电流的方向会使得它所产生的磁场方向发生变化,以阻碍磁场变化的原因。
这可以用下面的公式来表示:ε = -dΦ / dt其中,ε 表示感应电动势,dΦ 表示磁通量的变化率。
负号表示感应电动势的方向与磁通量的变化率相反。
根据楞次定律,感应电流的方向会使得它所产生的磁场方向改变,从而减缓磁场的变化速度。
三、电磁感应的应用电磁感应广泛应用于各个领域,特别是在发电和变压器方面。
1. 发电发电机是利用电磁感应产生电能的装置。
当发电机中的转子旋转时,磁场发生变化,进而在线圈中产生感应电动势。
这个感应电动势可以通过导线外部的电路提供给电器设备,从而产生电流。
2. 变压器变压器是利用电磁感应实现电能的传输和变压的设备。
当交流电通过变压器的一侧线圈时,产生的磁场将感应出另一侧线圈中的电动势,从而改变电压大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.(2019陕西师大附中)如图所示,使一个水平铜盘绕过其圆心的竖直轴OO'转动,且假设摩擦等阻力不计,转动是匀速的,现把一个蹄形磁铁水平向左移近铜盘,则 ()A.铜盘转动将变快B.铜盘转动将变慢C.铜盘仍以原来的转速转动D.因磁极方向未知,无法确定【答案】B【解析】假设蹄形磁铁的上端为N极,下端为S极,铜盘顺时针转动。
根据右手定则可以确定此时铜盘中的感应电流方向是从盘心指向边缘。
通电导体在磁场中要受到力的作用,根据感应电流的方向和磁场的方向,利用左手定则可以确定磁场对铜盘的作用力的方向是沿逆时针方向,其受力方向与铜盘的转动方向相反,所以铜盘的转动速度将减小。
无论怎样假设,铜盘的受力方向始终与转动方向相反,所以转动将变慢,B 正确。
2.(多选)(2019甘肃武威六中二诊)空间中存在着竖直方向的磁场,一圆形金属框水平放在磁场中,规定磁感应强度方向和线圈中感应电流方向如图甲所示时为正。
某时刻开始计时,线圈中产生了如图乙所示的感应电流,则磁感应强度随时间变化的图线可能是 ()【答案】AC【解析】由图乙所示可知,在0~1 s内,电流是正的,即从上向下看,沿顺时针方向,电流大小是定值,则磁感应强度均匀变化,在1~2 s内,感应电流为零,则磁感应强度不变,在2~4 s内,感应电流是负的,即沿逆时针方向,电流大小不变,则磁感应强度随时间均匀变化。
根据A项图像,由楞次定律可知,0~1 s内感应电流沿顺时针方向,在1~2 s内磁感应强度不变,穿过线圈的磁通量不变,感应电流为零,在2~4 s内,由楞次定律可知,感应电流沿逆时针方向,符合题意,故A正确;由B项图像可知,在1~2 s内,磁感应强度是变化的,穿过线圈的磁通量是变化的,线圈中有感应电流,不符合题意,故B错误;根据C项图像,由楞次定律可知,0~1 s内感应电流沿顺时针方向,在1~2 s内磁感应强度不变,穿过线圈的磁通量不变,感应电流为零,在2~4 s内,由楞次定律可知,感应电流沿逆时针方向,符合题意,故C正确;根据D项图像,由楞次定律可知,0~1 s内感应电流沿逆时针方向,在1~2 s内磁感应强度不变,穿过线圈的磁通量不变,感应电流为零,在2~4 s内,由楞次定律可知,感应电流沿顺时针方向,不符合题意,故D错误。
故选A、C。
3.(2017上海静安高三下学期质检)如图所示,在同一水平面内有两根光滑平行金属导轨MN 和PQ,在两导轨之间竖直放置通电螺线管,ab和cd是放在导轨上的两根金属棒,它们分别放在螺线管的左右两侧,保持开关闭合,最初两金属棒处于静止状态。
当滑动变阻器的滑动触头向左滑动时,两根金属棒与导轨构成的回路中感应电流方向(俯视图)及ab、cd两棒的运动情况是 ()A.感应电流为顺时针方向,两棒相互靠近B.感应电流为顺时针方向,两棒相互远离C.感应电流为逆时针方向,两棒相互靠近D.感应电流为逆时针方向,两棒相互远离【答案】D【解析】当变阻器滑动触头向左滑动时,电路中的电流变大,线圈中的磁感应强度增大;根据安培定则,由电流方向可确定线圈中的磁场方向垂直于导轨向下,由于线圈处于两棒中间,所以穿过两棒所围成面积的磁通量变大,由楞次定律可得,产生逆时针方向的感应电流,最后根据左手定则可确定安培力的方向;ab棒处于竖直向上的磁场中,且电流方向为a→b,则安培力方向向左,cd棒处于竖直向上的磁场中,且电流方向为d→c,则安培力方向向右,两棒相互远离,故选项D正确。
4.(多选)(2019陕西第二次联考)如图所示,等边闭合三角形线框,开始时底边与匀强磁场的边界平行且重合,磁场的宽度大于三角形的高度,线框由静止释放,穿过该磁场区域,不计空气阻力,则下列说法正确的是 ()A.线框进磁场过程中感应电流为顺时针方向B.线框底边刚进入和刚穿过磁场时线圈的加速度大小可能相同C.线框出磁场的过程,可能做先减速后加速的直线运动D.线框进出磁场过程,通过线框的电荷量不同【答案】BC【解析】线框进入磁场过程中,磁通量增大,根据楞次定律可知,感应电流为逆时针方向,故A错误;线框底边刚进入瞬间,速度为零,产生的感应电动势为零,下落加速度为g,完全进入磁场后下落加速度为g ,随着下落速度的增大,出磁场时产生的安培力可能等于2mg ,此时减速的加速度大小可能为g ,故B 正确;线框出磁场的过程,可能先减速,随着速度减小,切割长度变短,线框受到的安培力减小,当小于重力后线框做加速运动,故C 正确;线框进、出磁场过程,磁通量变化相同,所以通过线框的电荷量相同,故D 错误。
所以选B 、C 。
5.(2019黑龙江大庆中学下期开考,3)如图所示,将长为2 m 的导线从正中间折成120°的角,使其所在的平面垂直于磁感应强度为2 T 的匀强磁场。
为使导线中产生20 V 的感应电动势。
则导线切割磁感线的最小速度为 ( ) A. 103B.10 m/sC. 203 m/s D. 53 m/s 【答案】 A【解析】 当折导线切割磁感线的有效长度最长,即有效长度为AC 时,速度最小,则BL AC v min =E ,解得导线切割磁感线的最小速度v min =AC E BLm/s=103m/s 。
故A 项正确,B 、C 、D 三项错误。
2.(2019陕西榆林二模)如图所示,线圈abcd 固定于分布均匀的磁场中,磁场方向垂直线圈平 面。
当磁场的磁感应强度B 随时间t 变化时,ab 边受到的安培力恒定不变。
则下列磁感应强度B 随时间t 变化的图像中可能正确的是 ( )【答案】C【解析】设线圈的ab 边长为L ,ad 边长为l ,当磁感应强度发生变化时,线框内产生的感应电动 势为E =Φt ∆∆ = = ,感应电流为I = ,安培力为F =BIL ,得F= B S t ∆⋅∆B Ll t ∆⋅∆E R,由公式可知,为使安培力恒定不变,若磁场B 增大,则 应减小;若B 减小,则 应增大。
所以四个图像中只有C正确。
故选C 。
8.(多选)(2019吉林名校联一模)如图所示,位于同一绝缘水平面内的两根固定金属导轨MN 、M 'N ',电阻不计,两导轨之间存在竖直向下的匀强磁场。
现将两根粗细均匀、电阻分布均匀的相同铜棒ab 、cd 放在两导轨上,若两棒从图示位置以相同的速度沿MN 方向做匀速直线运动,运动过程中始终与两导轨接触良好,且始终与导轨MN 垂直,不计一切摩擦,则下列说法正确的是 ( )A.回路中有顺时针方向的感应电流B.回路中总的感应电流不断减小C.回路中的热功率不断增大D.两棒所受安培力的合力不断减小【答案】 BD【解析】 两棒以相同的速度沿MN 方向做匀速直线运动,回路的磁通量不断增大,根据楞次定律可知,感应电流方向沿逆时针,故A 错误。
设两棒原来相距的距离为s ,M 'N '与MN 的夹角为α,回路中总的感应电动势E =BL cd v -BL ab v =Bv ·(L cd -L ab )=Bvs tan α,保持不变,由于回路的电阻不断增大,所以回路中的感应电流不断减小,故B 正确。
回路中的热功率为P = ,E 不变,R 增大,则P 不断减小,故C 错误。
两棒所受安培力的合力为F =BIL cd -BIL ab =BI ·(L cd -L ab )=BIs tan α,I 减小,其他量不变,所以F 减小,故 D 正确。
故选B 、D 。
9.(多选)(2018宁夏银川三校三模)如图甲所示,光滑的平行金属导轨AB 、CD 竖直放置,AB 、CD 相距L ,在B 、C 间接一个阻值为R 的电阻;在两导轨间的abcd 矩形区域内有垂直导轨平面向外、高度为5h 的有界匀强磁场,磁感应强度为B 。
一质量为m 、电阻为r 、长度也为L 的导体棒放在磁场下边界ab 上(与ab 重合)。
现用一个竖直向上的力F 拉导体棒,使它由静止开始向上运动,导体棒刚要离开磁场时恰好做匀速直线运动,导体棒与导轨始终垂直且保持良好接触,导轨电阻不计。
F 随导体棒与初始位置的距离x 变化的情况如图乙所示,下列说法正确的是 ( )2B B L lt R ⋅∆⋅∆⋅B t ∆∆Bt ∆∆A.导体棒离开磁场时速度大小为223()mg R r B L+ B.离开磁场时导体棒两端电压为2mgR BLC.导体棒经过磁场的过程中,通过电阻R 的电荷量为2BLh R D.导体棒经过磁场的过程中,电阻R 上产生的焦耳热为9mghR r R+- 32442()m g R R r B L + 【答案】 BD【解析】设导体棒离开磁场时速度大小为v ,此时导体棒受到的安培力大小为:F 安=BIL =BL =BL = ,由平衡条件得F =F 安+mg ,结合图像知v = ,故A 错误。
离开磁场时,由F =BIL +mg 得:I = ,导体棒两端电压为:U = R ,所以B 选项正确。
导体棒经过磁场的 过程中,通过电阻R 的电荷量为:q = t = t = ×t = = ,故C 错误。
导体棒经过磁场的过程中,设回路产生的总焦耳热为Q ,根据功能关系可得:Q =2mgh +3mg ·4h -mg ·5h - mv 2, 而电阻R 上产生的热量为Q '= Q ,解得:Q '= - ,所以D 选项正确。
故选B 、D 。
二、解答题7.(2019重庆南开中学适应性考试)竖直平面内有两竖直放置的不计电阻的光滑导轨,间距L =1 m,导轨上端接电阻R ,导轨间分布着如图所示的磁场,aa '、bb '之间无磁场,高度差h 1=0.2 m, bb '、cc '之间有磁场,磁感应强度B 1=1 T,高度差也为h 1=0.2 m,cc '、dd '之间无磁场,高度差h 2=3 m,dd '下方有磁场B 2。
一质量m =0.1 kg 的不计电阻的导体棒从aa '位置静止释放,进入磁场B 1区域刚好匀速运动,整个过程导体棒始终保持水平且和导轨接触良好,重力加速度g =10 m/s 2,求:(1)导体棒刚进入磁场B 1时的速度v 1:(2)定值电阻R的阻值;(3)要使导体棒刚进入B2区域也匀速,磁感应强度B2为多大。
【答案】(1)2 m/s(2)2 Ω(3)0.5 T【解析】(1)进入磁场前,导体棒做自由落体运动,根据动能定理可得mgh1=12m21v,解得v1=2m/s(2)进入磁场B1,导体棒刚好匀速运动,根据平衡条件,可得 2211B L vR=mg,解得R=2 Ω(3)离开B1磁场时,导体棒的速度仍然为v1,根据动能定理可得进入B2时的速度满足mgh2=1 2m22v-12m21v,解得v2=8 m/s;导体棒刚进入B2区域也匀速,所以2222B L vR=mg,因此B2=0.5 T。